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K Y B E R N E T I K A — VOLUME 8 (1972), N U M B E R 5 

Minimum Penalty Estimate 
PAVEL KOVANIC 

A new generalized discrete linear estimate is introduced, called a minimum penalty estimate 
from which not only the well-known discrete versions of linear estimates such as the Zadeh-
Ragazzini, Gauss-Markov and Semyonov estimates but also some new and more general esti
mators may be obtained. The usefulness of the generalized estimate consists especially in the 
possibility of using a priori information to lower the estimating error. 

1. MAIN TYPES OF KNOWN LINEAR ESTIMATORS 

1.1. Zadeh-Ragazzini estimator 

In 1950 Zadeh and Ragazzini published their generalization of Wiener's theory 
of prediction. A few years later in papers by different authors this problem was for
mulated and solved for discrete variables (see e.g. [l]). A generalization [2] extended 
the field of applications. Numerous particular applications of unbiased minimum 
variance estimators such as the optimum interpolation, extrapolation, analysis, 
differentiation and integration as well as the generalized Neumann-David estimation 
of linear forms are specified in [2]. 

The data vectors are 

(1) y = Xa + x, + x„ 

and the required result of transformation is 

(2) z0 = P° + *S?.{*,} + i f „{x„} , 

where the matrix X is an n x q nonrandom matrix with a rank which is not neces
sarily full, the vector p is a given nonrandom vector, a is an unknown nonrandom 
vector, x, is a random vector carrying information and x„ represents a corrupting 
random component. Symbols if, and J ? n denote some linear operators. 



The actual result of estimation is 

(3) z = wy, 

where the n x 1 vector w is the estimator. The generalized discrete Zadeh-Ragazzini 
estimator is the vector w minimizing the variance of the estimate z and satisfying 
the constraint of unbiasedness 

(4) wX = p 

Such an estimator exists if and only if 

(5) . p(E-X+X) = 0. 

The symbol X + denotes the Penrose pseudo-inverse of the matrix X. 

1.2. Gauss-Markov estimate 

The generalized Gauss-Markov estimator [3] published in 1966, may be considered 
to be a special case of the Zadeh-Ragazzini estimator. In this case, all componsnts 
a} (j = 1 , . . . , m) of the vector a (Eq. (l)) have to be estimated using vector estimators 
with different vectors pj defined as 

(6) pu = 1 for i = j , 

= 0 for i #= j , 

where the number ptj is the i-th component of the j'-th vector pj. 

Both operators, JSP, and Sfn in (2) are zero operators for this case. Some months 
later another generalization [4] was published making it possible to use the previous 
concept also for the case when the unbiased Gauss-Markov estimate does not exist. 
The unbiased constraint is replaced by the more general constraint that a quadratic 
error norm is minimized. 

1.3. Semyonov estimate 

For the continuous variable a linear estimation problem has been formulated and 
solved by Semyonov differing from the Zadeh-Ragazzini one. For discrete automatic 
control systems the analogy of this problem has been given in [5]. Data structure 
is as in (1) but the vector a is a random vector having a known expected value <o> 
and a known covariance matrix. Instead of the conditional, an unconditional mini
mum of the variance of the estimate is sought. Systematic error of the Semyonov 
estimate is zeroed by addition of a proper term determined by the mean data vector 
which is supposed to be known. 



2. GENERALIZED LINEAR ESTIMATE 369 

2.1. Definitions 

Among the data vectors y, there exist vectors yx representing a useful component 
containing information while the other represent noise, measuring errors and other 
undesirable disturbances. 

A subspace Sf \ of an n-dimensional vector space Sf can be defined in the following 
way 

(7) <yxyl> = S.D.S] , 

where the n x n matrix (yxyxy is the mathematical expectation of the random 
matrix YxYl- The columns of the n x m matrix S,, satisfying the orthonormal condi
tion 

(8) SJS, = Emxm 

and having the same rank m as the matrix <yxy
T> form an orthonormal base of the 

subspace Sf y. The m x m diagonal matrix Dj has positive diagonal terms dh 

(9) d, = d2 = ... ;> dm > 0 . 

Such decomposition is a special (symmetrical) case of the singular value decomposi
tion [6] which exists for an arbitrary real nonzero matrix. It is unique. 

Disturbing components of data vectors belonging to the same subspace S, will 
be denoted y, and the factorization 

(10) <(y, + Yi) (yx + /i)T> = s1(/vi1 + D.) ST 

with a symmetrical matrix M, will be used. 

