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A N E W M E T H O D O L O G Y FOR T H E DESIGN 
OF ADAPTIVE CONTROLLERS USING 
"STATE-STRICT PASSIVITY": APPLICATION 
TO NEURAL N E T W O R K CONTROLLERS 

SESH COMMURI AND FRANK L. LEWIS1 

The notion of passivity has played an important role in extending stability results to 
systems based on the input-output properties of the system. This approach was also util
ized to study the stability properties of interconnected passive systems. In the control of 
unknown nonlinear dynamical systems, however, passivity properties were studied only as 
an off-shoot of the resulting controller. In this paper, it is shown that a stronger form 
of passivity, namely state-strict passivity, is required to prove guaranteed tracking perfor
mance and internal stability for a class of nonlinear systems without standard observability 
(i.e. "persistence of excitation") conditions. It is shown that this property can be made 
a design objective in the design of neural network controllers for the control of unknown 
nonlinear systems that satisfy certain assumptions on the system structure. This yields 
"robust" neural network controllers that do not require persistency of excitation or the 
often tedious computations of the regression vector. 

1. INTRODUCTION 

Real-time control of nonlinear plants with unknown dynamics remains a very chal
lenging area of research. Traditionally, the plant dynamics were first modeled and 
verified through off-line experimentation. The control was then designed using linear 
system design techniques or geometric techniques with linear analogues. Thus, feed
back linearization is a first step in controls design for nonlinear systems. The dis
advantage, however, is tha t the method is suitable only for systems described by 
an accurate model. The results for systems with unknown dynamics were at first 
limited by-and-large to ad hoc techniques and simulations involving assumptions 
such as certainty equivalence. These approaches are limited by the complexity of 
the model and cannot accommodate the variation of system parameters. This has 
resulted in the development of controllers that can learn the process dynamics, as 
well as, adapt to parametric changes in the system. Adaptive feedback linearization 
plays a very important role in the control of unknown nonlinear systems that are 
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feedback linearizable [1, 9]. Since the plant inputs and outputs are used to tune the 
adaptation parameters, a lot of research was directed towards the study of the con
vergence of adaptive algorithms based on the input-output properties of the system 
[1, 8, 9, 17]. In this context, Passivity properties of the resulting controller were used 
to show the convergence of the adaptation algorithm [7, 11, 12]. In this paper, it is 
shown that if the system and the adaptive network satisfy a stronger condition than 
passivity, namely state-strict passivity, then this guarantees the internal stability 
of the overall system. This is the first work to our knowledge that brings out this 
important relationship between the input-out properties and the internal stability of 
the interconnected system. This result is shown to be of fundamental importance in 
the development of a new methodology for designing adaptive feedback-linearizing 
controllers for a class of nonlinear systems. In fact, it allows the design of controllers 
that do not require persistence of excitation (e.g. "observability") conditions. 

The remainder of the paper is organized as follows. A brief background on non
linear dynamical systems is given in Section 2, In Section 3, results from literature 
on passivity are presented and sufficient conditions derived to prove the stability 
of the closed-loop system. In Section 4, the formulation of Section 2 is shown to 
satisfy the "state-strict passivity" property, and examples presented on designing 
adaptive controllers and controllers based on neural networks. The performance of 
these controllers is demonstrated through simulation examples in Section 5 and the 
results are summarized in Section 6. 

2. BACKGROUND ON NONLINEAR DYNAMICAL SYSTEMS 

Consider the multi-input multi-output system whose state-space representation is 
given in the Brunovsky canonical form as 

XI = x2 

x2 = x3 

xn = /iÛ_) + ttl + cŕ_ 
xn 

+1 = xПl + 2 

xn 
+2 = XПl +3 

(1) 

Xni+n2 = f2(x) + U2 + d2 
xm+n2-\ l-rim-i + l = Xni+n2j | -n T O _ 1 +2 

Xni+n2-\ f-n m _i+2 = a r n i + n 2 H (-n m _i+3 

Xn — Jm\X_) T Um -+• dr 

with the output equation given as 

У = 

XI 
XПl + l 

æ n 1 + n 2 + - - + n m _ 1 + l . 

(2) 
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It is assumed that d = [d\, d2,..., dm ] T is an unknown disturbance with known up

per bound so that \\d\\ < bd, x = [xi, x2,..., xn]
T 6 Hn,and/ = [fi, f2,..., fm]T : 

Rn —• Rm is a smooth vector function. 

