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KYBERNETIKA — VOLUME 19 (1983), NUMBER 5

ON SECOND ORDER EFFICIENCY OF A ROBUST TEST
AND APPROXIMATIONS OF ITS ERROR PROBABILITIES

JAN AMOS VISEK

Second order efficiency of asymptotically minimax robust test proposed by H. Rieder is proved.
Approximations of error probabilities of the most powerful robust test obtained by means of
second order Edgeworth expansion are compared with simulated values as well as with appro-
ximations derived from asymptotic distribution of this test found in a setting of tocal alternatives.

1. INTRODUCTION

In 1977 H. Rieder, following Huber and Strassen [4], has proposed a new model
of contamination and found a Jeast favourable pair of distribution (LFP), the likeli-
hood ratio of which may be used as a test statistic for construction of the most
powerful test. The form of contamination which is considered in Rieder’s model
implies avoidance or decrease of bad effects of the fact that a portion of population
can be generated by a distribution different from the assumed one. Moreover, this
model ensures us against errors caused by rounding numbers. The level of decrease
(or in an ideal case, of avoidance) of the bad effects depends on the accuracy with
which contamination parameters are estimated (or more precisely, guessed). But
the applicability of Rieder’s robust test was seriously influenced by the lack of know-
ledge of its distribution,

Let us assume that we study an i.i.d. model. Then the most powerful test is, in fact,
based on the test statistic which is the sum of logaritms of likelihood ratio of LFP.
(In what follows this test is denoted as LFP-test.) A distribution of LFP-test is there-
fore an nth convolution of a distribution which may be derived from LFP. The
shape of this distribution is however generally a little more complicated than to
be feasible, even in the simplest cases, to derive characteristic function or directly
find convolutions even for not very large sizes of samples.

Let us assume to be faced with a real (and therefore finite) testing problem. In what
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follows the problem of testing a simple hypothesis against a simple alternative
both being contaminated, so in fact, the problem of testing a composite hypothesis
against a composive alternative, is considered. Our aim may be then to construct an
appropriate asymptotic setting running “‘through’ our problem (i.e. a sequence of tes-
ting problems incorporating the initial problem for some finite size of sample)
and to use the asymptotic results obtained in such setting to approximate the
characteristics (c.g. the error probabilities) which were required in the initial
problem. To complete the work on such a task it is necessary to check the effectiveness
of the approximations (see e.g. [2] and [7]).

In the present paper two well known asymptotic settings are recalled. In the first
of them the hypothesis, the alternative and the level of contamination are fixed with
only the number of observations running to infinity. The most powerful test is then
the LFP-test, an analytic form of which was found in [5]. Approximations of the
error probabilities are obtained by the Edgeworth or saddle-point expansions of
distribution of the sum of logarithms of the likelihood ratio of LFP. The values
gained by them were checked by simulations. The second order expansions proved
to be very good for this purpose.

Sometimes it would be useful to know not only the error probabilities of the LFP-
-test when one of the distributions from LFP is true, but also the error probabilities
of it when one of the initial distributions is true (i.c. when one of the distributions
which were “‘centres” of composite hypothesis and alternative, is true). These values
may help us to judge how great loss we shall suffer, when the LFP-test will be used
instead of the most powerful test of the non-contaminated model, i.e. what is the
price of superfluous ensurance against contamination.

Undoubtedly, it is also of interest to know how significant changes of error pro-
babilities might be expected if our estimation of the level of contamination is un-
precise. Some numerical examples offering a first rough image about it are presented
at the end of the paper.

However an evaluation of the cumulants of the logarithm of the likelihood ratio
of LFP up to the forth one (necessary for the second order Edgeworth expansion) is
usually a tiresome task. So we would appreciate a possibility to approximate the error
probabilities in a simpler way. Such possibility seemed to be offered by the second
setting, the setting of local alternatives. As it is known, in this setting the sequence
of hypotheses and the sequence of alternatives converge one to the other with in-
creasing number of observations. In order to ensure the disjointness of the composite
hypothesis and the composite alternative both having been produced by contamin-
ation, one must define the parameters of contamination as decreasing functions
of the number of observations. For any size of sample we may then find an LFP-test
and study their asymptotic distribution. This was done by Rieder in [6]. His results
represent a simpler way of approximation of error probabilities in comparison with
the saddle-point or Edgeworth expansion. Unfortunately, the approximations gained
by the local alternative setting turned out to be rather bad. So we are still challenged
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to find another asymptotic setting giving good approximations of the error pro-
babilities and on the other hand not requiring long and dreary computation.

In above mentioned paper [6] Rieder established an asymptotically most powerful
test and showed its first order efficiency. The second order efficiency is proved
in the present paper under a supplementary condition and numerically illustrated
by means of Edgeworth approximations.