Considering the set of all possible data vectors y and its characteristics <yyT> 
having a rank s we may find that only a subspace Sf of the n-dimensional vector 
space Jf contain some data vectors, 

(11) s ^ n . 

For the subspace y« a complementary subspace y 2 can be defined in Sf. Data vector 
component belonging to the subspace y 2 will be denoted y2, 

(12) y 2 e ^ 2 -

Such a vector is orthogonal to the both components Y\ and y,. A data vector of 
general type is therefore represented as 

(13) y = yx + yj + y2 • 



370 The singular value decomposition 

(14) <YzYl> = S2D2S
T 

defines an (s — m) x (s - m) diagonal matrix D2 and a semiorthonormal n x 

x (s - m) matrix S 2 analogously with (7)-(9). 

It follows from the definitions that 

(15) 

and 

(16) 

sls2 = o m _ ( s _ m ) 

(yyT) = SMST, 

using the block matrix notation 

(17) S_„_-||S.|S_ 

and 

(18) 

where 

(19) 

M = 
/И, + Dj 

мl 

m S s = n , 

M0 is an m x (s - m) matrix and the rank of the s x s matrix M is full. 

Required results of estimation are 

(20) 

and 

(21) 

Zo = ЗГo{ү) 

гx = -г_{y_}, 

where 3T0 and STx are some given operators. For the estimator of the type (3), the 
mean square of errors of estimation are 

(22) <_*> = <(z0 - wyf) = w<yyT> wT - w<yz0> - (z0y
T) wT + (z2

0) 

and 

(23) (e2

x) = <(zx - wyx)
2) = w<yxyx> wT - w<yxzx> - <zxy

T) wT + <2_> . 

Both errors are functions of the sought estimator w. By its variation one gets the 
gradients 

(24) g0 = w(yyT) - <z0y
T> 

and 

(25) gx = w<yxyj> - <zxy_> . 

For a given gradient gx, the last equation can be considered as a constraint. 



To evaluate the quality of the results of an estimating procedure we introduce 371 
some nonnegative weights c0 and cx for the individual errors <e0> and <e^>, respective
ly. The quantity 

(26) c = c0<«S> + cx(e
2
xy 

will be called the penalty. The ratio 

(27) r = S-
c0 

characterizes the relative weight of both penalty components. 

It can be reasonable to represent the data vector component yx in the form 

(28) Yx = Xo , 

where X is an n x q nonrandom matrix having a rank m, 

(29) m g n,q. 

Both cases n > q and q ^ n are allowed. The q x 1 vector o is a random vector 
normalized so that 

(30) <a<,T> = E ? x , . 

This assumption represents no less of generality, such a normalization may be 
achieved choosing properly the matrix X for which the singular value decomposition is 

(31) X = S^Qt . 

The m x q matrix Q, also satisfies the semiorthonormal conditions 

(32) Q.Q1^ Emxm 

and the m x m diagonal matrix Dx has positive elements for which we obtain from (7) 

(33) D , = D2
X. 

For an operator 3~x (21) of the linear type we have 

(34) zx = pa 

with an 1 x q nonrandom vector p, and 

(35) <zxYl) = pXT . 

Using matrices St and S2 we may write 

(36) <Zoy
T> = u,S] + u2Sl. 



372 2.2. Main results 

In the Appendices I - I X the proofs of following theorems are given: 

Theorem I. Among all linear estimates having the form (3), the best one mini

mizing the penalty (26) is 

(37) zr = wry , 

where the best unconditional estimator wr equals 

(38) wr = ((z0yT) + r(zxy
T

x)) ((yyT) + r(yxy
T

x))+ . 

Theorem II. Among all linear estimates having the form (3), the best one mini
mizing the penalty (26) and satisfying the constraint (25) is 

(39) zc = wcy , 

where the best conditional estimator wc equals to 

(40) wc = «z x y T > + gx) ((yxy
T

x))+ + 

+ [<z0y
T> - «zxy

T

x) + gx) «yxy
T

x))+ <yyT)] «y2yl))+ . 

Theorem III. The best choice of the constraint (25) minimizing the error square 

(e2

x) is 

(41) gx - wc(yxy[) - (zxy
T

x) = 0 

or its equivalent 

(42) wcX=pX+X. 