Def in i t ion 1 . The solution of the system (1) and (2) is said to be uniformly 

ultimately bounded (UUB) if for any compact subset U C Rn, there exists a domain 

of attraction UQ C U, a constant e > 0 and a number T(e, x0) such that for all 

x(t0) E UQ, x(t) EUVt, and \\x(t)\\ < e for all t>tx+T. 

2.1. O u t p u t tracking p r o b l e m 

Given the system (1) and (2), it is required to manufacture a bounded control input 

u(t) = [_i, u2,..., um]T such t h a t the output y(t) of the system tracks a specified 

desired output yd(t) = [ydi(t), y_3C0>---, ydm(t)]T while ensuring that the states 

x(t) are bounded. It is assumed that the desired output is smooth so that derivatives 

of all orders exist and the desired output and all its derivatives are bounded by a 

known constant j , tha t is 

yd 

yd 

(n-l) 
Уd 

<ъ 

( n - 1 ) 
where yd denotes the (n — l)-st derivative of yd-

Define the tracking error as e = y — yd, that is 

(3) 

e i 

Є2 

x\ - y<ix 

xni+i - yd2 (4) 

e^n — £ni+ri2-\ | - n m _ i + l ydm-

Then using (1), the error dynamics in (4) can be expressed as 

= /i(_l) + di + Mr 
("0 
e i 

( n i ) 
Уdi 

( n 3 ) 
Є2 = /г(_l) + a 2 + u2~ Уd2 (5) 

( n « ) 
fm (_l) + dm + U 

Define the filtered tracking error r(t) with components 

( n « ) 
Уdm 

( n , - l ) ( n , - 2 ) 

CІ +A,-,i e, + • • • + A,,Пt_i e,, 

Selecting now the control inputs as 

Ui = -fi(x) - Ä't/.r,- -

for 1 < t < m 

Aг?Пl_ieг- + A,)Пt_2 èi + 

1 < i < m. 

, . ( n . - l ) 

+ A,-,! e,-

(6) 

, ( n . ) 

+ Уd, , 

(7) 
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the fìltered eгroг system can be expressed in the form 

ři — -KVІГІ + f(x) + di, 1 < i < m. (8) 

In (7), fi(x) denotes an estimate of fi(x), to be subsequently provided by a 
Adaptive network. The functional estimation error is f(x) = f(x) — f(x). The 
coefficients A»j in (7) are selected such that 

A$,n.-iЄ» + A|,Яť_2вi + • * • + Àj.i ЄІ =0 (9) 

is Hurwitz, that is all the roots of (9) have negative real parts. Then, the controller 
designed in (6), (7) ensures that the filtered tracking error system (8) is stable. This 
then implies that the tracking error e(t) remains bounded for all time. 

In the implementation of the controller (6), (7) it is assumed that an estimate 
/(•) of the function /(•) is available. This estimate is manufactured by an Adaptive 
Network that can approximate the nonlinear function to any desired degree of ac
curacy. However, for such a network to ensure small tracking error in closed-loop 
control, it is necessary to iearn the nonlinear function on-line. The proposed control 
scheme (7) is shown in Figure 1. Note that the structure has a nonlinear adaptive 
inner loop plus a linear outer tracking loop. 

řfrHZK-
~ [ 0 A r ] [••( 

Fig. 1. Control of an unknown nonlinear system using adaptive network. 

3. PASSIVITY PROPERTIES AND IMPLICATIONS FOR STABILITY 

There are a number of approaches determining the stability of the adaptive control 
scheme (7), (8). A widely used approach would involve breaking down the system 
into a number of subsystems and finding a Lyapunov function for each. The gains in 
(7) and the adaptation scheme can then be selected to ensure stability. This approach 
has been utilized to control unknown systems of the form (1) and (2) using adaptive, 
neural, and fuzzy logic controllers. The procedure, however, is cumbersome and 
depends on finding a suitable Laypunov function that results in tractable adaptation 
laws. While these results enable exact calculation of the ultimate bounds on the 
states of the system, it is illuminating to study the passivity properties of the closed-
loop system and its relation to the overall internal stability. Given the controller 
structure (7), it is natural to view the closed-loop system as an interconnection of 
the filtered tracking error system and the Adaptive network as shown in Figure 2. 
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w>(.) w>(.) Adaptive 
Network 

y 

Adaptive 
Network 

y y 
Filtered Tracking 

Error System -•09—• 
є 

Filtered Tracking 
Error System -•09—• 

є 

F ig. 2. Interconnected feedback structure of the adaptive controller. 

