
Kybernetika

Evžen Kindler
Simple use of pattern recognition in experiment analysis

Kybernetika, Vol. 5 (1969), No. 3, (201)--211

Persistent URL: http://dml.cz/dmlcz/125846

Terms of use:
© Institute of Information Theory and Automation AS CR, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125846
http://project.dml.cz

KYBERNETIKA ClSLO 3, ROČNÍK 5/1969

Simple Use of Pattern Recognition
in Experiment Analysis

EVZEN KlNDLER

A method is presented for automatic approximation of experimental data by a sum of expo
nential functions. The description of the corresponding program is given in SIMULA 67. The
program has been implemented in the Biophysical Institute for the computer ODRA 1013
(programmed in a symbolic language).

1. INTRODUCTION

In the investigation of the kinetics of substance in living systems one needs often
to characterize the structure of ways through which the substance is transported.
The abstract systems reflecting the important properties of the transport of the
substance are the compartmental systems (see [1], [2]). In the initial steps of the
investigation the corresponding compartmental systems are supposed to be constant.
The behaviour of such systems can be described by functions / of the form

W f(t) = IUe'<<<
•=i

where t is the system time, a ; and fc; are real constants and m is the number of com
partments.

The methodology can be arranged so that all a, are positive, their sum is equal
to 1 and all kt are negative. Thus the mathematical aspect of the whole investigating
process can be described by the following phases:

1.1. Experimental data are given in the form of a sequence A = {<aj, ?,•>}"=1

of pairs, where 0 = tt < t2 < ... < t„, all a} are positive and ax = 1.

1.2. A corresponding sequence B = {<af, /<,•>}"'= i of pairs is found so that

£gfik<«~aj, j = l,2,...,n.
'=1

Neither the real numbers gh kt nor the integer m are generally known a priori.

1.3. The properties of B are interpreted in the theory of compartmental systems.
Namely, the investigated system is approximated by a constant compartmental
system C composed of m compartments.

1.4. Special relations between the sequences A and B are investigated and the
original system C is modified into a more realistic approximation D. This phase can
be done by simulation. It can be completely based on the mental implement of com
partmental systems, since there exist suitable simulation programming systems
(COSMO - see [3] and MINICOSMO).

The present paper concerns the automatization of the phase 1.2. In order to get
a suitable sequence B in case we do not know even the number m we could design
various processes joined e.g. with the harmonical analysis or with Monte-Carlo
Methods but they are relatively long as they consider a lot of general properties
of the exponential functions which need not have any influence relating to all the
four phases of the investigating process. The presented method has been programmed
for a small automatic computer ODRA 1013 (see [4], [5]): the determination of
a sequence B takes about n minutes where n is the length of the source sequence A.
Suitable modifications of the computations are possible from outside: according
to states of control buttons the computer can display the intermediate results and
other information of its work and/or change its steps.

2. APPLIED METHOD

The applied method has a great use of the fact that the sequence B has to be
a suitable approximation of the experimentally investigated reality. Thus the fol
lowing consequences of the known properties of the exponential functions can be
applied:

2.1. The sequence B can be ordered so that kt g fc;+1.

2.2. If |/c, - ki+1\ is rather small the term gte
ktt + gi+1z

kl+lt can be approximated
by (flj + gi+i)eklt- Inversely, the last term implies a more simple approximation
than the original two ones. Thus we can assume that in the sequence B all kt are
well distinguishable.

m - l

2.3. Then there exists a real number sm < t„ so that £ a ; e
M is relatively' small

f " = l m

regarding to gmQkmt for all t >, sm.In other words, for t > sm the function In £ gte
k"

t = i

can be approximated by the linear function kmt + In (gm).

m - l

2.4. The function £ 9i&kit n a s t n e analogous properties as the original one.
;=i

Thus the deduction of 2.3 can be iterated for the original m replaced by m - 1,
m - 2 , . . . , 1.

The presented properties can be used for determining B from the sequence A.
We describe the determination in geometrical terms as it has an analogy also in
graphical manual methods for the same aim.

2.5. A linear function is found so that it approximates the last points of the set
of points (tj, In (a7)>. We can assume that there exists an integer s so that for all
j 2: s the points (tj, In (o/)> are not distant from the straight line. The found linear
function f(t) = kt + q is transformed into an exponential function e r = gekt where
g = e?, and the pair <g, /c> is included into the target sequence B. The function ef

is subtracted from the source function values and the whole process is repeated until
the source function values are diminished to very small ones.

