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KYBERNETIKA — VOLUME 25 (1988), NUMBER 4

ESTIMATION OF CONTAMINATION LEVEL
IN MODEL OF CONTAMINACY
WITH GENERAL NEIGHBOURHOODS

JAN AMOS VISEK

/

Strongly consistent estimator of contamination level in the model of contaminacy combining
the Huber model and the model with total-variation-neighbourhoods is proposed. Order of con-
vergence is established, too. Numerical example is included.

1. INTRODUCTION

It is intuitively clear that any study aiming to produce a robust statistical pro-
cedure assumes more or less explicitly presence of a contamination of data. However
what is even more important is the fact that the user is forced at any practical ap-
plication of robust procedure to express, at least in a vague way, his or her idea
about the level of contamination (for some examples see Visek [3]). And at this
moment not having any estimator of contamination level one may “overestimate”
and obtain less efficient procedures than is an optimal one or to “underestimate”
it. Then the probabilistic characteristics of the procedure could be (and usually are)
rather different from the assumed ones. Let us give examples of the both cases.

Let us consider simple situation when testing, in the framework of i.i.d. model,
a simple hypothesis H,: P = P, against an alternative H,: P = P, under presence
of contaminacy, i.e. we test ‘

Houas = {Q3 QeM, ”Q - (1 - 30As) Py — 80AS[10f| < Jouss Ho GM}
against
Hyas = {Q geM, “Q - (1 - "31,45) Py - 571,4.?}{1” < Oyas5 Hy G/W}

where M is the set of 21l probability measures over an appropriate measurable space,
say (%, /), and egas 2 0, €145 20, Sous 2 0, S,45 2 0, 0 < gou5 + Fous < 1,
0 < g145 + 0,45 < 1. (Index ““AS” points out that the hypotheses were established
under our assumption about the level of contamination which we had expressed
by assigning values £o4s5 €145> G045 and J; 45 to contamination parameters.) Let us
assume in what follows that the sample sizc is fixed and denote by f(a) the second
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kind error probabilities of the most powerful test of the level o (x (0, 1)). Then
we have

Bus(@) = inf  sup (1 — Q®(C)),
Ce¥as(e) QeHias
where

4s(0) = {Ce 4™ sup Q™W(C) < o} .
QeHous
Under mild conditions (see Rieder [2]) there is a pair (Qo, Q;) € Hous X Hyys
such that for any a € (0, 1) thereisa C, € & such that Qo(C,) = « and 1 — Q,(C,) =
= B,s(a). Let us denote the class of these sets for all « € (0, 1) by &, i.e.

& = {C, e Cs(0): 0o(C,) = &, 1 — Q,(C,) = Bas(2), 2€(0, 1)} .

Now let us suppose that our assumption about the contamination level was wrong
and that the true level of contamination is given by the parameters ¢o4c = Boas + Tos
€14c = €145 + T1> Ooac = oas + &o and ;4 = dy45 + &;. Denoting for i =0
and 1 :
Hiac = {Q: ”Q - (1 - giAC) P, — SiAcHi” S Siacs HiEM}

(“AC” again emphasizes that this level is actual) and for any « € (0, 1)

&,={Ceé&: sup QW(C) < o},

QeHouc

we have for the actual second kind error probability of our tests (constructed for
the assumed values ¢;45 and §,45)

Bac(w) = inf sup (1 — Q®(C)).

Ceé. QeHi
But if we had known this actual level we would have constructed an optimal test
for it and we would have attained the second kind error probability
Bar(xy = inf  sup (1 — Q™(C))

Ce€ar(a) QeHiac
where again

% () = {Ce ™: sup Q™(C) £ o} .
QeHouc
Examples below offer possibility to create an idea about relations among these
three curves, namely B4s(2), B4c(®) and B.r(x) (as functions of z). Inall examples
the sample size was 40. The pairs of probability measures P, and P, and the values
of contamination level parameters for which the corresponding values of f's were
evaluated are described under every figure.

It seems the just presented examples hint that if we can estimate the contamination
level it might be a help for practical application of robust procedures. The rest of
this paper is a modest attempt to make a very first step in this area. In the second
section we give notation, in the third one a definition of contamination level is pro-
posed, the fourth section contains a characterization of this level and the last one
brings a (strongly) consistent estimator of it.
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Fig. 1. The assumed (——), the actual (— — —) and the attainable (— . .~) dependence
of the second kind error probabilities on the first kind errors for Py = A7(g, 1), Py = A(1, 1),
845 = 20,45 = 05 and §;4¢c = 20;4¢ = 03

Fig. 2. The assumed { ), the actual (— — —) and the attainable (— .— . — ) dependence
of the second kind error probabilities on the first kind errors for Py = A47(0, 1), Py = A4'(1, 1),
Eias — 25iAS == +03 and &= 261'AC = +05.

Fig. 3. The assumed, the actual and the attainable dependence of the second kind error prob-
abilities on the first kind errors for Py = A°(0, 1), Py = (1, 1), ;45 = 28; 4,5 = 05, &;4¢ =
= 26, 40 = '02.
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Fig. 4. The assumed, the actual and the attainable dependence of the second kind error prob-
abilities on the first kind errors for Py = A°(0,1), Py = A (1, 1), 8145 = 20,45 = 02, &;4c =
== 25I'AC = °05- :

Fig. 5. The assumed, the actual and the attainable dependence of the second kind error prob-
abilities on the first kind errors for P, equal to Weibull distribution with c= 1 and p= 3,
P, — Weibull with ¢ =2, p= 3, &;,5= 20;,5 = -05 and &;4c = 26; 40 = *03.

