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KYBERNETIKA-VOLUME 19 (1983), NUMBER 5 

ON SECOND ORDER EFFICIENCY OF A ROBUST TEST 
AND APPROXIMATЮNS OF ITS ERROR PROBABILITIES 

JAN ÁMOS VÍŠEK 

Second order efficiency of asymptotically minimax robust test proposed by H. Rieder is proved. 
Approximations of error probabilities of the most powerful robust test obtained by means of 
second order Edgeworth expansion are compared with simulated values as well as with appro­
ximations derived from asymptotic distribution of this test found in a setting of local alternatives. 

1. INTRODUCTION 

In 1977 H. Rieder, following Huber and Strassen [4], has proposed a new model 
of contamination and found a least favourable pair of distribution (LFP), the likeli­
hood ratio of which may be used as a test statistic for construction of the most 
powerful test. The form of contamination which is considered in Rieder's model 
implies avoidance or decrease of bad effects of the fact that a portion of population 
can be generated by a distribution different from the assumed one. Moreover, this 
model ensures us against errors caused by rounding numbers. The level of decrease 
(or in an ideal case, of avoidance) of the bad effects depends on the accuracy with 
which contamination parameters are estimated (or more precisely, guessed). But 
the applicability of Rieder's robust test was seriously influenced by the lack of know­
ledge of its distribution. 

Let us assume that we study an i.i.d. model. Then the most powerful test is, in fact, 
based on the test statistic which is the sum of logaritms of likelihood ratio of LFP. 
(In what follows this test is denoted as LFP-test.) A distribution of LFP-test is there­
fore an nth convolution of a distribution which may be derived from LFP. The 
shape of this distribution is however generally a little more complicated than to 
be feasible, even in the simplest cases, to derive characteristic function or directly 
find convolutions even for not very large sizes of samples. 

Let us assume to be faced with a real (and therefore finite) testing problem. In what 
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follows the problem of testing a simple hypothesis against a simple alternative 
both being contaminated, so in fact, the problem of testing a composite hypothesis 
against a composive alternative, is considered. Our aim may be then to construct an 
appropriate asymptotic setting running "through" our problem (i.e. a sequence of tes­
ting problems incorporating the initial problem for some finite size of sample) 
and to use the asymptotic results obtained in such setting to approximate the 
characteristics (e.g. the error probabilities) which were required in the initial 
problem. To complete the work on such a task it is necessary to check the effectiveness 
of the approximations (see e.g. [2] and [7]). 

In the present paper two well known asymptotic settings are recalled. In the first 
of them the hypothesis, the alternative and the level of contamination are fixed with 
only the number of observations running to infinity. The most powerful test is then 
the LFP-test, an analytic form of which was found in [5]. Approximations of the 
error probabilities are obtained by the Edgeworth or saddle-point expansions of 
distribution of the sum of logarithms of the likelihood ratio of LFP. The values 
gained by them were checked by simulations. The second order expansions proved 
to be very good for this purpose. 

Sometimes it would be useful to know not only the error probabilities of the LFP-
-test when one of the distributions from LFP is true, but also the error probabilities 
of it when one of the initial distributions is true (i.e. when one of the distributions 
which were "centres" of composite hypothesis and alternative, is true). These values 
may help us to judge how great loss we shall suffer, when the LFP-test will be used 
instead of the most powerful test of the non-contaminated model, i.e. what is the 
price of superfluous ensurance against contamination. 

Undoubtedly, it is also of interest to know how significant changes of error pro­
babilities might be expected if our estimation of the level of contamination is un-
precise. Some numerical examples offering a first rough image about it are presented 
at the end of the paper. 

However an evaluation of the cumulants of the logarithm of the likelihood ratio 
of LFP up to the forth one (necessary for the second order Edgeworth expansion) is 
usually a tiresome task. So we would appreciate a possibility to approximate the error 
probabilities in a simpler way. Such possibility seemed to be offered by the second 
setting, the setting of local alternatives. As it is known, in this setting the sequence 
of hypotheses and the sequence of alternatives converge one to the other with in­
creasing number of observations. In order to ensure the disjointness of the composite 
hypothesis and the composite alternative both having been produced by contamin­
ation, one must define the parameters of contamination as decreasing functions 
of the number of observations. For any size of sample we may then find an LFP-test 
and study their asymptotic distribution. This was done by Rieder in [6]. His results 
represent a simpler way of approximation of error probabilities in comparison with 
the saddle-point or Edgeworth expansion. Unfortunately, the approximations gained 
by the local alternative setting turned out to be rather bad. So we are still challenged 



to find another asymptotic setting giving good approximations of the error pro­
babilities and on the other hand not requiring long and dreary computation. 

In above mentioned paper [6] Rieder established an asymptotically most powerful 
test and showed its first order efficiency. The second order efficiency is proved 
in the present paper under a supplementary condition and numerically illustrated 
by means of Edgeworth approximations. 