In the following section, we show the relationship between the passivity properties 

of the interconnected system and the overall internal stability, using this to define 

a suitable adaptive network. To our knowledge, this is the first t ime that controller 

design has been a t tempted using passivity properties exclusively. 

3.1. B a c k g r o u n d o n pass iv i ty 

The relationship between the input-output properties of a system and its stability 

has been extensively studied using the theory of dissipative systems. Here a few 

results from literature [3, 4, 5, 6, 13, 14] are first presented, and the results extended 

to derive conditions for nonlinear systems subjected to bounded disturbances. The 

relevance is that the Adaptive network used for control purposes herein will be 

constructed to have an important dissipativity property that makes them robust to 

disturbances and unmodeled dynamics. 

A s s u m p t i o n 1. [5, 13] Let the system in (1),(2) satisfy 

(i) /(0) = y(0) = 0. 

(ii) The system is completely reachable, that is, for a given x, and tj there exists 

a t0 <tf and a locally square integrable u(t) such that the state can be driven 

from x(t0) = 0 to x(tj) = Xj. 

(iii) a(t) is an energy supply rate associated with this system such that 

a(t) = yT Qy + 2y T Su + uT Ru (10) 

where Q, R are constant matrices with Q and R symmetric. 

Def in i t ion 2. [5, 13] The system (1),(2) with supply rate (10) is said to be 

dissipative if for all locally square integrable inputs u(t) and for all tj > / 0 

Jtn 

а(t)àt > 0 (П) 

with x(to) = 0 and a(t) evaluated along the trajectory of (1), (2). 
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L e m m a 1 . [5, 13] The system (1),(2) is dissipative with respect to the supply 

function (10) if and only if there exist real function $(•), £(•) and W(-) satisfying 

V(x) > 0 V z ^ O , tf(0) = 0, and 

tf(x) = a(t) - [£(x) + W(x) uf [£(x) + W(x) u] (12) 

along the trajectories of (1), (2). 

The function ^t(-) is known as the storage function for the system (1), (2). 

3.2. S tabi l i ty proper t i e s o f i n t e r c o n n e c t e d s y s t e m s b a s e d o n pass iv i ty 

While dissipativity property is a convenient tool for generating Lyapunov functions 
for autonomous systems, it is not possible to study the internal stability of feedback 
systems subject to exogenous inputs without stronger conditions on the system like 
complete state observability. It has been observed only recently [10] that using a 
stronger version of passivity namely, state-strict passivity can overcome this limita
tion. In this subsection, this novel concept is first defined and its use in analyzing 
internal stability of interconnected systems demonstrated. 

Def in i t ion 3 . The system (1), (2) is passive if it is dissipative with respect to the 
supply rate (10) with R = 0 and Q = 0. A passive system is s ta te strict passive if it 
is dissipative with respect to the supply function 

а(t) УX u т 
ЄX X, 

є > 0 (13) 

where x is the state of the system. From Lemma 1, it is clear that any system 
verifying (13) with a(t) = y'u is passive. Under these conditions, that is a(t) = y'u, 
(13) is said to be in power form. 

T h e o r e m 2. Consider the system of the form shown in Figure 3. Suppose the 
subsystems Hi and H2 are state-strict passive with respect to the supply rates 

°гC0 = УІ ui - ^ i l Ы I 2 

а2(t) У2

 u2 - Є 2 І І £ 2 I | 2 

and 

INI < <~fell> « > 0 . 
Then the feedback system is UUB for all bounded inputs £(2). 

ux ex 

(14) 

— Я 

y2 
Њ 

•1 yi 

e2 u2 

Fig. 3. Interconnection of two subsystems in feedback configuration. 
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Remark. No observability or persistence of excitation conditions are required on 
subsystem H2. 

P roo f . Since Hi and H2 are state-strict passive, there exist storage functions 
^ ( . r i ) and ^2(x2) satisfying Lemma 1. Taking the Lyapunov function 

V(xux2) = V^Xi) + V2(x2), 

we have 

#(.51,553) < <r\(t) + cr2(t) < yi«i - fillxiU2 + y'2u2 - e2\\x2\\
2. 