Fig. 6. The assumed, the actual and the attainable dependence of the second kind error prob-
abilities on the first kind errors for P, equal to Weibull distribution with ¢ = 1 and p = 3,
P, — Weibull with ¢ = 2, p= 3, g;,5= 2J,,5= 03 and ¢;4c = 20; 4c = "05.
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2. NOTATION

Let N be the set of all positive integers, R the real line, R* its positive part and
(3%” s sz) a measurable space. Let us denote by M the set of all probability measures
on (%, &), and for any o-finite measure g on (2, /) let 2, denote the set of all
probability measures on (%, &) which are absolutely continuous with respect to .
Then for any probability measure from 2, — denoted by a capital letter, say H —
denote by a small letter with index u — in our case h, — a version of its density
with respect to u.

In the rest of paper we shall consider a fixed pair Q and P from M and we
shall choose and fix a finite measure v such that Q and P are absolutely continuous
with respect to it. For the densities g, and p, we write only ¢ and p since it cannot
cause any confusions. It will be convenient to have also a notation for the following
sets: :

For any ¢ € [0, 1] put

S, ={xeZ:(1 — &) p(x) > q(x)}

and for any s such thatv € pand He 2,

Sa(hu) = {xe: (1-2e) p,,(x) +e hu(x) > q,,(x)} .

(The sets S,(h,) may differ according to the given versions of p,, g, and h,. As they
will be used as an integration region, it cannot cause any difficulty.)

In accordance with commonly used notation, for any 4 € & let us denote by A°
the complement of 4 with respect to % Finally, denote by |H — K [I the total varia-
tion of any pair of measures H, K € M.

4

3. DEFINITION OF CONTAMINATION LEVEL

To be able to give a meaningful definition of contamination level we have to
impose conditions on the function which will be used to reach a balance between
¢and d.

Definition 1. Let w(x, y): [0,1]* > R be a continuous mapping such that for any
xo € (0, 1] and y, € (0, 1] the following conditions are fulfilled.

(i) The function w(Ax,, (1 — 2) y,) is a convex function of A € [0, 1] and there is
a unique A, € (0, 1) such that

w(ZoXo, (1 = 4g) yo) = mm w(/xo, (1 = 2)y,).

\ (if) The function w{Axo, 2y,) is nondecreasmg in e [0, min {1/xo, 1/yo}]-

Then the mapping w(x, y) will be called the regular weight function.

To see that the next definition is not empty we shall need the following lemmas. )
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Lemma 1. For any H, K € 2, we have -
HH - K ” =-.f{xe&":k,,(x)<hu(x)} [hp(x) - ku(x)] du .
The proof is transparent and will be omitted. '

Lemma 2. For any 36[0, 1] and p suc;h that P € pand Q < pthereisa pl‘obability
measure H® € #, such that '

Be(x) < e {qux) — (1 — &) p(x)} for xe{q,(x) = (1 - &) p(x)}
and
K(x) = 0 elsewhere .
Proof. Since

5(qué(l—s)pu} {qu(x) - (1 - 8) p,,(x)} dy =
=& + flguca-opg {1 = &) 2¥) = u(x)} du

1/8 .[(qué(l—e)pu){qu(x) - (1 - 8) pu(x)} du z 1 )
and the existence of H* follows. ' o [

we have

Lemma 3. We have for any ¢ € [0, 1] _
i (1= 2) P+ et — 0] = [, (1~ &) 3) - a()} v,

where the inf is taken over H e M.

Proof. Fix some HeM and put u = v + H. Then v < pu and hence there is
a Radon-Nikodym density d(x) of v with respect to u. Theu for appropriate version
of densities we may write

p(x) = d(x) . p(x) and g,(x) = d(x). q(x)
having p,(x) positive iff p(x) is positive.
Then for any ¢ e [0, 1] and x, € S, we have

(1 ) pu(xo) > qu(XO)
and finally

(L =€) pu(x0) + & h(x0) > g,(x0) ,
ie. S, = S,(h,). According to Lemma 1 we may write :
(6= &) P+ o = 0] = fau (1 = &) ps) + ¢ ) — g,()} du 2
2 s, {(1 = ) pux) = 4u(%)} dpp = Js, {(1 — &) p(x) — g(x)} dv.
Due to Lemma 2 we may find H® € £, such that hi(x) = 0 for x € S,. Then we have
Jﬁsg{(l — ) P(“) - ‘1(‘)} dv = jss {(1 - 8) p(x) + & hsv(x) - q(x)} dy =
= [soe,, (1 =&} p(x) + e I(x) ~ g(x)} dv = (1 —e)P +eH — Q).
(Last but one equality holds due to S, < Ss(h*;).‘) So we obtain also .
st = o) pl) = g} dv iz il (1 =) P+ o - 0] o
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Lemma 4. For any ¢ [0, 1] denote by &(e) the integral