2. NOTATIONS

Let R denote the real line and 4" the set of all positive integers. Let (2, %) be
a measurable space and let .# be the set of all probability measures on it. For some
©>01let {P,:|0] <t} denote a real parameter family from .#Z. Let ¢, ; be real numbers
0=¢,0=6; 0<¢+d; <1, j=0,1 Define for functions f: 4 x R — [0, ]
and g, h : A" x B - [0,1)

7, =f(n,7), e, =g(nce), 6, =~h@nsé),
Poy =P, Ppy=P,,
(1) 2, ={Qe:0(B)=(1—¢,)Pu(B)— 6, forall Bes},
P = {_élQi 1Qie®?,, for i=1,..,n},
Hj;={w,:w,e?% forall net},

where *“ ® ** denotes the nth prcduct and w, may be considered to be the distri-
i=1

butions of samples of sizes n. Let us recall the definition of LFP (Q,,, Q4,) for

(Pows P1n): Qo and Oy, are the probability distributions satisfying

Qof{m <t})=sup{Q({rn<1) :Q €2},
Ou({r <1}) =inf {Q"({rn<1}): Q" e}, te(0, ),
where 7 € dQy,/dQ,-
Remark 1. Taking f(n, z) = g(n, z) = h(n, z) = z we shall obtain a classical
setting with the fixed hypothesis, alternative, level of contamination and with the

size of sample running to infinity. On the other hand putting f(n, z) = g(n, z) =
= h(n, z) = z//n we shall arrive at the local alternative setting.

3. ASSUMPTIONS

AS 1. There is 7 > 0, such that P, < P, for all |9| < 7. Let p, denote a suitable
version of dP, [ dP,.
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AS2. - p,(x)is twice differentiable for all x € Q. Put
a9 = [Sroen] -
=0

AS3. 0< fAZ(x) dPy < .

v

1/2 2
AS 4. lim J(P”Tl> dp, = }j/ﬁ(x) dp,.
6-0

AS 5. There is a function Ji in L!(Py) such that

sup
9=

6021’( ‘é (x) forall xeQ.
|

AS 6. (20 + S0 + 8,))2¢ <J (A(x] . 2_ 80)‘ dPg.
T
Let dy and d, be real numbers given by

[(do — AT APy = (e + by + 80 (20)F
and

(4 —d,)*dPy = (gp + 8o + 6;) (27) 1

Further let 4, edP,, [dP,, and 4,, and 4,, be real numbers defined by

+34 in

& J
Ao, Po:x(An < AON) 1::(4‘" < Ao'.) = Zant Oun + 4y, o
) 1=y, L — &,
(2
> D £on + Oou )
1 ln(Alu < An) — Ay, [Ou(Aln < An) = =4, +
I — &, L — e,

n

Letfor A, Be #
A+ B:=(4nB)u (4 nB)
and
Dy ={xeQ:dy 2 Ax)}, D, ={xeQ:d £ Ax)}

and foreachn e 4"

Cop = lXeQ A,,( ) < Au"[ , Ci= {“ce.Q A4, < A,,(x)} .
Finally put

G, = {(Do n C0u) “ (D1 [al an)}c
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52
@(x) = sup — log p,(x)-
161=x 00

Now we may give a supplementary assumption.
AS 7. lim sup sup {@,(x) : x€G,} < 0.
n-w

Remark 2. As 7 may be weakened in the following way:
AS 7. fim sup sup {@,(x) : x €(Dy + Co,) U (D, + Cy,)} < 0
with the random variable
@(x) - ]{unﬂ‘n(‘m‘ﬂncmcnn.C}(X)

having finite fourth moment {with respect to Q,, — see the proof of Theorem 2).

- Remark 3. H. Rieder has shown that an exponential family satisfies the above
regularity assumptions AS 1 — AS 5 (AS 6 is fulfilled for small ¢; and §,). Let {f,(x) =
= C(0). h(x).exp {Q(0) . x}. It is a rcasonable requirement that from

folx) = (%)

follows 0, = 0,. Now let 0, # 0,. Let us assume that Q(0;) = Q(6,). From it we
have C(6,) = C(0,)and finally f, (x) = f,,(x). But it contradicts the above require-
ment. So we have a one-to-one mapping Q(G) : © - R; further, let us assume @ c R
and use a reparametrization

0=00)
and
ga(x) = C(Q™Y(O)) h(x) exp {Ox} = D(0) h(x) exp {fx] .

Then

45(x) 1= gao(x)[go(x) = () exp {0x}
and

> o= £OE0) - [ O

002 log ‘4‘7(1") = ’&Z’(‘G)— .