Theorem IV. The estimator having the form 

(43) 

where 

(44) 

(45) 

and 

(46) 

wr = vrKrS
T, 

vr=\\pQTDx(rMr-
l) + uiMr-

1\u2\\, 

K. = 
D^MІMГ1 

-MПD; 
D~l + D^MlM^M^l1 

Mr = M, + (I + r) D, - M^Ml, 



is identical with the best unconditional estimator (38) and it includes the best 373 
conditional estimator (40) as a special case, 

(47) wc = lim wr = pQTD;l(Sl - MQD^SI) + u2D2
lST

2 . 

Theorem V. The mean error of transformation arising in application of the 
best unconditional estimator (43) to a vector of the type yx (28) equals 

(48) <exr) = <zx - wrXa) = pr(a) 

and the mean square value of this error is 

(49) <£>-M>;r. 
where 

(50) pr = p(E - Q}Dx(rM-i) D,Q.) - (u. - u2D2
lMT

0) M^D.Q, , 

the limit values for an increasing r (case (47)) being 

(51) lim <exr> = p[E - X + X ] <o> 

and 

(52) lim<exr> = p [ E - X + X ] p T , 

whereby the last value represents the minimum of the norm <exr>, 

(53) lim <<?xr> S <e2
xr) 

for all nonnegative r. 

Theorem VI. The mean square of estimating error arising in application of the 
best unconditional estimator (43) to a vector of the general type y e if equals 

(54) <^> r = <(z0 - wry)2) = (z2
0) - vrKru

T - uKjvr + vrKrMKjvJ, 

where 

(55) u = ||u. | u2\\ , 

the special case for r = 0 being given as 

(56) <eo>r = o = <4>~ uMluT, 

whereby the last value represents the minimum, 

(57) <e0>r = 0 ^ <e2
0)r 

for all nonnegative r. 



374 Theorem VII. The conventional form of the best conditional estimator (40) 
respecting the constraint (41) is 

(58) wc = [p(T- l S T X) + + t i f T ) - 1 ^ - ( T - 1 S T X ) ( T - 1 S T X ) + ) ] T - 1 S T . 

Theorem VIII. Among all linear estimates, the best one minimizing the penalty 

(59) cjc0 = <(z0 - z0)2> + r<(Z;c - z~J2> 

is 

(60) z0 = w0y + b 

or — when applied to the vector yx — 

(61) zx = w0yx + b 

with the constant term 

(62) b = [<z0> + r(zx) - w 0«y> + r<y ,»] / [ l + r] 

and with the vector 

(63) w0 = «£0y
T> + r<*,yl» «yyT> + r<yxyj» + , 

where 

(64) y = y - « y > + r(yx))j(i + r ) , 

y* = y, - «y> + r<y,»/( l + r ) , 

(66) z0 = z0 - «z 0 > + r<zx»/( l + r), 

(67) *„ = zx - « z 0 > + r<23C»/(l + r) , 

wh('c/i may be rewritten in the form identical with (43) if in all definitions instead 
of the variables y, yx, z0 and zx, the variables y, yx, z0 and z~x are substituted. 

The estimate corresponding to Theorem VIII will be called the minimum penalty 
estimate. 

Theorem IX. Mean errors of the minimum penalty estimates (60) and (61) are 

(68) <z0 - 2„>,« [w0((yx) - <y» + «z 0 > - (zx))] r/(J + r) 

and 

(69) <zx - z,> = [w0((y) - <y ,» + «z x > - <z 0»]/( l + r ) , 

whereby the penalty (59) ;'s 

(70) c/c0 = <z^> + r<zx> - w0[<yz0> + r<yxz;v>] . 



3. DISCUSSION 

Theorems I—VII are related to estimates having the form (3) without a constant 
term. The conditional estimate according to Theorems II and VII represents a gene
ralization of Zadeh-Ragazzini's estimate (or minimum variance unbiased estimate) 
including the case of a rank deficiency and also the case when the condition (5) is 
not satisfied. In the last case the unbiased constraint (4) is replaced in accordance 
with Theorem III by a more general constraint (42) which results from the requirement 
to minimize a quadratic error norm <e^>. The generalized Gauss-Markov estimate 
[4] may be therefore also obtained as a special case of the conditional estimate. 
However, the conditional estimate can be obtained according to Theorem IV as 
a limit case of the unconditional estimate introduced in Theorem I. Hence, the un
conditional estimate is a most general one among estimates having the form (3). 
Although it is the best one minimizing the penalty, it is not unbiased in some cases, 
as shown by Theorem V. Comparing Theorem V and Theorem VI we may see, that 
for an infinite penalty ratio r, the error norm <e^> reaches its minimum, while for 
zero r a minimum of the norm <e0> is achieved. Thus, the choice of penalty ratio r 
determines the relative importance of both mentioned error norms. The requirement 
of unbiasedness or its generalized formulation (42) is equivalent to the statement 
that the norm <e^> is of prime importance. The penalty can be higher in this case 
than in the case of the unconditional estimate. 