Js. {(t = &) p(x) — q(x)} dv
and put D = {(¢, 5(¢)), ¢ € [0, 1]}. Then D is closed and hence the min w(e, 8), where
min is taken over (¢, ) € D, exists. (&:9)
Proof. Let us have any sequence {e,, 6,};>; = D which converges to a point
(20> 8o). It implies that
lime, = ¢ and lim§, = §,.

n—*w n—roo

Since on the other hand
—q(x) £ {(1 - &) p(x) — q(x)} . Is(x) £ p(x) forall 0<e<1,
the Lebesgue convergence theorem gives
lim [, {(1 — ) p(x) — q()} dv = fs, {(1 = 50) p(x) — 4(x)} dv,
i.e. "
8o = fs., {(1 — 20) p(x) = a(x)} dv = 5(e0)

and it says that (&,, 3,) € D. . O

Definition 2. For Q, Pe M and a regular weight function w a pair (¢, §) € [0, 1]*
such that

(1) (¢, 8) = arg min w(x, y) .
over the set
(2 {igf [(1 —&)P +eH — Q| =6; (5,0) [0, 1]},

the inf is over all H e M, will be called the contamination level of Q with respect
to P and denoted by (&g p, d5, p)-

Remark 1. Let us note that the definition of contamination level was inspired
by the model of contaminacy with general neighbourhoods (which includes as
a special case Huber’s model of contaminacy) but the sense of €} » is a little different
from the parameter of Huber’s model of contaminacy. For more details see Visek
[3]. Moreover, it is clear that generally we may have a whole set of pairs satisfying
Definition 2. Nevertheless it is clear that we are able to characterize (&} p, 5 p)
in a more convenient way which enables us to show uniqueness of contamination
level. We shall do it in the next section. Let us remind that due to Lemma 3 we have
8y » = (eg p) and the set over which the minimum is taken is the set D of Lemma 4.

4. CHARACTERIZATION AND UNIQUENESS OF CONTAMINATION
LEVEL

Since in the rest of paper we shall assume the weight function to be fixed we shall
omit the index w in &5 , and dy p. Although Q and P were already fixed we shall write
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gg,p and 6, p with indexes because ¢ and 6 will be used also for another purposes.
It is clear from Lemma 3 and 4 that the following characterization theorem is true.

Theorem 1. A pair (£*, 6*) is equal to (gg p, 6 p) iff

(3) (g*, 6*%) = arg min w(x, y)
and

© 6* =[5 {(1 — &*) p(x) — q(x)} dv.

Remark 2. Since the definition of &5 p, Jg p does not depend on the measure v
with respect to which densities p and g are taken, the values of ¢* and 6* also do not
depend on the chosen version p and ¢. A formal way showing this directly may be
based on the idea used in the proof of Lemma 3.

Remark 3. Notice that the existence of (&g p, 6g,p) Was proved in Lemmas 2, 3
and 4.

Lemma 5. For any ¢ € [0, 1] the function §(¢) (see Lemma 4) has a continuous
derivative .

5) 5@) = — s, pdv

.

(i.e. this derivative exists and is equal to the right-hand side of (5) — at the end
points of the interval [0, 1] the derivative is meant from one side). Moreover,
&'(¢) is nondecreasing in ¢ and hence d(¢) is convex.

Proof. Let & > ¢, ¢€[0,1),¢' €(0,1]. Then 1 — ¢ < 1 — ¢ and hence for any
xe€ S, we have x € S,, i.e. S,. = S,. Therefore

Jou [(1 =€) p = qldv — [, [(1 ~ &) p — a] dv =
= —( —¢ s, pdv = 55, [(1 —&)p—g]dv = —(¢ — &) fs. pdv
and finally

lim sup ———
!
e'-es &

3(e) — 6(5) < — fs.pdv.

On the other hand
- (8' - 8) fsz' pdv — jsps,y {(1 - S)P - Q} dv 2

2 ~(e —¢fs, pdv = fs-s, {1 —e)p— (1 = &)pydv=—(~¢) fs, pdv
and hence ‘

lim inf é(i)’——ﬁ > — fs, pdv.
&' ey & — &
Similarly
i 5(8)'—5(8)=~5S5pdv.
e'me- & — ¢

Continuity of the derivative follows from regularity of the probability measure.
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Monotonicity of the derivative is implied by monotonicity of the sets S, which was
shown above. O

Theorem 2. The pair (g, p, 6o,p) is given uniquely.

Proof. Let us assume that P & Q-and that there are two pairs satisfying (1) and
(2), say (e, 8;) and (e,, 8,). Without any restriction on generality let us assume
&, < &, — due to Theorem 1 we know that it is not possible to have simultaneously
e, = ¢, and 8, + J,. Similarly for ¢, # ¢, we have, under assumptlon P Q,
8(¢;) =+ 8(z,). But then we have

d;=08(s), i=12
and
w(er, 81) = w(es, 85) .