2. NOTATIONS 

Let R denote the real line and Jf the set of all positive integers. Let (Q, 33) be 
a measurable space and let Ji be the set of all probability measures on it. For some 
T > 0 let {P0:1.1 <. T} denote a real parameter family from Ji. Let e}, Sj be real numbers 
0 < ep 0 < Sj, 0 < sj + Sj < 1, j = 0 ,1 . Define for functions / : J/ x R -^ [0, T] 
zxiAg,h:Jf x R -> [0, l) 

T„ = f(n, T) , eJn = g(n, Sj), 5Jn = h(n, <5y), 

P0 n = P_ r„, Pm=P.„, 

(1) »in = {QeJi: Q(B) S: (l - eJn) PJn(B) - 5jn for all Be®}, 

3"t = { ® Qi : Qi e -*;„ for i = 1,...,«} , 
i = l 

# , = {W/| : Wn e <̂ ®« for all neJf}, 

where " ® " denotes the nth product and w„ may be considered to be the distri-
i = l 

butions of samples of sizes n. Let us recall the definition of LFP (Q0„, Qln) for 
(&or.> ^in) '• Qon and Qln are the probability distributions satisfying 

QUi* < *}) = sup {Q'({n <t) : Q' e 3P0n} , 

QUl({n < t}) = inf {Q"({n < t}) : Q" e 0>Xn} , t e (0, oo), 

where 7t e dQ^JdQo,,. 

Remark 1. Taking f(n, z) = g(n, z) = h(n, z) = z we shall obtain a classical 
setting with the fixed hypothesis, alternative, level of contamination and with the 
size of sample running to infinity. On the other hand putting f(n, z) = g(n, z) = 
= h(n, z) = zjyjn we shall arrive at the local alternative setting. 

3. ASSUMPTIONS 

AS 1. There is T > 0, such that Pe <̂  P 0 for all \d\ < T. Let pe denote a suitable 
version of dPe / dP0 . 
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AS 2. 0 -> p0(x) is twice differentiable for all x e Q. Put 

'3 
A(x) = log pв 

АSЗ. 

АS4. iim 
o-»o 

* - л W L » 
0 < M 2 ( x ) d P 0 < oo . 

v\iг - i \ 2 

0 
áP0 = Ц Л2(x) d P „ . 

AS 5. There is a function h in EX(P0) such that 

sup 
l»lśt 

^2 n á Ä(x) for all x є fí . 

AS 6. 

Let d0 and d1 be real numbers given by 

(£o + ô0 + <5x)/2т < I (Л(x) - V - 1 0 . àPv . 
2т 

f(do - Л)+ áP0 = (e. + <50 + <51)(2т)~1 

and 

f ( A - r f ) ) + d P 0 = (e0 + <50 + 5 1 ) (2T)- 1 . 

Further let A„ £ dP1(, / dP0„ and zl0„ and Aln be real numbers defined by 

A0n P0n(A„ < A0n) - Pln(A„ < A0„) = ғ^я±Љi + ____ ò 

(2) 
1 - Чn 1 - eUя 

Pln(Лln < Лn) - Aln P0n(Лln < Лn) = ^L±Іç_» Ain + ^ _ . 
1 - є0„ 1 - e l n 

Let for A, Be, 

and 

A -ř- B : = (A n Bc) KJ (Ac n 

D 0 = { x e f i : d0 ^ A(x)} , Dt = {xeQ-.d,^ A(x)} 

and for each neJf 

C0„ = {x e Q : A„(x) < A0„} , Cln = {xe Q : Aln < An(x)} . 

Finally put 
G„ = {(D0 n C0„) u (D_ n ClB)}c 
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and 
õ2 

ę„(x) = sup — log p0(x) . 
|в|gt д 

Now we may give a supplementary assumption. 

AS 7. lim sup sup {(p„(x) : x e G„} < co . 

Remark 2. As 7 may be weakened in the following way: 

AS 7'. lim sup sup {q>n(x) : x e (D0 + C0„) u (Dt -~ Cj„)} < GO 

with the random variable 

having finite fourth moment (with respect to Q0n — see the proof of Theorem 2). 

Remark 3. H. Rieder has shown that an exponential family satisfies the above 

regularity assumptions AS i — AS 5 (AS 6 is fulfilled for small ê  and Sj). Let {f0(x) = 

= C(9) • h(x). exp {Q(0) • x). It is a reasonable requirement that from 

follows 91 = 92. Nov/ let 01 4= 02- Let us assume that Q(91) = Q(Q2). From it we 

have C(0j) = C(0 2)and finally f0l(x) = f02(x). But it contradicts the above require­

ment. So we have a one-to-one mapping Q(Q): 0 -> R; further, let us assume 0 c R 

and use a reparametrization 

0 = Q(0) 

and 

g9(x) = C(e"1(0~)) K*) e x P {&} = -X#) *(*) e x P {&} • 
Then 

A9(x) : = grg(x)/a0(x) = #(0)exp {Sx} 

and 

So the assumptions AS 7 may be written for the exponential family into the form 

| r ( 0 ) 4 0 ) - r a ] 2 | < a 3 , 
i«ist| ^ 2 ( 0 ) I 

AS 7 is fulfilled for rather large range of probability families having 

| r log P8(*) 

continous while G„. being usually contained in a bounded closed set. 
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Remark 4. Also H. Rieder proved in [5] that 

• max {A0„, min {A„, Aln}} %n = 

(A0„ and Aln given in (2)) is the likelihood ratio of LFP (Q0„, 6m) for (0>o„, 0>ln) 
and,thus 

(3) Wn(x) = t log %n(x,) 
i = l 

generates the minimax test of H0n : w e 0>On against Hln : w e 0>ln. In [6] he establis­
hed that for 

IC*(x) := max {d0, min {A(x), dt}} , 
the statistic 

(4) . Zn(x) = 4 - 1 IC*(*<) 
V" i = 1 

yields an asymptotically minimax test î „ of H0 against Ht (see (l)). 