Substituting (14) and using (12), (13) 

^(x1,x2)<a\\C\\\\x1\\-e1\\x1\\
2-e2\\x2\\

2. 

Thus, for all bounded inputs the states xx and x2 are bounded for all time or the 
states of the system are UUB. --

4. DESIGN OF ADAPTIVE CONTROLLERS 

In Section 2 it was shown that the proposed controller (7) could be interpreted as 
having two parts - a nonlinear adaptive inner loop and a linear outer tracking loop. 
The results of Section 3 suggest that the stability of the system (1), (2) under the 
controller (7) can be concluded if the system is state-strict passive and the adaptive 
network is designed to be state-strict passive. The design of the controller is therefore 
carried out in two stages. First the dynamics of the filtered error system (8) are 
shown to be state-strict passive and satisfy condition (14). Then, the adaptation 
laws for the adaptive network are chosen to make it state-strict passive. The stability 
of the interconnected system can then be concluded using Theorem 2. 

Define £(t) = f(t) + d. Then the filtered error system (8) can be expressed in 
vector notations as 

r(t) = -Kur(t) + t(t)- (15) 

Lemma 3 . The dynamics (15) from £(t) to r(t) are a state-strict passive system. 

Proof . Consider the Lyapunov function 

V = \rT r. 

Differentiating both sides, and substituting (15) results in 

V= -r
T Kvr + rT i. (16) 

(16) is in power-form (13) with the supply function rT £ — rT Ku r. From Lemma 1 
and Definition 3, it follows that the dynamics (15) from £(t) to r(t) are a state-strict 
passive system. • 

In the implementation of the controller (7), the estimate of the nonlinearity /(•) 
was assumed to be manufactured by an adaptive network to a specified degree of 
accuracy. Several techniques are now given for selecting the state-strict passive 
adaptive network. 
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4 .1 . Functional estimation using CM AC neural networks 

Consider a CM AC Neural Network [2] with input r(t) and output /(•) . The output 
of the neural network can be expressed as 

f(x) = wT<p(x) (17) 

where tp(-) is a vector of activation functions and w is a matrix of the weights 
associated with each node. The activation functions <p(-) form a basis set for a class 
of functions. That is, there exists a set of ideal weights w such that any function 
belonging to this class can be expressed as wT <p(-) + e, where e is the function 
reconstruction error. The error in the function estimate is then given by 

f(x) = w<p(x) + £, (18) 

where w = w — w [2]. 

Let the weight update for the Neural Network be given by 

w = -K\\r\\Fw + Fr<pT(x) (19) 

where F is a symmetric positive definite matrix. 

Lemma 4. The weight update law (19) guarantees the neural network to be state-
strict passive from input r(t) to wT <p(x). 

P r o o f . Take the nonnegative function 

V = tx(wT F~lw). 

Differentiating both sides, and substituting (19) 

V = tv(wT <p(x)rT)+ tT(KWT\\r\\w) 

= rT(wT <p(x)) + K\\r\\ tr(vbT w) 

< rT(wT<p(x))-K\\r\\(\\wf-wmax\\w\\), 

where max(tu) = wma.x. 
Since the derivative of V is in the power form, from Lemma 1 and Definition 3 it 

follows that the neural network is state-strict passive from input r(t) to wT <p(x). • 

4.2. Functional estimation using multi-layer neural networks 

The output of a multi-layer neural network can be expressed in the form 

!v. 
УІ = J2 

Ni 

Hj <Tj 22 vik Xk + 0Vh ) + 9% W] 

j ' = i L \ fc=l 

г - = l , . . . , N 3 (20) 

with (Tj(-) the activation functions, Ujk the first-to-second layer interconnection 
weights, and Wjk are second-to-third layer interconnection weights. #.-'s are the 
threshold offsets and Nt- the number of nodes in layer i [11]. 
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L e m m a 5 . Let the weight tuning for the neural network in (20) be selected as 

W = FarT-FaVT xrT - KF\\r\\W, 

V = Gx(&lTWr^ -KG\\r\\V, (21) 

where W and V are the weight matrices augmented by the thresholds, F, G are 
positive-definite symmetric matrices, and K a positive design parameter. 