So the assumptions AS 7 may be written for the exponential family into the form

p [F@ O = [£OF] _

a5t &*(0)

AS 7 s fulfilled for rather large range of probability families having

aZ
20 log p,(x)

continous while G, being usually contained in a bounded closed set.
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Remark 4. Also H. Rieder proved in [5] that

Ty = - E max (A, min {4, 4,,})
1 — g

(4o and 4y, given in (2)) is the likelihood ratio of LEP (Qon Q1) for (Z,, 21,)
and, thus

(3) W,(x) = éllog %)

generates the minimax test of Hy, : w € 2,, against H,, : w € #1,. In [6] he establis-
hed that for
IC*(x) : = max {do, min {A(x), d,}}
the statistic
1 ¢ R
) , Z(x) = —— 3 1C*(x)

\/II i=1

yields an asymptotically minimax test ¢, of H, against H, (see (1)).
4. SECOND ORDER EFFICIENCY OF ¥,

Throughout this section the local alternative setting is considercd.

We are now going to use the result of Bickel, Chibisov and van Zwet presented
in [1] Let us quote at first their definition of the v,-efficiency and their result.

Let for every n € A", P, and Py, be two possible distributions of X,, (in an arbitrary
sample space) and let W,(X,) and Z,(X,) be the logarithm of the likelihood ratio
dP,,(X,)/dPg,(X,) and a statistic, respectively.

Definition 1. Let &,(W,, «,) and ¥,(Z,, @) be two sequences of the test functions
such that

Eoy @u(Wy, @) = @, and  Eo, ¥,(Z,, ,) = , .

For a sequence v, (0, 1], we shall say that the sequence ¥,(Z,, a,) is v,-efficient if,
for n - o0,

El"[ib,,(VV", O‘n) - ‘Zln(zm OC,,)] = D(V") .

=0 if W,=2,,
= W, — Z, otherwise .

Let us denote

Theorem 1. (Bickel, Chibisov, van Zwet, [1] p. 171). Suppose that
B1) liminfa, > 0

n—o

and that there exists 4 > 0 such that for every x, € B, every y > O and n — o0

(B2) sup Po(x — v; £ W, £ x) = 0(v)?),

xZx0
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(B3) Eoul ] Lgpare (|4} = 0(v.) »
(B4) Poln 2 A) = o(v,)
(BS) Pu(h, £ —4) = o(v,).
Then the sequence of test ¥,(Z,, &,) is v,-efficient.
Throughout the rest of the paper AS 1—AS 7 are assumed to be fulfilled.
Theorem 2. Let ,(Z,, &,) be given as follows:
YlZo ) =0 Z, < Cyfas,) -
1 Z, > C,,(ot,,) ,

where Z, is given in (4) and C,(2,) is chosen so that
Ex{/,,(Z,,, O‘n) = Oy

where the mean is taken with respect to Q& (cf. (1)). Then the tests ¥,(Z,, o) are
second order efficient.

To prove the theorem we shall give two lemmas. The first of them is due to Rieder
(in [6], but it was not isolated there). Let us put
1
d;, = o log 4;, .

n

Lemma 1. For any w, € H, U H, (see (1)) we have

lim var,, 2i log m,(x) = Ep,IC*(x)
and
limd;,, =d;, |d| <o, j=01.
n>o

For the proof see [6], p. 1088, relation (*).

Lemma 2.
‘ 4y = d; + O(n~17?).

Proof. Let us recall that p,(x) is the density of the probability measure P,,|0] < T,
with respect to P,. Let for real u, d and x

_exp {2ud} p_,(x) — p(x)
f(u, d, JC) - u(l _|i exp {Zud})

Fd, u) = f £+(d, 1, x) dPofx)
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and
G(d) = J (d — A()* dPo(x).
Then dy and d,, may be redefined by

5 )
Fdo, w) = Gt 0 + do €xp {27,do, !
(1 — g1,) (1 + exp {27,d,}) (1 — &0,) (1 + exp {27,d0,})

and

& + Jp + &
G(d,) = e T
27
Let us recall that

(3) - Dy ={xeQ:d, — A(x) = 0}
and
Con = {x€Q:4,(x) < 4o} -

From the following chain of inequalities:

A,(x) < 4oy, log Fo

< log 4oy,

log p., < 2t,do, + logp_.,,
e, < exp {27,do,} P, »

0 < &P {2ndo} pos — P,
(1 + exp {t,do,})

(remember that ¢ > 0 and 7, = 7/\/n), we can see that

(6) Cop = {x€Q: f(x,, dy,. x) < 0}.
So the relations defining d,, and d,, may be rewritten
) J (do — A(x)) dPy = f1.7 %0 F 01
.. Do 2t
1

8 — e exp {21,do,} P—v, — P, ] APy =
®) T+ o ) CD"[ p {2tdo,} P, — 2] dPg
- € + 0y N 8o exp {27,do,}

A= ) (1t exp 2] T AL t0) (1 + exp (25,40

Let us recall that

limdo, = dy, |do| < o0,
n—roo
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(see Lemma 1) and so
exp {27,.d(\,,} =1+ 2t,do, + O(”il) .
From it follows

Pz, = Pu,
@WWMWMﬁhM%Z%j*‘*%WM

Cou Con 2z,

+ ZTndo“f dPy + 2t,d,, (dpP_,, — dPy) + O(n™Y).
Con

Con

Applying AS 3 and AS 5 and using the second order Taylor expansion one can find
that

21,,d0,,J (dP_,, —dP,) = O(n™1}.
Con

So we have

j [exp {25,d0,} P, — 1] 4Py =
CUu

~ ~2
= 2, —5—111 dp, + (27, (‘Jﬂf dP +
Con 09 oo ¢ a0? 0= ¢

“on L

+ 2t,dg, ( dPy + 0(n™"Y), fe(-1,.71,).

v Con

Because of AS 5 we have

8% -
(27,)? J [bl)l)zail‘,,g dp, = O(n™1).