Due to Lemma 5 we know that the limits of 6(¢) for ¢ tending to zero from right

and to one from left exist and surely

(6) | lim 5(s) < 1 and lim o(e) = 0.
£=0 4 ~1_

Together with convexity of 8(¢) it implies that there are x, € (0, 1] and y, €(0, 1]

such that the line going through the points (0, y,) and (x,, 0) contains also the points

(¢4, 84) and (&5, 5,). Applying requirement (i) of Definition 1 we may find a point

(&3, 85) of this line such that

w(es, 63) < w(Axo, (1 — 4) yo) forall 1e(0,1)
with exception of A = g;/x,. It is easy to see that
g, <e&3<g and 6, < ;3 <y,

i.e. the point (g3, 3) is an inner point of the abscissa with the end points (g, 6,)
and (g5, 9,) since the opposite would distort convexity assumption in (i) of Definition
1. Now let us find an intersection of the line going through the origin and the
point (3, 85) with the curve {(z, 8(c):e€[0, 1]} and denote it (g4, 04). Then we
have — see (ii) of Definition 1 —

(7 w(eqs 8(es)) = wles, 04) < wles, 83) < wley, 81) = w(ey, 35)

But at the start of the proof we have assumed that w(e;, 6,) and w(e,, 9,) represent
minimum of the function w(e, 5(¢)) which contradicts with (7).
To finish the proof let us assume that P = Q. Then we have for any ¢ < [0, 1]

inf (1 — &) P+ eH — Q| = (1 —&) P +¢P — Q] =0,
H
where the inf is taken over H € M.

But taking into account Definition 1 a straightforward implication yields the fact
that the function w(e, 0) is strictly increasing in ¢ and hence

“arg min w(s, 0) = (0, 0). | O
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5. ESTIMATION OF CONTAMINATION LEVEL

The characterizing theorem for contamination level parameters gives us a hint
for estimation of them. Since p is known (it is chosen by a statistician as a model
by which he or she would like to explain data allowing an ““inaccuracy”, in the form
of contamination) it seems that if we estimate g (g is unknown “true” density which
generated data) by a density estimator § we may use (3) and (4) (in (4) we substitute
g for g) to establish a pair (&, p, 8¢5) Which we hope may serve as an estimator
of (eg,p 8¢,p). Hence we need to introduce some additional notation necessary for
density estimation. Let us restrict ourselves in the rest of paper on & = R and
o = B (c-algebra of Borel sets).

Let {X,(®)}., be a sequence of random variables (r.v.’s) (defined on a prob-
* ability space (Q, €, Pr), X,: @ — R) which are independent and identically distributed
according to a distribution function §J which corresponds to the above fixed prob-
ability measure Q with ¢ vanishing outside an interval (c, d) (c and d may be in-
finite). Further, let ¥ = {y,(x, y)}:%, be a sequence of functions defined on an
interval (a, »)? with —c0 £ a=<c<d=<b < . (We may define y,(x,y) =0
outside (a, b)*> — hence let us assume that (a, b) = R.) Put

V, = sup sup ¥,(x, ) .

xeR yeR

Finally, let us denote for any y € R and w € Q by Q,(y, ») the empirical distribution
function corresponding to the first n r.v.’s X (), X (), ..., X,(w), i.e.

Qu(y, ®) = 1/n k;I (Xi(@)S3) >

where I, is the indicator of a set A. Then by a density estimator 4, of the density ¢
we shall understand

6 250) = () 400.0) = n Y X))
(see [1]). Moreover for any P* € 2, let us denote by
() = sup [Epady(x, @) = p*(3)]
As the next assertions will refer to Q® (or P™) we shall write §,(x, x) instead of

4u(x, ) where x = {X,(®), X,(®), ...}. In what follows we shall need a result
obtained by Csdrgsd and Revesz:

Theorem 3 ([1], Theorem 6.21). Let 4,(x, X) be the estimator of density g and
for any x e R : :

lim |y (x, )| {Q0) - log (~log Q()}*** = 0

and

)lfg Wa(x, »)] {(1 — Q(¥)) log (—log (1 — Q(»)}/? = 0.
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Moreover let ‘ '
V. = o(n'/*(log log n)~1/2)

and ,
mo(n) = o(1). .
Then
©) lim sup [4,(x, X) — a(x)| = 0 as. Q.

n—>ow xeR

Definition 3. We shall say that {p,.(X)},‘:‘L1 is a monotone quantile sequence of
order r if:

(10) sup |pa(*) = P(x)| = o(n™")
and for any n € N and x € R either ' '

0 < pf¥) = Pava(¥) < p(x)
or
P(x) £ pas1(x) < pu(x) together with [p,(x)dv < .

Theorem 2'. Let {p,(x)};=, be a monotone quantile sequence of order O. Define
for any n e N and x € R® &, »(n, x) and 4 »(n, x) as a solution of

(¢, 8) = arg min w(x, y)
and
8 = [s.mm{(1 = &) Palx) — Gulx, %)} dv
where S,(n,x) = {x e R: (1 — &) p,(x) > 4,(x,x)}. Then the pair (& »(n, x),
5o,5(n, X)) is given uniquely. :
The proof of the theorem may be carried out along the same lines as of Theorem 2
with the help of lemma:

Lemma 5’. Under assumption of Theorem 2’ fix some ¢ € [0, 1], ne N and x e R®
and put

(11) 3(e, 1, X) = [, (1 = &) Pu(x) = Qul(x, )} dv.
Then (e, n, x) has a continuous derivative (with respect to ¢)
(12) 8 (e, m, %) = — [s.nx PulX)dv

(this again means that the derivative exists and is equal to the right-hand side of
(12) — at the end points the derivative is understood from one side). Moreover
&'(e, n, x) is nondecreasing and hence (e, n, x) is (for fixed ne N and xeR®)
a convex function of ¢ € [0, 1].