4. SECOND ORDER EFFICIENCY OF i[/„ 

Throughout this section the local alternative setting is considered. 
We are now going to use the result of Bickel, Chibisov and van Zwet presented 

in [ l ] . Let us quote at first their definition of the v„-efficiency and their result. 
Let for every n e JV, P0„ and Pln be two possible distributions of Xn (in an arbitrary 

sample space) and let Wn(X„) and Zn(Xn) be the logarithm of the likelihood ratio 
dPln(X„)ldP0„(Xn) and a statistic, respectively. 

Definition 1. Let <P„(W„, cc„) and ^„(Z„, oc„) be two sequences of the test functions 
such that 

E0„ $„(W„, <xn) = oc„ and E0„ ij/„(Zn, a„) = a„. 

For a sequence v„ e (0, l ] , we shall say that the sequence if/„(Z„, an) is v„-efficient if, 
for n -» oo, 

Eln[<P„(W„, oc„) - i,„(Z„, «„)] = o(v„). 

Let us denote 

X„ = 0 if Wn = Zn, 

= W„ — Z„ otherwise . 

Theorem 1. (Bickel, Chibisov, van Zwet, [ l ] p. 171). Suppose that 

( B l ) liminfa„ > 0 

and that there exists A > 0 such that for every x0 e R, every y > 0 and n ->• oo 

(B2) sup P0„(x - v1/2 SWn£x)= 0(v1/2) , 
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(B3) M ' » I W M ) ( W ) } =<>(<>, 

(B4) P0„{K = A) = o(v„), 

(B5) Pi„{X„ £ - A ) = o(v„). 

Then the sequence of test ^„(Z„, a„) is v„-efficient. 

Throughout the rest of the paper AS 1 - AS 7 are assumed to be fulfilled. 

Theorem 2. Let iA„(Z„, a„) be given as follows: 

iA„(Z„, a„) = 0 Z„ < C„(a„). 

= 1 Z„ > C,(a„), 

where Z„ is given in (4) and C„(a„) is chosen so that 

Ei//„(Z„, a„) = a„, 

where the mean is taken with respect to g®,," (cf. (l)). Then the tests t//„(Z„, a„) are 
second order efficient. 

To prove the theorem we shall give two lemmas. The first of them is due to Rieder 
(in [6], but it was not isolated there). Let us put 

djn = — log Ajn. 

Lemma 1. For any w„ 6 H0 u Hi (see (l)) we have 

lim varWn — log n„{x) = EPo/C*2(x) 
n^oo 2t„ 

and 
lim djn = dj, \dj\ < co , j = 0, 1 . 

For the p roof see [6], p. 1088, relation (*). 

Lemma 2. 
dJn = dj+ 0{n-1'2). 

Proof. Let us recall that pe{x) is the density of the probability measure Pe, |(9| < x, 
with respect to P0. Let for real u, d and x 

f(u d x) = ĚXP{2ud}P~u{x)-Pu{x) 
' ' ' u{\+ exp {2ud}) 

F{d,u)= !f+{d,u,x)áP0{x) 
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and 

G(d)= f ( đ - A ( x ) ) + d P 0 ( x ) . 

Then d0 and d0„ may be redefined by 

F(d T ) =
 £1 + gj + go eXP { 2 T A » 1 

°"' " ; T(1 - elB) (1 + exp {2tnd0n}) T(1 - s0„) (1 + exp { 2 T , A , } ) 

and 

r(A \ £i + ^o + si G(d0) = . 
2T 

Let us recall that 
(5) D0 ={xeQ:d0- A(x) _ 0} 

and 
COn = {xeQ:An(x)<A0n). 

From the following chain of inequalities: 

A„(x)<A0n, l o g - ^ - < logzl0„, 
P-Tn 

\ogpXn < 2rnd0n + logp_T n , 

Prn < e x P { 2 T ^O«} P-Z„ , 

Q <^p{2tnd0n}p.Zn-pXn 

T„(1 + exp {T„d0„}) 

(remember that T > 0 and T„ = tj^/n), we can see that 

(6) C0„ = { x e f 2 : / ( T „ , d 0 „ , x ) < 0 } . 

So the relations defining d0 and d0„ may be rewritten 

(7) [ (d0-A(x))dP0 = £>+3°+5i 
JD0 2T 

(8) -7— 1 , . - » f [exP {2T.d0„} p-r„ - p j dP 0 = 
T„(1 + exp{2T„rf0„}) JCon 

_ £i + gi <5o e x P {2T„^0„} 

T(1 - elB) (1 + exp {2T„d0„}) T(1 - e0„) (1 + exp {2T„rf0„})' 

Let us recall that 
lim d0„ = d0 , |d0 | < co , 
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(see Lemma l) and so 

exp{2т,A„} = 1 + 2т,//0„ + O^rГ1). 

From it follows 

[exp {2т„d0„} JP-tn - pj d P 0 = 2т„ 
P-x„- Pt„ 

2т„ 
d P 0 + 

+2T„J 0 „ r dp0+iT„d0 n r (dp„r„ ~ dp0) + o(,rr). 
J C0„ J Co„ 

Applying AS 3 and AS 5 and using the second order Taylor expansion one can find 

that 

2T„J 0 „ f ( d P _ t „ - d P 0 ) = 0(n~l). 
Jc0„ 

[exp {2T„(/C„} p_r„ - p j d P 0 = 

Jc0„ 

So we have 

c„„LÖÖ2
Jí) = 

dP + 

+ 2т,A„ ľ dP0 + 0(и"L), Č є (-т,„ т„). 
Jc0„ 

Because of AS 5 we have 

Let us recall that p0(x) = 1 so 

i i = r ^ i i -riiogp.1 =A(x). 

write our result as follows 

f [exp {2rnd0n} p_tn - pj d P 0 = 2T„ f (J0„ - A) d P 0 + 0(,rl) . 
J C0„ J Co„ 

Using it we may rewrite our result as follows 

Moreover, from Lemma 1 and AS 3, it follows that 

ľ (d0n-Л)dP0 

Jc0„ 

is finite (at least for large «). Making use of Lemma 1 and the definitions of T„, EJn 

and <5 •„ we may rewrite (8) into the form 

(9) Г (d0n-Л)đP0 

Jc0„ 
Ł ± І L ± A + o(в--/-). 