Then, the weight update law (21) guarantees the neural network to be state-strict 
passive from input r(t) to wT <£>(x). 

P r o o f . See [11]. • 

The structure of the neural network (19), (21) is obtained using a filtered er
ror/passivity approach. This method has several advantages over conventional neu
ral networks based on gradient laws and backpropagation algorithms. Standard 
backpropagation tuning can result in unbounded weights in the neural network if 
(a) the network cannot exactly reconstruct a certain required nonlinear function, or 
(b) there are bounded unknown disturbances in the system dynamics. The novel 
weight update laws (19) do not require a learning phase. The stability of the closed-
loop system can be established without requiring strong observability conditions 
or persistence of excitation. The algorithm includes correction terms to the back-
propagation, plus an additional robustifying signal that guarantees tracking as well 
as bounded weights. 

4.3 . Funct ional e s t i m a t i o n us ing a d a p t i v e n e t w o r k s 

The neural network can estimate the unknown function as the activation functions 
<£>(•) form a basis set and it is assumed that the nonlinear function can be expressed 
as a weighted linear sum of the elements of the basis set to the specified degree 
of accuracy. For the adaptive estimation of the function however, it is required 
to compute a regression matr ix [16]. Let the regression matrix be W(x) and the 
parameter vector be given by El. If S is known then the function can be constructed 
exactly as 

f(x)=~TW(x). (22) 

Since S is unknown, let the estimate of S be denoted by S. Then the functional 
estimate error is given by 

f(x) = 3TW(x), (23) 

where S is the error in the parameter estimates. 

L e m m a 6 . The adaptive update law given by 

E = -E=-TrWT(x) + K\\r\\TE, (24) 

where F is a positive definite matrix makes the map from r to S T W(x) state-strict 
passive. 
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P r o o f . Take the nonnegative function 

v^tr^ r - 1 ^) . 
Differentiating both the sides, and substituting (24) 

V = tr (zTW(x)rT) + t r ( /?S T | | r | |E : ) 

= r T ( s T W ( x ) ) + K | | r | | t r ( E : T s ) 

< r T ( 2 T ^ ( x ) ) - K | | r | | ( | | H | | 2 - S m a x | | H | | ) , 

where max(H) = Hmax. 

From Lemma 1 and Definition 3 it follows that the adaptive network is state-strict 
passive from input r(t) to ET W(x). • 

Lemmas 4,5,6 satisfy the conditions of Theorem 2, and hence the closed-loop 
system is Uniformly Ultimately Bounded when the approximating network satisfies 
(19), (20) or (24). 

It is seen that state-strict passivity is needed to ensure boundedness of all states 
when the closed-loop system is subjected to bounded disturbances. The choice of 
the adaptation laws for the network is crucial as chis guarantees boundedness of the 
signals without the requirement of the persistency of excitation (PE) [15] condition 
required in most adaptive control techniques. 

5. SIMULATION EXAMPLE 

As an example the controller proposed in Sections 3,4 is tested on the system given 
by the following set of equations 

X\ = X2 + U\, 

x2 = _ X l + 2 e - ^ + x - ) a?2 - 0.1x2 + «2- (25) 

The system outputs are 

yi = x\ 

y2 = x2. (26) 

The control inputs u\ and u2 are to be selected so that y\ tracks a square signal and 
y2 tracks a sinusoidal signal of period 2 seconds. 

5.1. CMAC controller 

The receptive fields for the CMAC NN are selected to cover the input space {[—2, 2] x 
[—2, 2]} with knot points at intervals of 0.25 along each input dimension. The initial 
conditions for both states x\ and x2 are taken to be zero. Figures 4 and 5 show 
the desired and actual the MIMO system (25), (26) using the CMAC NN controller 
(7), (19). It is seen that although 578 weights are needed to define the output (22), 
only 8 (2 x 22) weights are updated at any given instant. 
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5.2. M u l t i - l a y e r neura l ne twork control ler 

A three layer neural network is selected with 5 nodes in the hidden layer. A Sigmoid 
function is selected as activation function for each node and the weight updates are 
performed according to tuning law (21). Figures 6 and 7 show the desired and the 
actual outputs for the MIMO system given by equations (25), (26) using the neural 
controller (21), (22). 