Let us recall that py(x) = 1 so

d op, 1 J
9P, — 9P L =% logp, = A(x).
00 Jo—o [l g a0 0=0

Using it we may rewrite our result as follows

[exp {20,d0,} s, — p.,] Py = 21, J (do, ~ A)dPy + O(n ).
Con Con

Moreover, from Lemma 1 and AS 3, it follows that

(do, — A)dP,

Con

J

is finite (at least for large n). Making use of Lemma 1 and the definitions of 1,
and &, we may rewrite (8) into the form

©) [ @0 pan =BT 0 g,
Con 2t

w> Ejn
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Subtracting (9) from (7) we obtain

(10)
_f (do — 4)dP, _f (don — A)dPo + '[ (do — doy) AP, = O(n=172).
Do—Con Con—Do DonCon

Now let us split 4" into three disjoint sets
Ny ={neN :dy = dy, & Co, — Do = 0},

Ny ={neN :dy < dy,& Dy — Co, + 0}
and
Ny=N — (N uH).

Let ne ;. Then dy — do, 2 0 and there is x, € Co, — Do, i.c. (cf. (5) and (6))

dy, 2 (log p., — log p_. )2, .
and
do < A.

From the last three incqualities we derive

1
A(xn) - ; [log pr,.(xn) — log P—x,.(xn)] >dy—dy, 20,

1%
<

A(x,) — K log p(.) > do — do,
a0 b

where ¢ € (—1,, 7,). Finally, because of

a
A={—1o
[59 gp,,:LzD

2
9 log p,(x,) E>dy—dg,20.
a0 -

we get

Applying AS 7 we obtain
Hr, 2 HE> dy — doy 2 0.
Analogously for any ne 4", we could find that
0=2dy —dy, > —H1,.
Nowlet n e & 3. Theneitherdy 2 dy, & Co, — Dy =Qo0rdy < do, & Dy — Co, = 0.
Let the first possibility be true. Then we have
f (dy — A)dPy + j (do = dor) APy = O(n~ 1)
Do~Con Don Con
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(cf. (10)). Because of nonnegativity of both integrals we have
j (dy = doy) dPy = O(n™172).
Don Con

The assumption that the second possibility is true leads to the same result. To con-
clude the proof it suffices to show that there is @ > 0 and ny € A" so that for any
ned,n=ng

Po(Do Co,) > a.
To do it let us define f(x) = d, — A(x) and
1
Fx) = doy = ——(log p,, = log p-.,).

Then we have

lim /(<) = tim {don B %(Iogpr,. —logpy  logp- , —log Po)} _

Tn - T’l

n- o n—w

J .
=dy — [5«0 log pg(x):’ =dy — Ax) = f(x) .
Let y > 0. Having used Egorov’s theorem we can choose E < Q such that
Po(E°) <y

and f,(x) converges uniformly on E to f(x) for n — co. Let

F,={xeQ:dy, — A>1]k}.
Then

Dy =UF,, F< Fy
k=1

and so there is k, € A4 such that

0 < Py(Do) = Po(Fi) < 7
Now let us find 1, € & so that forall ne A", n 2 ny and forall xe E

[7(x) = )] < 1/ko -

Forany ne A", n = n; and x € F;,, n E we have

ko < f(x) < fu{x) + 1/ko «
It gives

fulx)>0
and so x € Cy,, i.c. Fy, N E = Cy,. Simultaneously we have F,, = Dy and finally

Fi,nE c Dy Cy,-
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Straightforward computation yields
Po(Dy 0 Cy,) 2 Po(Fyy 0 E) = Py(Fy,) — Po(Fiy m E) 2
2 Po(Do) — 7 — P(E®) 2 Py(Do) — 2y .