Proof. Let us look at the proof of Lemma 5. What is important in this proof
is the monotonicity of S, in ¢ and integrability of p and g. Since p,(x) is integrable
by Definition 3 as well as 4, (for any fixed xeR® and ne N) and S,(n, x)is also monotone
in ¢ (again for fixed n € N and x € R®) the proof is analogous to the proof of Lemma 5.
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kATheorem 4. Under the assumption of Theorem 2’ and Theorem 3 the pair (&, »(n, x)
" 8o.4(n, X)) is a (strongly) consistent (with respect to Q) estimator of (eg.p, 5o p)
Proof. One may verify that for (e, n, x) introduced in (11) we have

Sy |6(e, n, %) — 8(e)| = ~ |
e = |fs.mm0 {(1 = &) Pu(x) = 2(x, )} dv = [5,{(1 - &) p(x) ~ ‘1(0} dvf <

< simmns. [(1 = &) (Bu(x) = p(x)) + a(x) — 4u(x, x)| dv +

+ fs.mmnse {(1 = &) Pu(x) = @u(x, ¥)} dv +

+ fsemans. {1 — &) p(x) — a(x)} dv.
Now let B € R® be a set such that

0*(B) =0

and for any x € B the relation (9) is fulfilled. Let x, € B and x e S,(n, xo)m S¢ (for
some fixed ¢ € [0, 1] and n e N). Then we have

q(x) — (1 — &) p(x) 2 0,
hence

0= (1~ &) pulx) = dulx %0) = (1 = &) (Bu(x) — p(x)) + alx) — 2u(x, %)
- and finally

0 é .[Se(n,xo)nSs‘ {(1 - 8) pn(x) - q't(x’ xo)} dv =< )
< Jsunmonse {1 = 2) (2a(x) — p(x)) + q(x) = 4(x, x0)} dv .

Similar inequality can be obtained for the last integral in (13) and since ¢ and n
was arbitrary it implies that

(14) |8(e, n, xo) — 8(e)| <
< (1 = &) (pu(x) = p(x)) + a(x) — 2, X0)| dv <
= {sup |p(x) ~ p(x)| + sup [4u(x x5) — a(3)}} v(R).
i.e. we have
(15) ‘ (e, n, %¢) — 8(e)

and due to the fact that the upper bound in (14) does not depend on &, the convergence
is uniform in e e [0, 1] (for any fixed X, € B). Let us assume that {(&,(n, X,)

80.p(1n,%0)} = | does not converge to (£g,p, g,p). Then there is a subsequence {m,}2>
of N such that

o.p(M Xo) > e* £ egp as k- oo
and due to uniform convergence in (15) also

SQ p(nk, Xo) = 5(§Q P(nk, XO) Ny, xo) d 5(8*) + (SQ p 4as k— .

The fact that 5(e*) = &, p» follows from convexity of 6(3) and from (6). From Theorem
2 we have for some 7 > 0 :

(16) ) 0 <1< —w(eg,p> dg,p) + w(e*, 6(8*)) .
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Making use of the uniform continuity of w(x, y) on [0, 1]*> we may find koe N
such that for any ke N, k > k, we have

(17) . ‘ IW(‘G'Q,P(nka xo)» SQ,P(nk, xo)) - W(a*, 5(8*))] < ‘C/2
and.
(18) ' [w(2g,p» 90,p) — W(eg.p, 3(20,p» s Xo))| < 7[2.

But from (16), (17) and (18) it follows for any k > k,

w(8g,p(1> Xo), 8o, p(i> X0)) > w(eg,ps 8(2g,p» 1, %))

which contradicts with definition of (85 p(1, Xo), 30,5(1, X,)). So we have 2y p(n, X,) —
— gg,p and 8 p(1, Xo) = g p as n — o0, but it is nothing else then

(20.p» 90,p) = (¢0,p, Og,p) a5 Q7
since x, € B was arbitrary. , ' 0

For a heavy tailed contamination we may offer an idea about the order of consis-
tency of the contamination level estimator. In what follows we would like to assume
that the support of g is a subset of the support of p. From the practical point of
view it seems to be a natural demand because the opposite would imply that we try
to explain data by a density which — at least asymptotically — does not cover
the range of them. .

Since on the other hand ¢ = (1 — &) p + &h, the support of g cannot be a proper

subset of support of p. So we assume that we guess the “explaining”™ density p just
to ““cover” all (possible) data.

Definition 4. We shall say that Q is a heavy-tailed with respect to P if we have
for the corresponding densities:

lim q—(ic)=w and lim @=co,

x-es p(X) x~d- p(x

~ (i.e. the limits exist and have the required values. For the meaning of ¢ and d see
the beginning of Section 5.)