2т ! 
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Subtracting (9) from (7) we obtain 

(10) 

f ( d 0 - A ) d P 0 - f ( d 0 „ - A ) d P 0 + f (do-d0n)dPo = 0(n-x'2). 
J D0-C0„ JC0„-D0 jDonC0„ 

Now let us split JT into three disjoint sets 

JTt = {neAT:d0 > d 0 „ & C 0 „ - D0 * 0} , 

JT2 = {n eJT : d0 < d0n& D0 - C0„ * 0} 

and 

jr3 = jr-(jr1^j jr2). 

Let neJTi- Then d0 — d0n > 0 and there is x„ e C0„ - D0, i.e. (cf. (5) and (6)) 

do„ ^ (log pZn - log p - J / 2 T „ 

and 

d0 < A. 

From the last three inequalities we derive 

A(x„) - — [log ^(x,,) - log p-zn(x„)] > d0 - d0n > 0 , 
2T„ 

log P (x„ A(xn) -

where ^ 6 (— T„, T„). Finally, because of 

A = — log p A 

[pe "1=0 

> d0 - d 0 в è 0 , 

we get 

[£*'Ч. f > d0 - d0и ~Ł 0 . 

Applying AS 7 we obtain 

X T „ ^ JTt* > do ~ tio„ ^ 0. 

Analogously for any n e JT2 we could find that 

0 = do - do„> - . * " * „ . 

Now let neJT3. Then either d0 ^ d0„ & C0„ - D 0 = 0 or d0 < d0„ & D0 - C0n = 0. 
Let the first possibility be true. Then we have 

f (do - A) d P 0 + f (do - do.) d P 0 = 0(n-*'2) 
J Do-C0„ jDonCo„ 
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(cf. (10)). Because of nonnegativity of both integrals we have 

f (d0-d0„)dE0 = o(«-1/2). 
J Don Co„ 

The assumption that the second possibility is true leads to the same result. To con­

clude the proof it suffices to show that there is a > 0 and n0 eJ/~ so that for any 

n e Jf, n > n0 

P0(D0 n C0„) > a . 

To do it let us define j(x) = d0 — A(x) and 

2T 

Then we have 

/»(*) = -0. ~ —"(logpг„ - l o g p - r J • 

Pz„ - log Pa + log P- „ ~ log Po lim/„(x) = l . m j d 0 „ - A ( ^ I ^ 

= d0-l^logpg(x)] = d0 - A(x) = f(x). . 
I.™ J8 = 0 

Let y > 0. Having used Egorov's theorem we can choose E _ Q such that 

P0(EC) < y 

andj„(x) converges uniformly on E to j(x) for n -> oo. Let 

Ei = {x G Q : d0 - A > ljk] . 

Then 

D0 = \JFk, FkczFk+i 
k-i 

and so there is k0eJf such that 

0 < P0(D0) - P0(Fko) < y. 

Now let us find n1 e Jf so that for all n e Jf, n > nt and for all x e E 

\f(x)-f„(x)\<ljk0. 

For any n e Jf, n >. nt and x e Fko n E we have 

l//c0 < f(x) < f,(x) + l/fc0 . 

It gives 

/.(*) > o 

and so x e C0„, i.e. Eio n E _ C0„. Simultaneously we have EA.0 - D 0 and finally 

Fko.n E <= D0 n C0„. 
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Straightforward computation yields 

P0(D0 n C0„) ̂  P0(Fko n E) = P0(FkQ) - P0(Fka n Ec) 2; 

_ Po(D0) - 7 - P(EC) Si P0(D0) - 2y . 

Because of G(d) having been increasing in d, P0(D0) is positive (see (7)). Then it is 
sufficient to put y < i P0(D0). 

Analogously it is possible to show that dln = dj + 0(n~1/2). • 

P roo f of Theo rem 2. Let us assume for simplicity that e0 = s,. The logarithm 
of the likelihood ratio (1/2T„) log nn(x) has all moments finite (even uniformly with 
respect to n) because of (1/2T„) log nn(x) e [d0n, d2n~\ and Lemma l. Taking an 
Edgeworth expansion of a distribution of Wn one may easy find that (Bl) is fulfilled. 
To verify (B2) —(B4) it is necessary to study Xn more in details. Let us write at first 

u*\ 1 , dP l B 1 f dP„, dP0„l 
(11) —• log — - = — log —-"• - log — - = 

2T„ dP0„ 2T„L dP0 dP0J 

= —• [log p,Jx) - log p_r„(x)] = 
2T„ 

where 6', 9" e ( - T„, T„). Further let us use a partition R = (D0 n C0„) u (D0 •.- C0„) u 
u (Dc

0 n C0„ n D\ n C\n) u (D1 ~ Cln) u (Dt n C.„J and because of D0 n D1 = 0 
and C0„ n C^, = 0, this decomposition consists of the disjoint sets. So we have 

do — d0n x e D0 n C0„ , 

do ' log ~n(x) xe D0n C0„, 
2T„ 

(12) A(x) - d0„ x e Dc
0 n C0„, 

IC*(X) - J _ log ,r„(x) = \ ^ - log p0(x)1 2T„ 
2T„ \_Ó0 Je=e. 

x e D0 n C0„ n Cln n D^ , 

A(x) — dln x e D\ n Cln, 

di log n„(x) x e D1 n C'„ , 
2T„ 

dj — dln x e Dt n Cln . 