1 — Desired 
2 Actuol CMAC Controller 

0.6 

0.4 

0.6 

0.4 ' , ' 
0 . 2 Í 
0 . 0 

- 0 . 2 

- 0 . 4 \ 
- 0 . 6 

0 
- 0 . 6 

0 
- 0 . 6 

0 0 0 . 2 0 . 4 0 . 6 0.8 1 0 1.2 1 .4 1.6 1.8 2.0 
time (secs) 

Fig. 4. Actual and desired output y\ with CMAC controller. 

Fig. 5. Actual and desired output t/2 with CMAC controller. 
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| 1 - Oesired 
2 - - Actual : Neural Contro.ier ! 

0.6 

0.4 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 
0 

-0.4 

-0.6 
0 

-0.4 

-0.6 
0 0 0.2 0.4 0.6 0.8 1 0 1 .2 14 1.6 1.8 2 0 

time(secs) 
1 

Fig. 6. Response of the system with multi-layer neural network controller - output y\. 

2 -
Desired 

- Actuol : Neuгol Contгoller 

0.6 

0.4 

0.2 

0.0 \ ý 
- 0 2 \ V / 
-0.4 N̂  У 

-0.6 
0 

-0.6 
0 0 0.2 0.4 0.6 0.8 1 .0 1.2 1.4 1.6 1.8 2.0 

Fig. 7. Response of the system with multi-layer neural network controller - output j/2-

5 .3. A d a p t i v e control ler 

It is clearly seen that the performance of CMAC NN is excellent despite the fact 

that the dynamics are unknown. For comparison, a s tandard adaptive controller [16] 

is implemented assuming t h a t the only unknowns are the coefficients of the terms 

on the right-hand-side on (25). The regression vector of the given system is W = 

\x\ X2 e - ^ 1 - ^ ) x 2 ]. The outputs for the adaptive case are shown by '—.' in Figures 8 

and 9. It is to be noted that to obtain good performance, the regression vector 

must be exactly known. Inaccuracy in the knowledge of the unmodeled dynamics 

can result in inaccurate regression vector which leads to rapid degradation of the 

performance. To demonstrate this, the regression vector is assumed to be W = 

[O12 e — {x\ + x'2) X2}. From the response shown in Figures 8 and 9 it is seen that 

this inaccurate regression vector leads to poor tracking of X2-
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5.4. Exact c o m p u t e d t o r q u e control ler 

Finally, a comparison is made to compare the performance of the CMAC controller 
with that of a computed-tor que controller where all the nonlinearities are known. 
Figure 10 shows the output y\ for both the cases. It can be seen that the CMAC is 
able to match the performance of the computed-torque controller even though the 
CMAC controller knows none of the dynamics a priori. 

6. CONCLUSIONS 

A new methodology for the design of stabilizing controllers for a class of unknown 
nonlinear systems is presented. It is shown that designing the controller in two stages 
significantly simplifies the overall implementation. The resultant controller has two 
components: an outer tracking-loop and an inner-loop consisting of an adaptive 
network for manufacturing the nonlinear elements in the dynamics. It is shown that 
choosing an adaptat ion law that makes the network state-strict passive is sufficient 
to guarantee the closed-loop stability of the overall system. The result is a "robust" 

1 — Desired 
2 Actual : Correct Regression Vector 
3 —.— Actual : Incorrect Regression Vector 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
time (secs) 

Fig. 8. Response of the system with adaptive controller - output y%. 

0.6 

0.4 

1 - Desired 
2 Actual : Correct Regressîoп Vector 
3 - . - Actual : Incorrect Regression Vector 

0.6 

0.4 
— 

0.6 

0.4 // \ ч 

0 . 2 
// 

// 
0 . 0 \ /. 

V '/ 
- 0 . 2 

- 0 . 4 

V '/ \ > // 

- 0 . 6 
0 

- 0 . 6 
0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

time (secs) 

Fig. 9. Response of the system with adaptive controller - output У2-
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F i g . 1 0 . Comparison of C M A C controller with a computer-torque controller. 

n e u r a l n e t w o r k c o n t r o l l e r t h a t d o e s n o t r e q u i r e p e r s i s t e n c e of e x c i t a t i o n a n d l e a r n s 

t h e n o n l i n e a r f u n c t i o n on- l ine . 

(Received February 16, 1996.) 
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