Further we shall restrict, ourselves to kernel estimators of density, i.e. we shall
assume that y,(x, v) = b, '2((x — y) h; ') for some density 1 and a real sequence
{h,} which properties will be given in the next theorem. We shall need the following
theorem of Csorgd and Révész:

Theorem 5 ([1], Theorem 6.2.5). Suppose that

(i) ¢ is vanishing outside the interval [0, 1],
(ii) g is twice differentiable over (0, 1) and |¢"| £ C < oo,
(iii) g is strictly positive on (0, 1), say ¢ = « > 0,
S (v) Ax) = C,
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(v) I(—x) = Mx),
(vi) limx*2(x) =0,

(vii) A is twice differentiable on an interval —o0 £ —a < +a £ ©,
(viii) h, ~ 0, nh, # o,

~and
. . 4 5
) . B,
nh, log h;! log ht

Then for any 4 > 0 we have
1/2
(19) fim | — " sup
: n-r o0 2/12 IOg h;l A<x<1-4

where A% = [ 7*(x) dx.

q"(x’ X) _ q(x'; =1 as. Q%

q¢'*(x) |

-

To be able to apply the recalled theorem we have to consider ¢ = 0 and d = 1
which may seem at the first glance a little restricting. Due to assumption that the sup-
port of ¢ is not larger than the support of p the remedy in many cases may be a
transformation of data by means of

z = Fp(x)
where Fp is the distribution function corresponding to the probability measure P
(through the identity-random variable).

Notice that due to the form of Definition 2 the values of ¢y p and J, , do not

depend on a transformation of random variable.

Theorem 6. Let the assumptions of Theorem 3 and Assumptions (i)—(vii) of
Theorem 5 be fulfilled. Put h, = h . n"*/2 for some h > 0. Moreover let Q be heavy-
tailed with respect to P and for some 7 > 0, {p,}., be a monotone quantile sequence
of order —(4 — 7). Having defined for any x, € (0, 1] and y, € (0, 1] the function
of 7 by ‘ :

W-\‘u,yo(l) = W(Axo, (1 - )L) yO)
let us assume that for the i, — the point of the unique minimum of W, (1) (see
Definition 1) — we have

(20) ] sup on,yo('?'l) - on,yo()"l) > K
) 0<A1<12<4o )“2 — }.1
and
(21} inf wxo,yo(i?.) - on,yo('ll) > K
’ lo<Ar<iz<l1 Ay — A4

for some K > 0. Then for any 7 > 0
26, — €0,p| + 180,60 — 8g,p| = 0(n™279) as. Q™.

Proof. Let B < [0,1]® be a set such that Q*(B°) = 0 and for any x e B the
relation (9) and (19) are fulfilled. Let x, € B. We shall prove that there is a 4 € (0, 1)
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and ny e N such that for any ¢€[0,1] and ne N, n = n,
S, U Sy(n, xo) = (4,1 — 4).
Taking into account that Q is heavy-tailed with respect to P we may for any K| > 1
find a 4 such that for any x € [0, 4] U [1 — 4, 1] we have
g(_x) > K.
p(x)
Denote for any 0 < < « (see assumption (iii) of Theorem 5) by

A4, = {xe[0,4] U1 — 4,1]: p(x) < B}
and

A, ={xe[0,4]u [l — 4,1]: p(x) = B} .
Then for any x € A, it holds
q9(x) = p(x) > = B

and for any x € 4, analogously

q(x) — p(x) > (K, — 1) p(x) > (K, — 1) . B.
Hence there is a y > 0 such that for any xe [0, 4] U [1 - 4, 1]

4 -y > p).
It implies that S, < (4, 1 — 4). Let us find n, € N such that for any ne N, n > n,
sup |2.(x, %0) — g(x)| < y/2 and sup [p(x) = p(x)] <v/2.
1 xe[0,1] .

xe[0,1

But then for any xe [0, 4] v [1 — 4,1] and n > n,

3%, Xo) > pu(x)
i.e. S,(n, o) = (4,1 — 4), too. Now we may proceed step by step as in the proof
of Theorem 4. We obtain
(14) |3(e, n, %) — 8(¢)| <

={ sw [l = p)[+_ sup (2 x,) = a(x)f} v(R).

i.e. we have
(e, n, x,) — 8(e) = o(n=11/27")

uniformly in ¢ & [0, 1] (due to the fact that (14') does not depend on &). Making use
of (20) and (21) one may finish the proof in a similar way as the proof of the Theorem
4 was finished. ]

Remark 4. The assumption of Theorem 6 may be considered to be rather restrictive,
especially the assumption about the support of g not being out of interval [0, 1].
On the other hand since the values of &y p, 59, and & » and 5, do not depend
on transformation of densities all of assumption of this kind are only of technical
ones. Really, one may assume that data were transformed by an appropriate trans-
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formation then the values of &, » and SQ,P were evaluated having desired (and above
proved) properties and since not depending on this transformation the value of
£o,p and 3Q,p are the same for the original data and hence have also the desired
properties if calculated directly from the original data.

6. NUMERICAL EXAMPLE

The main result of the paper — consistency of the contamination level estimator —
is an asymptotic one and hence to reach a practical applicability needs to perform
some numerical study. Such a study should show how to choose “‘free” parameters,
namely the monotone quantile sequence, the type of density estimator etc. Here
we restrict ourselves only on presenting a few basic results to offer the reader a pos-
sibility to create an idea how the estimator really works. But we are aware that the
issue needs deeper, more complex study which should recognize valuability (or
invaluability) of contamination level estimation.