Because of G(d) having been increasing in d, Py(D,) is positive (sce (7). Then it is
sufficient to put y < 4 Po(D,).
Analogously it is possible to show that d;, = d; + O(n~*/2). [}

Proof of Theorem 2. Let us assume for simplicity that ¢, = ¢,. The logarithm
of the lIikelihood ratio (1/2t,)log m,(x) has all moments finite (even uniformly with
respect to n) because of (1/2t,)log m,(x) e [dy,, dy,] and Lemma 1. Taking an
Edgeworth cxpansion of a distribution of 1, cne may easy find that (B1) is fulfilled.
To verify (B2)—(B4) it is necessary to study A, more in details. Let us write at first

1 dp 1 dpP P
(11) ——log — = — | Jog —" — log dPo, | _
27, dP,, 21, dpP, dpP,

= z—i_. [log p.(x) — log p_. (x)] =

L A(x). 27, + 2 log p,(x) 2+ 2 log p,(x) 2
21, " | e0? e | 002 A R ¢

where 8', 6” € (— 1, 7,). Further let us use a partition R = (Do 1 Cq,) U (Do + Co,) U
u (D5 n C§, n D n Ci,)u (Dy + Cy,)U(Dy N Cy,)and because of Do N Dy = @
and Cy, N Cy, = @, this decomposition consists of the disjoint sets. So we have

do ~ do, xe Dy Copu»

dy — RS logm(x) xeDogn Cjp,
21,

(12) A(x) — do, xe Dy Cy,,
2
IC*(x) — 1 log m,(x) = [*0_2 log pu(x)] 21, xeDyn C5,n Ci, DS,
21, a6 -y
. Alx) — dy,, xeD{nCy,,
d; — L logm(x) xeD,nC5,,
21,
dy — dy, xeD;nCy,.

Let x € Dy n C§,. Then we may distinguish the following cases:

(i) do < do» then
1 1 dP;
Ax) < dy £ dg, £ — log m,(x) = — log —*"
()< do < dov . () PERTN

"
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and so

A(x) — L log 4P, (x)
21, dPy,(x)

, do — don}.

T, do — do:x} .

<

L
dy — —logm,| £
0 21',, nl

>

(i) do > do, then

/I(L\C) — ZL log (,jfl"(ix)

1
dy — log 7,
° ¢ Tn dp o"(x)

27

=< max {

Using (11) we derive

a2
02 log po(x)

i
dy — —logm, 3

T,

< max { sup
lol <<

n

From AS 7 and the previous lemma we have

I‘do - log m,(x)
271

“tn

= 0(}1‘1’/2) .

SUPxeDoAChne

Analogous relation may be proved for A(x) — dy, on D§ N Cy,, for A(x) — dy,
on DS n Cy, and for d, — (1/2t,) log 7, on D; A C{,. From it and from (12) we may
find that

/

IC*(x) = L log m,(x) + L(x) ,
21, Jn

where f,,(x) is a bounded random variable. So we have the difference 4, of W, and
Z,, where W, is given in (3) and Z, in (14), in the form

Ay = 1 Z énj(":j) >

n

where &,; are n i.i.d. bounded (uniformly in n) random variables. Hence we may write

PRI

“n _\/n no
where
1

Jni

Su= = % &ulx)-

Now let 4 > 0. Then
Eonlu] Lin=14,4)

A

)<4.08 (j, S,z vn‘““) = 4.081(S, Z '),
n

Now one may take the Edgeworth expansion of an appropriate order to estimate
(S, = yn'/*). (The order should be such that a rest will be o(n™1/%).) Since
EZ, is of order O(n~'/?), lim sup ES, < co. The leading term of the Edgeworth

n—m
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expansion will be a normal distribution and e.g. by means of an upper bound for
this probability (see [1], Theorem 1.1) one may find that this probability is of order
o(n~"'?). Similarly
on(Ay = A) = o(n"17?)
and
%,"(/1,, =< —A) = o(n_”z),

So (B2)—(B4) are fulfilled and we may use the Bickel-Chibisov-van Zwet theorem
for v, = n~1/? and it means in a usual terminology second order efficiency of ¥,. [

5. APPROXIMATION OF ERROR PROBABILITIES OF ROBUST TESTS

As it was said in the introduction, to work out the possibility of the robust testing
means not only to establish the most powerful test in its analytic form, but also to
find a way how to approximate its distribution, to be able to assess the critical
values. One of a classical possibility to approximate distribution function of a sum
of ii.d. random variables is to use an Edgeworth (or a saddle-point) expansion
Naturally it is necessary to check the reliability of such expansion by simulation.

In what follows the numszrical results of such approximation are presented and
checked by simulation for one symmetric distribution, represented by the normal law,
and for one asymmetric — the one-gamma distribution.

In many papers in which a simulation is used to illustrate the properties of statistics
or tests, the characterizations of the source of (pszudo) random numbers are omitted
or, at the bzst, only a brief remark that such and such source of random numbers
is includzd into the software of a given computer is made. Such remark is considered
toimply that the source was tzsted by the producers. But their tests might be irrelevant
to the purpose for which the author of papzr has used the given source. So to offer
the reader the possibility to make hims=If an idea about the trustworthiness of the
illustrative example it is ussful to display numerical results produced by the used
source of the random numbers in a situation analogous to that just checked, but
for which the simulated valuss may bz simultanzously analytically (i.e. precisely)
evaluated. (It is done in the first two rows in Tables 1 and 2.)