2.6. The described method can be pure or contracted. It is called pure if the length
of the source sequence is not diminished after the subtraction. It is called contracted
if the source sequence is shortened after each subtraction to its first (s — 1) members:
the values the logarithms of which are well approximated by a linear function are
removed from the further computation. During the whole computing process, the
source values which have been reduced to rather small ones (their logarithm would
be either a negative number of a great absolute value or an imaginary one) are omitted
in both the methods from the computation. After having done some experience with
the described methods, we can state that the pure one is more efficient.

3. DETERMINATION OF THE STRAIGHT SEGMENT

To automatize the determination of the segment where its points would be well
approximated by a linear function was the greatest problem. The first method which
we tried to implement was that a linear function was determined by the least square
method through n last points where « — 2, n + 1 while the differences did not
overpass a certain tolerance (it entered into the computation as a member of input
data). Thus the greatest « for which the differencies were inside the demanded toler
ance was accepted and the corresponding straight line determined the function /
of the par. 2.5. This method has failed in almost all the cases because the second
or the third approximation has implied an overflow in the computer.

Therefore we found another method: we tried to determine the processes which
take place in one's mind if he has to do an equivalent approximation graphically,
on the semilogarithmic paper: the substantial aspect of that action can be expressed
in the following statement: the sequence of points {(tj, In (a7)>}"=1 follows a curve
the first derivative of which is negative, for smaller tj increases and for greater tj
is constant. If we approximate the sequences {<£,-, In (a ;)>}"=K and {(tj, In (ay)>"= K + 1

by two straight lines N and M respectively the derivative of the first one is less than
the derivative of the second one for small K. If the derivative of N is greater than
the derivative of M (or if they are equal) we can state that the points <£,-, In (ay)>
for / = K, K + 1, ..., n follow a straight line.

204 The program uses thereby a method which forms the mentioned approximations
for K = 1, K + 1 while the presented criterion is not satisfied.

Note. For the determination of the first component of the result function, the
value of K is assigned as 2 because it is assumed that the first aj = at is equal to 1.
Such a value cannot be applied in division by its logarithm, which is used, because
we apply the least squares method with the weight — l/ln (a ;). The resulting formulas
for determining the corresponding exponential function y = b&2' are the following:

^ _ TR - V5 ^ _ e(5-zJ7)/R

R2 - UV

where

T = n - r + 1 , Sm_]tj, R = _\ —^~ . V = £ —J— , U = £ - ^ — .
j=x ;=/cln(ay) J=K In (a,-) j=Kln(ay)

4. MANUAL CONTROL

As the computing process has a rather clear geometrical sense for the users we have
decided to enrich the implementation by possibilities that the computation might
be influenced by the human's suggestions. It is possible through the buttons at the
control desk and through the input data. Such a manipulation has demanded other
facilities of the implementation, namely that certain information can be displayed
of the computing run. The display of the information is either automatic (the com
puter writes of itself what it does) or it can be demanded by other buttons. The
exact meaning of all the facilities is described in the next section. Their meaning
expressed clearly and legibly for the non-computer-oriented user of the implement
ation is presented in the following paragraphs.

4.1. Buttons

Button 1 — print all the values of the exponential function which tries just to be
a component of the target function. The form of the information is controled by the
buttons 9 and 10.

Button 2 - print the coefficients of the exponential function mentioned at the
button 1. '

Button 3 — print the bounds of the interval inside which the present function
(displayed eventually due to the buttons 1 and 2) is the approximation (thereby the
value of r and n are printed, the last one need not be equal to the original one in case
of the contracted method).

Button 4 — prolongate the process of increasing rregardess of the criterion present
ed in section 3.

Button 5 — print the coefficients of all the components fixed definitively in B; 205
do so immediately during the computing run after the fixation is clear (note: after
printing that information the present component can be immediately removed from
the target sequence through the button 4).

Button 6 — understand the last approximation as a definitively fixed component
of the target sequence, regardless of the criterion presented in the section 3.

Button 7 — stop before the final prints of the results after the computing process.
During this interruption one can arrange the output unit, buttons 9 and 10 etc.

Button 8 — if it is in 'one of its two possible positions the pure method is applied
otherwise the contracted one runs (see 2.6).

Button 9 — print the graph of the given function and of the approximation.
If a non-definitive one is printed, the approximation is composed of the symbols 0
and the given curve of the symbols + . If a definitively fixed component is printed,
the approximation is composed of the symbols Q and the given curve of the symbols *.