For the just described study the kernel estimator was assumed in the form

8alx, X) = i \/2@ Z p{ . ;ll;i)z}‘

Throughout the whole study successively the samples containing always 40 standard
normal number were generated (i.e. n was fixed being equal to 40). Any time the
normality was checked by means of the y2-test and the Kolmogorov-Smirnov test
(75% — quantile for yz*-test and 80% — quantile for the Kolmogorov-Smirnov-test
were used) together with 80%, confidence intervals for the mean and variance. The
study was divided into three parts. At the first one the “optimal” width %, of window
was found. Since the contamination level estimator is based on the integration of the
function (1 — €) p, — 4, over the region of its positivity, as an “optimal” width
of window was assumed such for which the integral

J {(£(x)=2(x,x)> 0} [f (x) - @n()% x)] dx

(where f(x) is the standard normal density and x is the sample) was minimal. 50
samples were generated and at cach of them the optimal value of h, — the
value minimizing the above given integral — was found. The mean of these 50
values (equal to 2:13203) was used as the width of window in the next two steps
of the study. The quantile p,, we have considered in the form const . f(x) and the -
goal of the second step was to find the “‘optimal” value of const. The framework was
as follows. Again 50 samples was generated (and checked for normality) and con-
taminated in such a way that the 8 observations were multiplied by 3, i.e. we obtained
50 samples from the mixture

80% A7(0, 1) + 20% .47(0, 9)

(and consequently Q = 0-8P, -+ 0-2P, where P, and P, were probability measures
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Table 1.

Chi square Kolmf)gorov- Estimated value
Case . statistic Smx.m'ov of epsilon
number Mean Variance before after statistic before after
contamination before . af'ter contamination
contamination
1 —0-0331 0-7414 72 32 0-082 0-100 0-006401 0-038343
2 — 00660 1-1192 4-4 7-2 0-061 0-091 0-009111 0-046755
3 —0-1362 1-2904 48 8:8 0-139 0-147 0:047990 0-107097
4 0-1428 1-:0749 1-6 52 0-127 0-127 0-026614 0-103544
5 —0-0360 0-9666 2-8 2-8 0098 0-098 0-010155 0-040947
6 —0-1152 1:2560 56 9-2 0-163  0-163 0-069016 0-146373
7 —0:0398  0-9751 32 6-8 0-069 0-137 0-007071 0-078992
8 —0:1595 09724 68 10-8 0-126 0-151 0:003917 0-059766
9 0-1028  0-7861 4-0 32 0-132 0132 0-027846 0-098341
10 —0-0367 0-7595 76 7-2 0127 0-102 0-045531 0:G61999
11 —0-0037 1-2730 84 12:0 0-111  G-161 0-069100 0-138265
12 — 00961 0-9411 32 2:4 0-137 0-115 0-031319 0-040475
13 —0-1288  0-9126 52 56 0-160 0135 0-048938 0-087377
14 —0-1087 0-7321 60 52 0-116 0©0-116 0-000753 0-038268
15 —0-0788 0-9888 88 64 0-160 0-136 0:008767 0-060098
16 0-1470 1-1524 4-4 6'8 0-083 0-G95 0-:025742 0-071244
17 0-0761 0:8924 36 40 0-076 0076 0-028803 0:071697
18 0-1063 0-8080 64 4:4 0-139  0-139 0054623 0-057666
19 —0-1197 0-8096 68 68 0-154 0-119 0-058225 0-068387
20 —0:0009 1-0582 1-2 56 0-060 0-093 0-0200672 C-081335
21 01418 0-6744 64 4:0 0-076  0-101 0005468 0-036011
22 0:0736 0-8241 64 11-2 0696  0-127 0:016448 0-0587%¢6
23 —0-0099 1-0590 68 4-4 0062 0-G80 0:019964 0-068383
24 0-0016 1-0966 84 10-0 06-094 0-075 0-018142 0-033666
25 —0-1433 1-2489 4-4 12-0 0-092 0-155 0-006300 0-050949
26 —0-0658 08350 60 40 0132  0-094 0:042856 0-055881
27 0-1906 0-9023 2:0 68 0-101  0-115 0-017113 0-037184
28 —0-1664 0-8284 68 9:6 0-145 0-198 0-031210 0-070357
29 —0-0278 1-1520 36 12-8 0-131 0-134 0-057530 0-157378
30 —0-0458 1-2811 64 156 0-128 0-175 0-C85353 0-144683
31 —O>027/7 0-7941 72 2:8 0-126 0126 0:049226 0-062877
32 —0-1347 1-2078 4:8 4-0 0-120 0-131 0-021253 0-0357356
33 0-0980 0-9867 6-0 64 0-125  (-125 0-036545 0-102033
34 0-1535 1-2594 6-8 12-8 0-146  §-2C0 0-117609 0-168553
35 —0-0347 1-06985 36 4-4 0159  0-159 0665334 G-077020
36 0-0682 1-1276 4-4 8-8 0-678  (-128 0-008612 0-066701
37 0-0153 0-7903 16 0-8 0-Co} 0-657 0-000300 G-C09714
38 —0-0039 0-9284 1-6 1-6 0-0658  0-105 0-001538 0-0729453
39 0-0298 0-8049 88 88 0-104 0-081 0-606765 0-034:C0
40 — 01851 1-0918 4-8 10-4 0-157 0-207 0-055808 0-1118¢6
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(Tab. 1 contin.)