Now it s22ms to bz uszful to say a few words about the values of parameters of con-
tamination which were chosen in the next examples. Let us take g, = ¢, = -05.
This value rzpresznts a rather great homogznity of data (see [3]). To assign a value
to 8, one may procesd as follows. Wishing to fulfill a recommendation for y>-test
to have np; = 5 and assuming to posses 30 observations, one is lead to the conclusion
to take the partition with p; = %. For the normal law the shortest interval having
this probability is approximately [ —-2, -2]. So it turns out, in some scnse, as useless
to mzasure with a greater precision than +-2. On the other hand, it seems unreason-
able not to use the information carried by the observations measured by a more
precise scale. So we may accspt a compromise and decide to measure with precision -1.
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(At a first glance it may look a very low precision, but realizing that the bulk of pro-
bability of the normal law lies in the interval [ —3, 3], we shall find that we have 60
points to assign an observed value to; so at least, after 30 observations, half of them
will be left “empty”’.) Performing the observations with precision -1, we shall round-up
at the worst case about -05. An interval with the length -05 has probability (for
N(0, 1)) not greater than -02. But the observations may be contaminated (in the
Huber sense) and so, let us put §, = J; = -025.

In the sequel we shall assume to be faced (for some finite sizes of samples) with
two testing problems. In the first one the hypothesis is equal to N(0, 1) and the alter-
native to N(l, 1) andin the second one the hypothesis is represented by G(l, 3) and
the alternative by G(_2, 3), where G(a. p) is a gamma distribution with the density

\ a? -1
gla, p,x) = —— xP"lexp {—ax}.
(p)
Rieder’s model of contamination is applied.

Let the tests used in the following text be constructed to minimize the sum of the
error probabilities, i.e. the tests of the form

u dQ,(x;
Z log ;1@ =9
= dQ{x;)

Table 1. Normal moael.

n 5 10 15 20 25 30 35 40 45 50
PNT -13178 -05692 -02640 01267 -00621 -00309 -00155 -00078 -C0040 -00020
PNS 12256 04564 02769 -01077 -00461 -00308 -00154 -00051 -00030 -00010
PCA 25442 17635 -12794 09498 07153 05440 04168 -03211 -02485 -01930
PCS 25692 -17025 -11846 09128 -07026 -05539 -04103 -03231 -02051 -01641

(Letters N and C on the second position of PNT, PCA, etc. in the tables indicate that the values
are given for the normal and contaminated model, respectively. Similarly, letters 7, S and 4
on the last position of PNT, PCA, etc. are related to the theoretical, simulated and approximated
values, respectively.)

Table 2. Gamma model.

n 5 10 15 20 25 30 35 40 45 50
PGT -18337 -05919 -02072 -00753 -00279 -00100 -00049 -00014 -00006 -00002
PGS 18700 -05850 -02400 -00800 -00150 -00050 -00050 -00000 - -
PCA  -40220 -24814 -16095 -10711 -07244 -04953 -03415 -02369 -01652 -01156
PCS 41650 -22900 15200 -10100 -06950 -04150 -02850 01850 -01500 -00550

(Naturally letter G stands now instead of N to remember that the values were computed for the
gamma model.)
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will be considered. (The error probabilities of such tests are easy to simulate and
it was one of the reasons why these tests have been chosen.) The next two tables
show the possibility of approximation (of the sum) of the error probabilities by the
second order Edgeworth expansion. The simulation results were obtained performing
2000 samples of the given size n.

Having confirmed trustworthiness of the second order Edgeworth expansion
for approximation of the error probabilities of the robust tests we may use it for
numerical studies of problems of robust testing which are interesting and important
from practical point of view. We shall do it for the following three situation:

(i) behaviour of the robust test under the assumption that one of the initial (non-
contaminatcd) probability measures is true,

(ii) study of reliability of the local alternative setting approximations of error
probabilities,

(iii) influence of a biased estimation of the level of contamination on the etror
probabilities of the robust test.

This will be presented in the next section.

6. NUMERICAL STUDY OF BEHAVIOUR OF ROBUST TESTS

At first, behaviour of the robust test, when the assumption about contamination
is false, is studied. Anapplication of the robust tests is a superfluous ensurance against
a possible contamination in this situation and we suffer a loss not using, the most
powerful (likelihood ratio) test.

The next tables numerically describe the just mentioned situation. We assume that

the contamination model is true. Then we use the LFP-test with critical value ensuring
that this test will have the size given on the upper margin of the tables.
The II type error probabilitics then will be such as presented in the second rows.
If our assumption is false and the noncontaminated model will be true the error
probabilities of LFP-test (with just prescribed critical value) will change to the
corresponding ones exposed in the third and fourth rows. All values were obtained
by the second order Edgeworth expansion. The Greek letters o and f denote the
probability of the error of the I type and of the II type, respectively. Indices P and Q
added to « and f indicate that the values are taken with respect to the one of non-
contaminated probabilities (“centre” of hypothesis or alternative generated by con-
tamination) or with respect to the one of distributions from LFP. .