A genera] type of linear estimate should include a constant term as in (60) and (61). 
It is shown by Theorem VIII how to find the best estimator of this type. Its penalty 
can be lower than that of an unconditional estimate (37) for the same value of the 
ratio r. As follows from Theorem IX, the estimate z0 (60) is asymptotically unbiased 
in the case r = 0, while the estimate zx (61) for r -> oo. Moreover, both estimate 
(60) and (61) are asymptotically unbiased for all values of the penalty ratio r if follow
ing identities take place: 

(71) <y> = <y*>, 

(72) <zx> = <z0> . 

As seen from (13), when the means <yi> and <y2> are zero or when they are included 
into the component yx, the identity (71) holds. In the case that the operators (20) 
and (21) are linear and 

(73) r0{Y,} = r0{y2} = o, 

we obtain from (13) also (72). Thus, if all parameters appearing in (62)-(67) are 
known, the best solution of the linear estimation problem is given by Theorem VIII. 

A generalized discrete version of Semyonov estimate can be obtained from sup
posing zero penalty ratio r = 0. In this case the error norm <e*> is fully ignored. 



The square error <ej5> reaches the least possible value, but this advantage is paid by 
information on statistical distribution of data vectors components within the sub-
space Sf\, as characterized by the covariance matrice Mi needed for (43) — (46). 
As shown by (47), this matrice disappears in the opposite case r -> oo, such 
information is then not necessary but the penalty is larger. We are referring to the 
formulae of Theorem IV as they can be used also for the general linear estimate 
after substitutions corresponding to Theorem VIII. 

APPENDICES 

A. I. Existence and uniqueness of the best unconditional estimator 

It follows from the regularity of the symmetrical matrix M (18) that the matrix 
Mj + Dj is also regular. The matrix 

(Li) MX = D;1(M1 + D ^ D ; 1 

is therefore also symmetrical and regular and its characteristic equation 

(1.2) Dct(Mx-(-r)E) = 0 

has only positive roots (— r). 

Thus, the matrix Mx + rE as well as the matrix M, + (1 + r) D t is not singular 
for a positive value of the parameter r. Regularity for zero r follows from the defini
tion. 

Symmetrical matrix 

(i.з) л i s = | / и ' + (/v.т+'-)D' м0 
D7 

is regular because of regularity of matrices Mt + (1 + r) D, and D 2 . One has there

fore 

(1.4) (<yyT> + r(yxyl))+ = (SMsS
r)+ = SM;lST, 

where the A+ denotes the Penrose pseudo-inverse of the matrix A. 

We have supposed that no data vectors y exist outside the subspace £?, 

(1.5) ySST = y 

for an arbitrary data vector y. If an estimator w had a component lying outside the 
subspace $f, the product of such a component with a data vector would be zero. 
Therefore, we are free to choose this component arbitrarily. We choose zero, assuming 

(1.6) wSST = w . 



Multiplying w, (38) by SMSS
T and taking into account (15), (24), (25), (27), (1.4) and 

(1.5) and orthonormal properties of the matrices Sl and S2, we obtain 

0-7) c o g o + cxgx = 0lxn. 

Thus, the estimator wr (38) actually satisfies the necessary condition for the mini
mization of the penalty (26). 

The solution of (1.7) for the unknown vector wrS is unique because of (1.4). The 
estimator wr can be determined from the expression wrS also uniquely because of 
the assumption (1.6). 

A. II. Existence and uniqueness of the best conditional estimator 

Using notation 

(П.l) f = <zxYІ> + gx , 

(II.2) F - <УxУт> , 

(II.З) G = <У2YІ> , 

(II.4) У = <үyт> , 

(II.5) z = <ZoYT> + r<zxy
J

x> , 

one can write the constraint (25) as 

(11.6) wcF=f. 

Denoting the vector of Lagrangian multipliers k, one gets the equation of minimiza
tion of the penalty (26) respecting the condition (II.6) 

(11.7) w c (y+ r F ) - z - kF = 0 1 X„. 