Button 10 — print three columns of values: the first column follows the given
source values, in the second one there are the approximations and the third one
contains the differences between the values occurring in the first column and in the
second one. Each line corresponds to one tj.

Notes. Dependency on the buttons 9 and 10 but regardless of the button 1 the
graphs and/or the tables describing the results in the relation to the source information
are printed at the end of the computation. They are always preceded by a table
of all targets gt, k{. The buttons 9 and 10 can be in the active position independently.
The buttons 4 and 6 have the opposite functions and thereby they cannot be in the
active position simultaneously. During the run time one can however change the
activation of them or passivate both of them (the program is made so that a short
simultaneous activation of them during manual changing of their activation has
no negative influence on the computation).

4.2. Input data

If the time step is constant it is perforated as the first information; it can be preceded
by 1 followed by a mark (it is a special character which must not be as a delimiter
between two numbers in the input medium). After the step, the values at, a2, ...
follow; after a„ the integer 3 followed by the mark must take place as a sentinel.

If the time step is not constant the integer 2 followed by the mark initiates the
input file. Then the values follow in the order tu a«, t2, a2, ... After a„ the sentinel 3
followed by the mark must be present.

In both the cases, before the sentinel 3 eventually known components of B can
be put into the computation; they are considered as definitively fixed in B. Such

components are preceded by 4 followed by the mark; the components are put into
the input medium in the order gu ku g2, k2,... After the last fc; the sentinel 3
mentioned already in the preceding paragraphs must be however present.

After the computation has been finished the program stops; if we let it rerun
it reads the data which can modify the results; if we wish to modify the i-th com
ponent <a,-, fc;> of B we must record a triplet <i, g, fc> into the input medium (g and fc
are the new values of gh fc; respectively); if we wish to add a new component gd"
we must record an analogous triplet with i = 0. After all such triplets a sentinel 5
followed by the mark must be present. Then the program prints out all the com
ponents of the new sequence B and depending on the buttons 9 and 10 it can print
the graphs or tables regarding to the new values. Then it stops and the modification
may be repeated. If the sentinel 6 followed by the mark is present in place of the
sentinel 5 the whole process of the analysis is repeated as the present results are the
components a priori known.

In the Biophysical Institute the input is switched so that after the initiation (reading
of the data until the sentinel 3) the input device is switched from a high speed photo
electric input unit to the teletype through which also the information of the current
situation of the computation is printed. There can be applied an equivalent device,
e.g. a typewriter.

Another facility exists in the Biophysical Institute implementation, which seems
being rather suitable: the computer run (outside the initiation and outside the final
printing of the results) can be stopped and by means of a special simple disturbation
from the control desk (modification of the control register) it can be arranged so that
it performs the present approximation beginning from the K-th point: if the computer
is caused to rerun after the disturbation it demands itself the value of K through
the teletype. If the button 6 is activated the component received is immediately
fixed, otherwise the iteration goes on by its normal way. In the exact description
presented in the following section this special action is called disturbation.

5. EXACT DESCRIPTION

There is a quasiparallel system (see [6]) composed of the main program, com
ponents and the criterion for fixation. The main program generates the criterion
which generates new components in suitable moments of the run time. The control
uses to be given to the generated components which try to approximate the points
following the given values. The operation of the components is interrupted by the
operation of the criterion: it is a set, containing generally two components, with
a program body, where beside the generating of new components a very simple game
is performed the target of which is the decision whether the resumed component
is to be fixed.

The description is done in the language SIMULA 67 (see [7]) which has facilities

for description of quasiparallel systems and which seems to be comprehensible
as it is an extension of ALGOL 60.

SIMSET begin
link class pair; begin real lower, upper; end;
set class sequence;
begin
ref (link) procedure order (n); value n; integer n;
begin integer /; ref (link) X; X:= first;

for / : = 2 step 1 until n do X:= X. sue;
order := X

end order;

real procedure func(z, b); value z, 6; real z; boolean 6;
if empty then /««c : = 0 else
begin ref (link) X; real Y; Y: = 0;

for Jf : = if b then /zntf else progress, last,
X. sue while X + none do
Y:= Y -\- X. lower x exp (X.upper X z);