Let xe D0n C0„. Then we may distinguish the following cases: 

(i) d0 < d0n, then 

A(x) < d0 <. d0„ <. — log 7i„(x) = — log —--
2T„ 2T„ dP0„ 
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and so 

\d0 - ~ - log JTJ g A(x) -
1 , dPln(x)\ 

— log i^-J] 
2T„ dE0„(x)| 

(ii) d0 > d0„ then 

«0 log 7t» 
I 2 T „ 

Using (11) we derive 

d0 - — log -. 
2T„ 

:C m a x < ! | A ( x ) - — l o g i ^ l 
- "l { ) 2T„ *dP0„(x) 

, d0 - d0„} • 

:á max <{ sup 
|в|<t ð 2 

From AS 7 and the previous lemma we have 

1 
supœ D o ncw ko - — 1°S ^ M 

2T„ 

:pe(x) *„> d0 - d0,A. 

= 0 ( / Г 1 / 2 ) . 

Analogous relation may be proved for A(x) — d0„ on Dc

0 n C0„, for A(x) - dln 

on D\ n CL„ and for d1 - (1/2T„) log 7i„ on Dj n Ci„. From it and from (12) we may 
find that 

/ C *( A -)= J _ l 0 g ^ ( x ) + ^ ) s 

2T„ %/n 

where £„(x) is a bounded random variable. So we have the difference X„ of W„ and 
Z„, where PT̂, is given in (3) and Z„ in (14), in the form 

4 = i i a ^ ) ) 
n j=\ 

where £BJ- are n i.i.d. bounded (uniformly in n) random variables. Hence we may write 

where 

Now let A > 0. Then 

Xn = — s 

5,, = Ą- E u*,) 
V П i = l 

Eon|A„|i(v«-^.A,(|An|)^A.e0®; (-*- s„ % yn-^A = A.Q?;^ ^ 7«1/4). 

Now one may take the Edgeworth expansion of an appropriate order to estimate 
Qf„"(S„ ̂  yn1'4). (The order should be such that a rest will be o(n"1/2).) Since 
~k„ is of order 0(n"112), Jim sup ES„ < oo. The leading term of the Edgeworth 
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expansion will be a normal distribution and e.g. by means of an upper bound for 
this probability (see [ l ] , Theorem 1.1) one may find that this probability is of order 
o(n~in). Similarly 

Qt:(Xn^A) = o(n~1'2) 
and 

Ql"(h^-A) = o(n~1/2). 

So (B2)-(B4) are fulfilled and we may use the Bickel-Chibisov-van Zwet theorem 
for v„ = n~1/2 and it means in a usual terminology second order efficiency of \j/„. D 

5. APPROXIMATION OF ERROR PROBABILITIES OF ROBUST TESTS 

As it was said in the introduction, to work out the possibility of the robust testing 
means not only to establish the most powerful test in its analytic form, but also to 
find a way how to approximate its distribution, to be able to assess the critical 
values. One of a classical possibility to approximate distribution function of a sum 
of i.i.d. random variables is to use an Edgeworth (or a saddle-point) expansion 
Naturally it is necessary to check the reliability of such expansion by simulation. 

In what follows the numerical results of such approximation are presented and 
checked by simulation for one symmetric distribution, represented by the normal law, 
and for one asymmetric — the one-gamma distribution. 

In many papers in which a simulation is used to illustrate the properties of statistics 
or tests, the characterizations of the source of (pseudo) random numbers are omitted 
or, at the bsst, only a brief remark that such and such source of random numbers 
is included into ths software of a given computer is made. Such remark is considered 
to imply that the source was tested by the producers. But their tests might be irrelevant 
to the purpose for which ths author of papsr has used the given source. So to offer 
the reader ths possibility to make himsslf an idea about the trustworthiness of the 
illustrative example it is useful to display numerical results produced by the used 
source of the random numbers in a situation analogous to that just checked, but 
for which ths simulated values may bs simultansously analytically (i.e. precisely) 
evaluated. (It is done in the first two rows in Tables 1 and 2.) 

Now it sssms to bs ussful to say a few words about the values of parameters of con­
tamination which were chosen in the next examples. Let us take E0 = et = -05. 
This valus rspressnts a rather great homogsnity of data (see [3]). To assign a value 
to d, one may procesd as follows. Wishing to fulfill a recommendation for y2-test 
to have npL ^ 5 and assuming to posses 30 observations, one is lead to the conclusion 
to take ths partition with pt ^ | . For the normal law the shortest interval having 
this probability is approximately^--2, -2]. So it turns out, in some sense, as useless 
to measure with a greater precision than ±-2. On the other hand, it seems unreason­
able not to use ths information carried by the observations measured by a more 
precise scale. So we may accspt a compromise and decide to measure with precision T. 
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(At a first glance it may look a very low precision, but realizing that the bulk of pro­

bability of the normal law lies in the interval [—3, 3], we shall find that we have 60 

points to assign an observed value to; so at least, after 30 observations, half of them 

will be left "empty".) Performing the observations with precision -1, we shall round-up 

at the worst case about -05. An interval with the length -05 has probability (for 

N(0, l)) not greater than -02. But the observations may be contaminated (in the 

Huber sense) and so, let us put <50 = Sx = -025. 