It follows from (7) and (II.2) that 

(11.8) S,S\F = F 

and 

(11.9) fF+F=^f, 

where the pseudo-inverse F+ is 

(11.10) F+ = S-Df^I . 

Therefore, the projection of the estimator wc on the subspace yl can be obtained 
in the form 

(II. H) wcSlS]=fF+ 

satisfying (II.6). 



3 7 8 Taking into account (1.6), (15) and (17) and substituting (II. 11) into the projection 
of (II.7) on the subspace 5^2 one gets 

(11.12) "cSiSl = zG+ - fF+YG+ , 

where 

Sum of (11.11) and (11.12) together with (1.6) gives (40). The necessary condition for 
a conditional extremum is satisfied. 

The penalty (26) corresponding to the estimator vvc (40) equals to 

(11.14) cjc0 = rfF+f + fF+[E - YG+] Y[E - G + Y] F+f - zG+zJ -

- fF+[E - YG+] zT - z[£ - G+Y] F+f + (z2
0) + r(z2

x) . 

Any other linear estimator vv (a vector of the same dimension as vvc) satisfying the 
same constraint 

(11.15) v v F = f 

would have the form 

(11.16) vv = fF+ + qG+ 

with a certain vector q. Denoting c the penalty which corresponds to the estimator vv 
we may get from (11.14) and (11.15) using the identity 

(11.17) G+yG+ = G+ 

and defining 

(11.18) </= [q + f F + y - z ] S „ , 

where 

(11.19) SU = S2D-1/2, 

the relation 

(11.20) cjc0 - c/c0 = dd7 ^ 0 . 

For the case 

(11.21) q = q 0 = - f F + y + z 

the difference c — c is zero, but this is the case when 

(11.22) w = fF+ + [z- fF+Y] C+ = wc 

is identical with (40). Zero difference will occur also in the case 

(11.23) q = q0+qiS
7, 



where qY is any 1 x m vector. But the addition of the term <7,ST does not change 

the estimator w (11.16), 

(11.24) S]G+ = 0 . 

Therefore, there exists only one estimator satisfying the constraint and minimizing 

the penalty. 

A. III. Choice of the constraint of the best conditional estimator 

For an arbitrary estimator w, the error square <e*> equals (23). For the estimator 

satisfying (41) this value is 

(III 0 <el)0 = <z*> - <z,yl> <y,yl>+ <yxzx) . 

Using factorization 

(III.2) <yxy
T

x)
+ - RRr 

and a row vector 

(IH.3) c = [w<yxy
T> - <zxy

J

x)] R , 

we obtain 

(111.4) <e2

x) - <e2

x)0 = ccT

 = 0 . 

Thus, the error <e^> reaches the minimum (III. 1) for the estimator satisfying the 

constraint (42). 

Substituting (7), (34) and (35) into (41) and (111.1) and taking into account (33) we 

obtain (42), where 

(111.5) X+ = Q l D J ^ I . 

A. IV. On the formula of minimum penalty estimator 

The inverse of the matrix Ms (1.3) is 

(IV. l) M;1 = м;1 

D ^MІM;1 
-M^MoDp 

D J 1 + D-2

1MIM;1MOD-1 

where the m x m matrix Mr is defined by (46). After substitution of (1.4), (IV. 1), 

(31), (35) and (36) into (38) using notation (45) and (46) one obtains (43). As shown 

in A.I., the matrix M, is regular for all positive values of the parameter r. This 

implies the nonsingularity of the matrix Mr for the same condition. Limits for an 

increasing r are 

(IV.2) l imM,: 1 = 0 m x m 



380 and 

(IV.З) 

(IV.4) 

and 

(IV.5) 

\\т(гМ;1) = О " 1 , 

Нт УГ = I|р^X^~1 I и2\ 

lim K. = 
M0D: 

Dľ 1 

Direct substitution of (7), (14), (16), (31), (35), (36) and (41) into (40) results in the 
same as (43) with (IV.4) and (IV.5). 

A. V. The error of transformation of a useful component of data 

The errors (48) and (49) can be obtained from (43)-(46) using (15), (17), (31) and 
(34). Substituting (IV.2), (IV.3), (33) and (31) into (48) and (49) one gets (51) and (52). 
The difference of values (49) and (52) can be shown by substitution to have the form 

(V.l) <e*r> - lim <e^r> = kkJ, 

where 

(V.2) k = PQ](E - Dx(rM;>) Dx) - („. - u.D^Ml) /M"1 , 

from which (53) follows. 