/iwc : = Y;
end;

end sequence;

ref (sequence) A, B, C, R; ref (pai>) f, 2 ; ref (criterion) progress;
switch L : = constant step, variable step, data inside,

known components, results, new action;
real x, y; integer K;
pair class component;
begin detach; G : K: = K+ 1;
begin real iJ, 5, T, £/, K; R:= S:= T:= U:= V: = 0;

for Q : = C. order (K), Q. sue while Q + none do
if Q. upper > bound then begin

y:= \jln(Q. upper); T:= T+ l;S:= S+ Q. lower; V:= V+ Y,
R:= R+ Q. lower X y; U:= U + Q. lower | 2 X y end;

y : = R\2- U' Y.V;\l R= O v y = 0 then go to /J;
upper := (TxR-V x 5)/^; /ower : = exp ((£— C/ X upper)/R);
if 6H«O« (3) then begin

Printline (from); print (K); text (to); print (C.cardinal);
if button (2) then begin print (lower); print (upper) end

end;
if button (1) then display (false);
E: resume (progress); go to G;
D: if K = 1

then begin ?ex/ (no more better results); out;
resume (this SIMSET) end

else begin Printline
(I have no exact values for a further approximation);
lower : = prec. lower; upper := prec.upper; go to E end

end end component;

boolean procedure button (n); value n; integer n;
begin <see the note 1 after this SIMULA text) end;

208 procedure graph (6); boolean b;
begin newline; textiter (if 6 then < = > else -£ = > , 65);

R : = if 6 then ^ else C; >> : = 60JR.first.upper
for P:= R. first, P.sue while P + none do e.t>c/e:
begin newline; printspace (abs(entier(P.upper X y)));
if /> then text (*) else /ex/ (+) ; carriage return;
printspace (abs(entier(B.func(P.lower,b) X y)));
if 6 then /ex/(D) else text (O) end eyc/e

end graph;
procedure tabulate (b); value b; boolean 6;
begin newline; R : = if b then ^ else C;

for P := R.first,P.suc while P + none do eje/e;
begin real z; newline; print(P.upper);
z:= B.func(P.lower,b); print (z); print (P.upper—z); end cycle

end tabulate;
procedure display(b); value b; boolean b;

if button (9) then graph (b);
if 6K//OH (10) then tabulate (b);

set class criterion;
begin procedure inform;

begin if button (5) then begin printline
(new fixed component:);
print (first.lower); print (first.upper) end;
display (true)

end inform; detach;
new component.into (this se/); resume (last);
if C.cardinal < K+ 1 then resume (this SIM SET);
M: new component .into (this se/); 5 : resume (last);
GAME:

go to if first.upper < last.upper then 6/ac/: else wft//e;
M'fe'/e: if button (4) then begin Printline

(I want to prolongate due to button 4); go to black end;
inform; if button (4) then go to Wacfc;

/MC: for P : = C.first, P.suc while P 4= none do
P.upper:= P.upper—first.lower X exp(first.upper X P.lower);
first.into(B); if 6«//o« (8) then
begin £: inspect C.order (K) when /m/c do
begin <«</; go to £ end;

F: inspect C.last when /j«/t do if upper < bound
then begin o;;/; go to i7 end
otherwise resume (this SIMSET)

end button 8;
/>::= 0; goto M;

black: if button (6) then begin Printline

(I want to fix due to button 6); go to /?x end;
if C.cardinal < K + 1 then
begin if button (A) then Printline

(I cannot reflect the button A); printline
(the input curve is too short); go to fix

end;

first.lower := last.lower; first.upper := last.upper;
resume (last); go to GAME;
disturb: Printline

(I try to fix the approximation from);
input (K); clear; K: = K - 1;

new component.into (this set); new component.into (this set);
resume (first);
last.upper : = first.upper; last.lower:= first.lower;
go to if button (6) then black else S
end criterion;
A : = new sequence; B: = new sequence; C: = new sequence;
constant step: read(y);
for x := 0, x+y while .4 is sequence do
begin P : = new pair, P.lower := x; read (P.upper); Q : = new pair;

Q.lower:= P.lower; Q.upper : = P.upper; P.into (A); Q.into(C)
end;
variable step: P:— new pair; read (P.lower); read (P.upper);
Q:= new pair; Q.lower:= P. lower; Q.upper := P.upper;
P.into (A); Q.into (C); go to variable step;
known components: P:— new pair;
read (P.lower); read (P.upper); P.into (B);
for Q := C.first, Q.suc while Q #= none do