In the sequel we shall assume to be faced (for some finite sizes of samples) with 

two testing problems. In the first one the hypothesis is equal to N(0, 1) and the alter­

native to N(l, 1) and in the second one the hypothesis is represented by G(l, 3) and 

the alternative by G(2, 3), where G(a, p) is a gamma distribution with the density 

g(a, p, x) = ~— x" 1 exp {-ax} . 

UP) 

Rieder's model of contamination is applied. 

Let the tests used in the following text be constructed to minimize the sum of the 

error probabilities, i.e. the tests of the form 

dGi(*,) У 
dß0(xг) 

0 

Table 1. Normal model. 

10 15 20 35 40 45 50 

PNT -13178 -05692 -02640 -01267 -00621 
PNS -12256 -04564 0-2769 -01077 -00461 
PCA -25442 -17635 -12794 -09498 -07153 
PCS -25692 -17025 -11846 -09128 -07026 

•05440 
•05539 

•00155 
•00154 
•04168 
•04103 

•00078 -00040 -00020 
•00051 -00030 -00010 
•03211 -02485 -01930 
•03231 02051 -01641 

(Letters TV and C on the second position of PNT, PCA, etc. in the tables indicate that the values 
are given for the normal and contaminated model, respectively. Similarly, letters T, S and A 
on the last position of PNT, PCA, etc. are related to the theoretical, simulated and approximated 
values, respectively.) 

Table 2. Gamma model. 

10 15 35 40 45 50 

PGT -18337 -05919 -02072 
PGS -18700 -05850 -02400 
PCA -40220 -24814 -16095 
PCS -41650 ' -22900 -15200 

•00753 •00279 •00100 

•00800 •00150 •00050 

•10711 •07244 •04953 

•10100 •06950 •04150 

•00049 -00014 -00006 -00002 
•00050 -00000 - -
•03415 -02369 -01652 -01156 
•02850 -01850 -01500 -00550 

(Naturally letter G stands now instead of N to remember that the values were computed for the 
gamma model.) 
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will be considered. (The error probabilities of such tests are easy to simulate and 
it was one of the reasons why these tests have been chosen.) The next two tables 
show the possibility of approximation (of the sum) of the error probabilities by the 
second order Edgeworth expansion. The simulation results were obtained performing 
2000 samples of the given size n. 

Having confirmed trustworthiness of the second order Edgeworth expansion 
for approximation of the error probabilities of the robust tests we may use it for 
numerical studies of problems of robust testing which are interesting and important 
from practical point of view. We shall do it for the following three situation: 

(i) behaviour of the robust test under the assumption that one of the initial (non-
contaminated) probability measures is true, 

(ii) study of reliability of the local alternative setting approximations of error 
probabilities, 

(iii) influence of a biased estimation of the level of contamination on the error 
probabilities of the robust test. 

This will be presented in the next section. 

6. NUMERICAL STUDY OF BEHAVIOUR OF ROBUST TESTS 

At first, behaviour of the robust test, when the assumption about contamination 
is false, is studied. An application of the robust tests is a superfluous ensurance against 
a possible contamination in this situation and we suffer a loss not using, the most 
powerful (likelihood ratio) test. 

The next tables numerically describe the just mentioned situation. We assume that 
the contamination model is true. Then we use the LFP-test with critical value ensuring 
that this test will have the size given on the upper margin of the tables. 
The II type error probabilities then will be such as presented in the second rows. 
If our assumption is false and the noncontaminated model will be true the error 
probabilities of LFP-test (with just prescribed critical value) will change to the 
corresponding ones exposed in the third and fourth rows. All values were obtained 
by the second order Edgeworth expansion. The Greek letters a and /? denote the 
probability of the error of the I type and of the II type, respectively. Indices P and Q 
added to a and /? indicate that the values are taken with respect to the one of non-
contaminated probabilities ("centre" of hypothesis or alternative generated by con­
tamination) or with respect to the one of distributions from LFP. 

To get an idea about the loss caused by an application of the robust test instead 
of the most powerful (likelihood ratio) test an additional line is given. It collects 
second type error probabilities /?* of the most powerful test, level of which, with 
respect to noncontaminated hypothesis, is equal to <xQ (see the upper margin of tables). 

Further application of Edgeworth approximation of the error probabilities of the 

402 



Table 3. Normal model. 

n 5 10 15 20 25 30 35 40 45 50 

ßQ 

a.p 

ßP 

•6563 

•0240 

•4901 

•4277 

•0163 

•2277 

•2714 

•0118 

•1002 

•1683 

•0088 

•0422 

•1025 

•0067 

•0172 

•0614 

0052 

•0068 

•0362 

•0041 

•0026 

•0212 

•0033 

•0010 

0122 

•C026 

•0004 

•0070 

•0021 

•0001 

ß* •2773 •0646 •0129 •0023 0004 6 . 1 0 ~ 5 9 . 1 0 ~ 6 1 0 ~ 6 2 . 1 0 ~ 7 2 . 1 0 ~ 8 