To get an idea about the loss caused by an application of the robust test instead
of the most powerful (likelihood ratio) test an additional line is given. It collects
second type error probabilities f* of the most powerful test, level of which, with
respect to noncontaminated hypothesis, is equal to a, (see the upper margin of tables).

Further application of Edgeworth approximation of the error probabilities of the
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Table 3. Normal model.
og =05

n 5 i0 15 20 25 30 35 40 45 50

By 6563 4277 2714 1683 -1025 0614 ‘0362 0212 -0122 -C070
op 0240  -0163 0118  -0088  -0067  -0052 0041 G033 €026 -0021
Bo -4901 2277 -1002  -0422  -0172  -0068 ‘0026  -COI10  -0004 -0001

B* 2773 0646 -0120 0023 0004 6.107°9.107° 107% 2.1077 2.1078

og =01

n 20 30 40 45 50 55 60 65 70 75

By 4052 -1998 0897  -0586 0377  -0239 ‘0150 -0093  -G057  -0034
xp <0012 -0007  -0004  -0003 0002 -0C02 G001 6001 001 00007
Bp +1481 ‘0356 -0075  -0033 0014  -0006 -0003 0001 -C0004  -00001

B 0159 -00081 -00003 6.107% 107% 2.1077 3.107% 5.107° 10°° —

(Hypothesis N(@, 1), alternative N(1, 1), level of contamination as above)

Table 4.
ag =05

n 5 10 15 20 25 30 35 40 45 50

Bo 5191 2623 1239 0552 -0238 0099 0041 <0017 -0007  -0003
ap 0272 0192 0148 0118 -0096 ‘0080  -0067 ‘0057 -0049 -0042
Bp 3560 -0960 ‘0129 -0047  -0009 0002 00002 4.107°% 1076 -

f* 1776  -0145  -0008 3.107° 107° less than 107°
o9 = -01
n 5 10 15 20 25 30 35 40 45 50

By 8701  -5818 ©3528  -2018 1085 0556 0274 0131 €061 0028
ap 0044 0029 ‘0021 0159 0012 -G010 ‘€008 -0006  -0C05  -0C04
Bp  -7926 3492 1248 0378 ‘0104 -0027 6006 -CO0t 60002 -000005

B* 4704 0923 <0110 0009 00007  -000004 less than 107 °

Table 4 sums up analogous values as Table 3, but for the gamma model (for @ = 1), as a hypo-
thesis, and @ = 2, as an alternative and p = 3, with level of contamination described above).

robust test is a study of reliability of other possibility of error probability approxim-
ation.

So the next collection of tables (5,6) is presented to offer a possibility to compare
the approximations of error probabilities yielded by the above mentioned setting na-
mely by a classical and a local alternative ones. They also illustrate how the second
order efficiency works. Let us describe the meaning of the values in tables. The size

403



of tests is again given on the upper margin of tables and inside of them the II type
error probabilities #’s are introduced only. The first row contains probabilities f1rp’S
for the LFP-test, the second one the analogous values f¢’s for Rieder’s asympto-
tically minimax test (see Section 3). To get an idea how the second order efficiency
works, the percentage differences D;% of the first and second row are given in the
third one. The just mentioned two tests have, in the setting of the local alternatives,
the same asymptotic distribution. The approximation of error probabilities [, ;s
obtained by this asymptotic distribution are gathered in the fourth row and again
the percentage differences D, % of these values and those ones from the first row
are available in the fifth row. The last row sums up the approximation f¢.;’s for
the LFP-test produced by the central limit theorem. A comparison of the first and
the last row leads to the conclusion that only in a case, when rather precise values
of the error probabilitics are required, we have to use the Edgeworth or the saddle-
point expansion and in the others we may put up with the central limit theorem
approximation. (But sometimes, in a symmetric situation, it is easier to find out
a saddle-point expansion than central limit theorem approximation.) The parameters
of models and contamination are the same as above.

Remark 4. It may seem queer that the local alternative setting approximations
of error probabilitirs worsen with increasing size n of samples. But it is necessary
to realize that for every n we must find a special local alternative setting so that
Py, and Py, as well as ¢, &1,,, dg, and &, are equal to those in our problem, in which
naturally the hypothesis, the alternative and the level of contamination are fixed.
E.g. if we have estimated the level of contamination &5 = ¢ = 05, we must put
forn =20in (1) e, = & = -05.,/20 = -2236 etc. and then compute the asymptotic
approximations.

The last example of utilization of the Edgeworth approximation of error probabili-
ties is the study of influence of a wrong estimation of the level of contamination
on the error probabilities of the robust test.