Q.upper := Q.upper—P.lower X exp (P.upper x Q.lower);
go to known components;
data inside: K: = 1;
analyzer: progress := new criterion; resume (progress);
if button (7) then stop;
results: inspect B when sequence do begin
for P: = /?/•.?/, .P..SHC while P 4= none do
begin newline; print (P.lower); print (P.upper) end;
display (true) end; stop; .-•-'
begin comment: ?/;e following statements permit eventual
modifications of the results;
M: input (K); inspect B when sequence do

begin if K = 0 then
begin new pair.into (B); K:= cardinal end;

input (order (K).ldwer); input (order (K).upper); go to Mend
end of modifications;
new action : P:= C.first;
for Q:= A. first, Q.suc while Q 4= none do

begin P.upper := Q.upper—func(Q.lower; true); P := P.suc end; ' '< '
ZT: == 0; go to analyzer
end program;

Note 1. The semantics of applied printing and input procedures is related to e.g.
a teletype or a typewriter:

text (x) — the text x in the brackets is printed.

newline — a new line is done in the printing unit, together with a carriage return.

Printline (x) — it is the same as begin newline; text (x) end.

print (x) — print a space, the value of the actual parameter which must be a
number and another space; in this paper the form of the printed real number is not
important.

textiter (x, y) — the first actual parameter, which must be a symbol is printed
y-times. For a better legibility, the symbol is closed into the string brackets -tand3>.

printspace (x) — x spaces in printing, where x has a non-negative integer value.

carriage return — the following print is to begin from the left hand side of the
present line.

read (x) — one item is read at the input unit; if it has a usual form (machine-
dependent) of a number it is assigned for the actual parameter; if it has a form of
an integer n followed by a mark (see 4.2) the jump to L\n~\ is performed without
any assignment.

input (x) — the function is the same as that of read but the data enter into the
computer through a slow input unit with facilities for manual input and simultaneous
printing of the entering information (the same unit as used for output is recommended).

The procedure button (x) is a boolean one whose value is true iff the x-th button
is activated at the control desk. It seems to be suitable for small computers, while
for large ones it seems to interpret this procedure as being switched according to the
value of the parameter to various blocks in which more complicated criteria can
occur. Formally the affair can be established so that instead of the presented SIMSET
block the class declaration takes place initiated by the head:

SIMSET class analyzer (button);
virtual: boolean procedure button;

Note 2. The identifier bound means a metaconstant which corresponds to the
smallest number the natural logarithm of which can be computed by the computer;
in the Biophysical Institute the number 10~18 has appeared as sufficient.

Note 3. The reaction to the disturbation (see 4.2) is that an eventually operating
component jumps to its label G and is resummed by progress. In the progress the
jump to the label disturb is always performed.

(Received August 14th, 1968.)

REFERENCES

[1] A. Rescigno, G. Segre: La cinetica dei farmaci e dei traccanti radioattivi. Edizioni universi-
tarie, Boringheri, Torino 1961.

[2] C. W. Sheppard: Basic Principles of the Tracer Method. Introduction to Mathematical
Tracer Kinetics. J. Wiley & Son, N. York, London 1962.

[3] E. Kindler: COSMO (Compartmental System Modelling), Description of a Programming
System. Simulation Programming Languages, Proceedings of the IFIP Working Conference
on Simulation Programming Languages (editor J. N. Buxton). North-Holland Publishing
Comp., Amsterdam 1968, 402—424.

[4] Automatic Computer ODRA 1013 — General description (in Czech). Kancelářské stroje, n.p.,
Hradec Králové, 1966.

[5] V. Černý, J. Půr: Programmer's Manual on Automatic Computer ODRA 1013 (in Czech).
Kancelářské stroje, n.p., Hradec Králové, 1967.

[6] O.-J. Dahl, K. Nygaard: Class and Subclass Declarations. Simulation Programming Langu
ages, Proceedings of the IFIP Working Conference on Simulation Programming Languages
(editor J. N. Buxton). North-Holland Publishing Comp., Amsterdam 1968, 158 — 171.

[7] O.-J. Dahl, K. Nygaard: SIMULA 67 Common Base Definition. Norvegian Computing
Center, Oslo 1967.

Jednoduchá aplikace rozpoznávání obrazců v analýze pokusů

EVŽEN KINDLER

V práci je uvedena metoda pro strojové proložení součtu exponenciálních funkcí

naměřenými hodnotami. Odpovídající program je popsán v jazyku SIMULA 67.

Program byl realizován v Biofysikálním ústavu Karlovy university pro počítač

ODRA 1013.

RNDr Evžen Kindler, Biofysikálni ústav fakulty všeobecného lékařství Karlovy university,
Salmovská 3, Praha 2.

		webmaster@dml.cz
	2012-06-04T18:11:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