~Q = •01 

n 20 30 40 45 50 55 60 65 70 75 

ßQ *p 

ßp 

•4052 

•0012 

•1481 

•1998 

•0007 

•0356 

•0897 

•0004 

•0075 

•0586 

•0003 

•0033 

•0377 

•0002 

•0014 

0239 

•CC02 

•0006 

•0150 

•C001 

•0003 

•0093 

•0001 

•OCOl 

•C057 

•0001 

•C0CO4 

•0034 

00007 

•00001 

ß* •0159 •00081 •00003 6 . 1 0 " 6 1 0 ~ 6 2 . 1 0 ~ 7 3 . 1 0 ~ 8 5 . 10~ 9 1 0 ~ 9 -
( H y p o t h e s i s ҖQ, 1), a l t e r n a t i v e Җl, 1), 1 

Table 4. 

evel of c o n t a m i n a t i o n as a b o v e ) 

a Q = 05 

n 5 10 15 20 25 30 35 40 45 50 

ß Q 
<xP 

ßp 

•5191 

•0272 

•3560 

•2623 

0192 

•0960 

•1239 

•0148 

•0129 

•0552 

•0118 

•0047 

•0238 

0096 

•0009 

•0099 

•0080 

•0002 

•0041 

•0067 

•00002 

•0017 

•C057 

4 . 1 0 ~ 6 

•0007 

•0049 

1 0 ~ 6 

•0003 

•0042 

ß* •1776 •0145 •0008 3 . 1 0 ~ 5 1 0 ~ б less t h a n 10 ~ 6 

~c = •01 

n 5 10 15 20 25 30 35 40 45 50 

ßü 
ap 

ßp 

•8701 

•0044 

•7926 

•5818 

•0029 

•3492 

•3528 

•0021 

•1248 

•2018 

•0159 

•0378 

•1085 

•0012 

•0104 

•0556 

•0010 

•0027 

•0274 

•CC08 

•C006 

•0131 

•0006 

COOl 

•C061 

•0005 

•CCC02 

•0028 

•0004 

•000005 

ß* •4704 •0923 •0110 •0009 C0007 •000004 less t h a n 1 0 ~ б 

Table 4 sums up analogous values as Table 3, but for the gamma model (for a = 1), as a hypo­

thesis, and a = 2, as an alternative and p = 3, with level of contamination described above). 

robust test is a study of reliability of other possibility of error probability approxim­

ation. 

So the next collection of tables (5,6) is presented to offer a possibility to compare 

the approximations of error probabilities yielded by the above, mentioned setting na­

mely by a classical and a local alternative ones. They also illustrate how the second 

order efficiency works. Let us describe the meaning of the values in tables. The size a 
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of tests is again given on the upper margin of tables and inside of them the II type 
error probabilities /?'s are introduced only. The first row contains probabilities /?LFP'S 

for the LFP-test, the second one the analogous values Ac*'s for Rieder's asympto­
tically minimax test (see Section 3). To get an idea how the second order efficiency 
works, the percentage differences T>°/0 of the first and second row are given in the 
third one. The just mentioned two tests have, in the setting of the local alternatives, 
the same asymptotic distribution. The approximation of error probabilities fiLA's 
obtained by this asymptotic distribution are gathered in the fourth row and again 
the percentage differences D2 % of these values and those ones from the first row 
are available in the fifth row. The last row sums up the approximation PCLTS f° r 

the LFP-test produced by the central limit theorem. A comparison of the first and 
the last row leads to the conclusion that only in a case, when rather precise values 
of the error probabilities are required, we have to use the Edgeworth or the saddle-
point expansion and in the others we may put up with the central limit theorem 
approximation. (But sometimes, in a symmetric situation, it is easier to find out 
a saddle-point expansion than central limit theorem approximation.) The parameters 
of models and contamination are the same as above. 

Remark 4. It may seem queer that the local alternative setting approximations 
of error probabilitirs worsen with increasing size n of samples. But it is necessary 
to realize that for every n we must find a special local alternative setting so that 
P0„ and Pln as weil as £0„, sln, 80n and 5ln are equal to those in our problem, in which 
naturally the hypothesis, the alternative and the level of contamination are fixed. 
E.g. if we have estimated the level of contamination e0 = e[ = -05, we must put 
for n = 20 in (l) e0 = e« = -05 . ̂ /20 = -2236 etc. and then compute the asymptotic 
approximations. 

The last example of utilization of the Edgeworth approximation of error probabili­
ties is the study of influence of a wrong estimation of the level of contamination 
on the error probabilities of the robust test. 

The next tables (7, 8) collect the following values: 
We assume the level of contamination to be as js given in the first rows (£0 = ex = 

= 2<50 = 251), we construct the most powerful test for this situation and we expect 
that a-level test (a given on the upper margin of tables) will have the second type 
error probability PE as given in the second rows. But the real level of contamination 
is s0R = £1R = 2S0R = 2d1R = -05 and therefore both error probabilities of our 
test will be different from expected ones. They are given in the third and fourth rows 
(and denoted by aR and fiR). The study was performed for three sizes of sample, 
namely n = 20, 30, 40 as is pointed also on the upper margin of the tables. Normal 
and Gamma model were considered with the parameters as above (see page 401). 