A. VI. The error of the estimation 

The estimation error defined in (54) follows from (43) when using (15) —(18) and 
(36). For the limit case r = 0 we obtain from (44)-(46), (18) and (54) 

(VIA) (vrK,)r=o = "A"""1 

which substituted into (54) gives (56). 

Denoting 

(VI.2) h = (vrKr - uM~x)T 

and 

(VI.3) TTT = M, 

we get from (54) - (56) 

(VI.4) <e^>r - (e2
0X = 0 = hh T

 = 0 . 



A. VII. The conventional form of the best conditional estimator 

Substituting (55) into (47) one obtains 

(VII. 1) wc = (pQ]D; 'J + uSJS2D'2
 lST

2S) ST 

where 

(VII.2) J = ||£ | - A W 1 1 . 

It can be proved by substitution that 

(VII.3) JT = (T~il) + 

and 

(VII.4) SrS2D;'SIS = (TT)-» (E - T" ' IJT) T1 

where 

(VH.5) l = S7St = | | 0 * ' " j J | 
and where the matrix 

(VII.6) TT7 = M 

is the same as in (18), the matrix T being upper triangular. It follows from (VII.3), 
(VII.5) and from the definition of Penrose pseudo-inverse that 

(VII.7) QlD^J = Q]D;\T-ll)+ T-1 = (T-1STX)+ T- 1 

and 

(VII.8) S ^ D J ^ S = (T1)-1 (E - (T- 1 S T X)(T- 1 S T X) + )T~ I . 

After substitution of (VII.7) and (VII.8) into (VII.l) one obtains (58). 

A. VIII. The best linear estimate 

The penalty for an arbitrary estimate of the type 

(VIII.l) z = wy + b 

obtained after substitution of (VIII.l) into (59) is 

(VIII.2) c\c0 = c'lc0 + [<z0> + r<,zxy - w«y> + r{Yx}) - (1 + r) bf : 

: ( l + r ) 
where 

(VIII.3) c'jc0 = <z0> + r{z2
xy + w«yyT> + r<y,yT» wT -

- 2w«yz0> + r(yxzxy) - [<z0> + r<zx> - w((Yy + r< / ; c»]2/(l + r) 



382 is the penalty value for the case 

(VIII.4) <z0> + r<zx> - w«y> + r<yx» - (1 + r) b = 0 . 

This equation characterizes the optimum choice of the constant b for an arbitrary 
vector w, as follows from (VIII.2), 

(V1II.5) cjc0 ^ c'jc0 . 

But from (VIII.4) we obtain (62). Substituting (62) into (VIII.3) and using (64)-(67) 
one gets the equation 

(VIII.6) c\c0 = <(z0 - wyfy + r((zx - wyxf} 

which is formally the same as the penalty (26) with the square errors (22) and (23) 
minimization of which gave the best unconditional estimator wr (38). Therefore, the 
best choice w0 of the vector w minimizing (VIII.6) is also given by (38) after substi
tutions corresponding to (63) —(67). 

A. IX. Errors of the best linear estimate 

Mean errors (68) and (69) follow by the substitution of (62) into (60) and (61). 
Eq. (70) may be obtained from the definitions (59) —(61) using the linear estimator 
(63) with the constant term (62). 

(Received December 18, 1970.) 
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Odhad s nejmenším penále 

PAVEL KOVANIC 

V článku se zavádí zobecněný typ lineárního odhadu, minimalizující vážený součet 
středních čtverců celkové chyby odhadu a chyby zpracování užitečné složky dat. 
Minimalizovaná veličina se nazývá penále; její první složka odráží vliv rušivých 
náhodných složek dat a druhá složka charakterizuje nepřesnosti, s nimiž by byla 
požadovaná transformace realisována při vymizení rušivých složek. Ukazuje se, že 
odhad s nejmenším penále zahrnuje jako zvláštní případy jak tzv. nestranný odhad 
s minimální disperzí (odhad Zadeha a Ragazziniho), tak i nepodmíněný odhad s mi
nimální disperzí (odhad Semjonova), jakož i další známé typy lineárních odhadů. 
Zobecněný odhad dovoluje využít apriorní informaci (znalost korelačních funkcí) 
ke snížení chyby odhadu. Výběr poměrných vah obou složek penále umožňuje při
způsobit vlastnosti odhadu předpokládané aplikaci. 

Ing. Pavel Kovanic, CSc, Ústav teorie informace a automatizace CSA V (Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2. 
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