Chi square Kolm9gorov- Estimated value
Case . statistic Sm{rnf)V of epsilon '

number Mean Variance beforec after statistic before after

contamination before‘ af.ter contamination

contamination

41 0-0553 1-0466 2-8 6°4 0-070 0-098 0-022936 0-083156
42 —0-0620  0-7245 - 48 32 0-120 0070 0:024150 0-016618
43 —0-1806 1-0460 3-2 4-8 0-102 0-143 0-605437 0-046194
44 0-0430 1-1590 36 6:0 0-086 0-105 0-035179 0-076975
45 —0-0408  1-1078 36 4-8 0-100 0-125 0-047953 0-089803
46 0-0622  1-0244 32 60 0:081 0106 0-029828 0-095459
47 —0:2003  0-9477 64 84 0-152 0-196 0-041174 0-111036
48 —0-0745 1-2449 4-4 68 0-116 0-141 0-064426 0-084307
49 0-0134  0-7373 3-6 1-6 0-063 0-092 0:003920 0-022636
50 0-0379  0-7970 2-0 12 0:065 0-067 0:000247 0-033998

generated by the distributions 4°(0, 1) and A4°(0, 9), respectively). Finally P = P, and
w(x, y) = max [1000x — 1998y, 1000y — 499x]

were selected. It implies that the theoretical values of ¢, , and Jy » are equal to
0-0723 and 0-03615, respectively (see Definition 2). And now the values of const.
was selected so that the mean values of &y p and 8, p over the above mentioned 50
contaminated samples were approximately equal to the theoretical values ¢, p and
dg,p» TESpECtively.

The corresponding value of const was 0-870.(The results produced for this value -

of const are presented in Table 1 which is included mainly for the further purposes.
In this table only &, » was presented because the precision of evaluation of 4 pis such
that we obtain always 8y p = 389 p.)
This value 0-870 was used in the third, the last step of study. At this step for a few
contamination levels the sets of 50 samples, contaminated in a corresponding way,
(each again containing 40 “‘observations”) were generated. In the following table
the means over the above mentioned sets (for given values of contamination level)
are presented (denoting them mean &, , and mean SQ.,,, respectively). At its first
column the percentage of contaminated units is given. It means that e.g. for the
value 0-15 the samples from 85% A47(0, 1) + 15% A7(0,9) were generated (again
50 of such samples) by means of multiplying by 3 six units in every “pure” sample
from ./V(O, 1). The number of “‘contaminated” units, in this case six units, is given
in the second column of Table 2.

For this mixture (85% A7(0,1) + 15% A7(0,9)) the theoretical values of & p
and Jy p are 0:05422 and 0-02711. Since the function w is strictly convex we obtain
for any mixture 8, p = + ¢, p. The same is true for estimated values &, , and SQ,P
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Table 2.

Number

Percentage of ““contaminated” . Mean value Mean value
of contamination units o.p of g p of 2p p
15% 6 0-05422 0:05994 0-0306
17-5% 7 0-06326 0-06445 0-0239
20% 8 0-07230 0-07264 - 0-0303
22:5% 9 0-08129 0-078055 0-0306
25% 10 0-09033 0-077936 ~ 0-0265

for all samples, i.e. & p = 23Q,p. That is why in the following tables only values
go,p and &y p — in fact mean value of &, » over mentioned 50 samples — are presented
(the former in the third, the latter in the fourth column). To offer the idea how
the estimator works for noncontaminated samples at the last column the means
over 50 noncontaminated samples are given.

As it follows from Table 1 in many cases values of y? and Kolmogorov-Smirnov
statistics for contaminated samples were still under selected quantiles (9-037 for
x* and 01655 for Kolmogorov-Smirnov tests — the opposite is true only for 12
samples from 50). But looking on this situation from practical point of view we
must admit that the suspicion that sample is contaminated would usually arise when .
the sample is rejected being normal at least by one of the above mentioned tests.
Naturally, to describe the behaviour of an estimator of contamination level for this
framework (i.e. when we restrict ourselves on that part of sampling space at which
%* or the Kolmogorov-Smirnov statistics exceed some given level) would be much
more difficult than in the nonrestricted case. Table 3 offers results of numerical

Table 3.
Percentage of (;C(l:::::l]:ie;a ted” . Mean value Mean value
of contamination units Q.p of &g p of &p p
15% / 6 0-08091 0-08701 0-03184
17-5% 7 0-09439 0-97928 0-03489
20%; 8 0-10788 0:107403 0-03266
22-5% 9 0-12136 0-11289 0-02081
25% : 10 0-13485 0-119484 0-02582

study for such case (from the technical reasons the ¢ of contaminating A4°(O, ¢2)
distribution was chosen to be 9). The value of const chosen for this case was 0-865.

Two conclusions follow from this table (together with Table 1): At first the mean
values of &, p are not considerably better estimation of ¢, p then in the nonrestricted
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case. Secondly, estimation of zero-contamination level is biased but stable. It may lead
to two conjectures. Firstly, it is probably worthless to built up the theory for re-
stricted case. Secondly, may be that it would be possible to propose an adaptive
estimator (with const adapting to the “true” contamination level) which would

estimate better the contamination level.
i (Received February 16, 1988.)
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