The next tables (7, 8) collect the following values:

We assume the level of contamination to be as is given in the first rows (so =g =
= 28, = 23,), we construct the most powerful test for this situation and we expect
that o-level test (« given on the upper margin of tables) will have the second type
error probability S as given in the second rows. But the real level of contamination
iS gor = &g = 20pg = 28,g = 05 and therefore both error probabilities of our
test will be different from expected ones. They are given in the third and fourth rows
(and denoted by «z and Bg). The study was performed for three sizes of sample,
namely n = 20, 30, 40 as is pointed also on the upper margin of the tables. Normal
and Gamma model were considered with the parameters as above (see page 401).

Remark 5. It follows from the Tables 7 and 8 that small inaccuracies in an estima-
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Table 5. Normal model.

n 5 10 s 20 25 30 35 40 45 50
Brep 6563 4277 2714 -1683 -1025 0614 0362 0212 0122 0070
Bic* 16618 +4350 -2781 1733 1057 0633 0373 <0218 0125 <0072
D, Y% -84 1-71 2-48 2:94 315 317 3-04 2-82 2-54 2:23

Bra 5560 -3148 1684 0863 0428 -0207  -0098  -0045 0021 €009
D, % 1528 2640 3795 4871 5820 6626  73:05 78-60 8311 86-73
Berr 6522 -4289 2731 1690 (1022 0606 0354 -0204 0116 0065

o =01

n 20 30 40 45 50 55 60 65 70 75

Brrp 4052 -1998 0897  -0586 -0377  -0239 ‘0150 -0093 0057 -€034
Bic+ 4067 2012 0911 G596 0-384 0244 -0153 -0095 0059 -0036
D% 35 72 1-53 181 201 2:15 223 2:27 2:28 2:28
Bra 2476 -0872  -0269  -0144 0075 0038 <0020 00097  -00C47  -00023
Dy % 3911 5637 70-01 7543 7999 8380 8695 89:53  91:64 9334
Bert -4074 2005  -0894  -0580  -0371 0233 ‘0145 G089 0054 €033

o =05
w5 1w 45 20 25 30 35 40 45 50
Burp  cS191 2623 <1239 0552 0238 0099 0041 0017 0007  -0003
Prer 5339 2704 1285 0578 0240 0105 0043 0018 0007  -0003

D % 278 300 334 446 515 549 554 544 540 540
Bra 0187 0001 7.1077 5.10°% — - — - _ _
D, % 9648 9994 9999  99:999 — - — — — —

Berr 5609 -2782 1241 ‘0514 ‘0201 0076  -G027  -0010 0003 -0001
o« =-03
n 5 10 15 20 25 30 35 40 45 50
Brep -8701 -5818  -3528 2018 -1085 ‘0556 0274 -0131  -0061  -0028
Bic* 8715 -5950  -3661 2111 1146 -0593 G295 -0142 0067  -0031

D% 16 221 361 438 528 617 741 761 797 848
Bra 0810 0016  -00001 2.107,  — — — — — —
D, % 90:70 9972 9999 99-999 — — - -

Berp 8632 6117 -3797 2132 1107 -0540 0250 0111 G047

0019

tion of the level of contamination lead to not significant changes of the error pro-
babilities. On the other hand a heavy underestimation of this level may cause very
unpleasant deviations of the size and the power of the test.

(Received December 2, 1982.)
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Table 7. Normal model.

o« = 095 n=20
g ‘050 045 040 035 -030 025 020 -015 010 005
By 097 075 057 042 030 -021 -014 009 005 003
ag 095 108 122 138 <156 <177 202 231 266 311
Br 097 086 076 066 058 049 042 035 029 024
% == 050 n=30
e, 050 045 -040 035 030 025 020 015 010  -005
By 061 043 030 019 012 007 -004 002 001  -G003
xg 050 059 070 083 100 119 143 172 209 259
Bg 061 051 043 036 -029 024 019 -015 Ol -008
o == 025 n= 40
g ‘050 ‘045 040 035 030 025 020 0I5 010 005
Bp 042 027 017 010 006 003 001 -0006 -G002 -00005
@ 025 030 038 049 061 077 097 124 159 209
Bg 042 034 027 022 017 013 010 -CO7 -CO5 003
Table 8. Gamma model.
@ =050 n=20
g 050 045 040 035 -030 025 020 015 010 005
By 055 042 029 020 013 -008 -004 002 -001 0003
ag (050 055 <063 070 079 090 102 117 135 151
Bg 055 050 042 037 032 028 025 -022 019 -0I8
o == 050 n==30
e 050 045 040 -035 030 025 -020 015 010 005
Bg 010 006 003 001  -0009 -0004 -0001 -60GOS 107° 1073
ag (050 058 067 077 089 104 121 138 ‘162 -184
Bx 010 008 006 -005 -004 003 -003 002 002 002
a = 050 n= 40
e 050 045 040 -035 030 025 020 015 010 €05
B 002 0008 -0004 -0001 5.107° 107° 4.107% 107% less than 107 °
@g 050 059 -070 083  -097 114 134 {157 185 216
Br 002 001 0009 -0007  -000S -0003 ‘0002 ‘0002 G002  -0602
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