Remark 5. It follows from the Tables 7 and 8 that small inaccuracies in an estima-
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Table 5. Normal model. 

n 5 10 15 20 25 30 35 40 45 50 

ßbГP •6563 •4277 •2714 •1683 •1025 •0614 -0362 •0212 •0122 •0070 

ß , f í . •6618 •4350 •2781 •1733 •1057 •0633 -0373 •0218 •0125 •0072 

Ð , % •84 1-71 2-48 2-94 3-15 3-17 3-04 2-82 2-54 2-23 

ß,A •5560 •3148 •1684 •0863 •0428 •0207 -0098 •0045 •0021 •C009 

D2 % 15-28 26-40 37-95 48-71 58-20 66-26 73-05 78-60 8 3 1 1 86-73 

ßcLT •6522 •4289 •2731 •1690 •1022 •0606 -0354 •0204 •0116 •0065 

a = -01 

n 20 30 40 45 50 55 60 65 70 75 

ßl.FP •4052 •1998 •0897 •0586 •0377 •0239 -0150 •0093 •0057 •C034 

ßic* •4067 •2012 •0911 •0596 0-384 •0244 -0153 •0095 •0059 •0036 

D , % •35 •72 1 5 3 1-81 2-01 2-15 2 23 2-27 2-28 2-28 

/»M •2476 •0872 •0269 •0144 •0075 •0038 -0020 •00097 •00047 •00023 

z>?. % 3 9 1 1 56-37 70-01 75-43 79-99 83-80 86-95 í 39-53 91-64 ! )3-34 

ÃľLГ •4074 •2005 •0894 •0580 •0371 •0233 -0145 •0089 0 0 5 4 •COЗЗ 

Table 6. Gamma mod: ïl. 

« = -05 

/; 5 10 ,І5 20 25 30 35 40 45 50 

PLFP ' 5 1 9 1 '2623 -1239 -0552 0-238 -0099 -0041 -0017 -0007 -C003 

PIC* -5339 -2704 -1285 -0578 -0249 -0105 0043 -0018 -0007 -0003 

Dx % 2-78 3-00 3-54 4-46 5-15 5-49 5-54 5-44 5-40 5-40 

PLA -0187 -0001 7 . 1 0 ~ 7 5 . 1 0 ~ 8 _ _ _ _ _ _ 

D2 % 96-48 99-94 99-99 99-999 _ 

PCLr -5609 -2782 -1241 -0514 -0201 0076 -0027 -0010 -0003 -0001 

a = -03 

ßLFP •8701 •5818 •3528 •2018 •1085 •0556 •0274 

ßтc' •8715 •5950 •3661 •2111 •1146 •0593 •0295 

Z>, % •16 2-21 3-61 4-38 5-28 6-17 7-11 

ßj.A •0810 •0016 •00001 2 . 1 0 ~ 7 _ — — 
D7% 90-70 99-72 99-99 99-999 — — _ 
ßcLT •8632 •6117 •3797 •2132 •1107 •0540 •0250 

40 45 50 

•0131 -0061 -0028 

•0142 -0067 -0031 

7-61 7-97 8-48 

•0111 -0047 -0019 

tion of the level of contamination lead to not significant changes of the error pro­
babilities. On the other hand a heavy underestimation of this level may cause very 
unpleasant deviations of the size and the power of the test. 

(Received December 2, 1982.) 
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Table 7. Normal model. 

a = -095 

« 0 •050 •045 -040 •035 •030 •025 •020 •015 •010 •005 

ßғ. •097 •075 -057 •042 •030 •021 •014 •009 •005 •COЗ 

aR 
•095 •108 -122 •138 •156 •177 •202 •231 •266 •311 

ßя •097 •086 -076 •066 •058 •049 •042 •035 •029 •024 

a = -050 n = 30 

«o •050 •045 -040 •035 •030 •025 •020 •015 •010 •005 

ßғ •061 •043 -030 •019 •012 •007 •004 •002 •001 •COOЗ 

aR •050 •059 -070 •083 •100 •119 •143 •172 •209 •259 

ßя •061 •051 -043 •036 •029 •024 •019 •015 •011 •008 

a = -025 n = 40 

« 0 •050 •045 -040 •035 •030 •025 020 •015 0 1 0 •005 

/»ғ •042 •027 -017 •010 •006 •003 001 •0006 •0002 •00005 

a к •025 •030 -038 •049 •061 •077 •097 •124 •159 •209 

!*л •042 •034 -027 •022 •017 •013 •010 •C07 •005 •003 

Tаble 8. G а m m а m o d e l . 

a = -050 n = 20 

« 0 •050 •045 -040 •035 •030 •025 •020 •015 •010 •005 

ŕ- .055 •042 -029 •020 •013 •008 •004 •002 •001 •0003 
a R •050 •055 -063 •070 •079 090 •102 •117 •135 •151 

ßя •055 •050 -042 •037 •032 •028 •025 •022 •019 •018 

a = -050 n = 30 

so •050 •045 -040 •035 •030 •025 •020 •015 010 •005 

!?p 
•010 •006 -003 •001 •0009 •0004 •0001 •00C05 ю- = 1 0 " 5 

«R •050 •058 -067 •077 •089 •104 •121 •138 •162 •184 

!*K •010 •008 -006 •005 •004 •003 •003 •002 •002 •002 

a = -050 n = 40 

Ч •050 •045 •040 -035 030 •025 •020 •015 •010 •C05 

ßғ. •002 •0008 -0004 -0001 5 лo-0 ю-ь 
4 . 1 0 " 6 1 0 " 6 less thаn 1 0 - 6 

«R •050 •059 •070 -083 097 •114 •134 І157 .185 •216 

ßя •002 •001 •0009 -0007 0005 •0003 0 0 0 2 •0002 •C002 •0002 
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