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K Y B E R N E T I K A — VOLUME 28 ( 1992) , NUMBER 5, P A G E S 3 3 7 - 3 5 6 

MULTIPLICATION OF FUZZY QUANTITIES 

MILAN MAREŠ 

The addition operation over the class of fuzzy numbers or fuzzy quantities was investigated and 
discussed e.g. in [1], [8] or [7]. It is easy to define in an analogous way also the operation of multiplication 
(cf. [1] or in certain sense also [3] and [4]). Moreover, some of the methods and concepts suggested for 
the addition case in [5] and further used in [6] and [7] can be evidently adapted to the multiplication. In 
this way the group axioms and some other useful algebraical properties of multiplication can be derived 
also for fuzzy quantities, at least for some of them and up to certain degree of similarity between them. 
The specific properties of the multiplication mean that the methods derived for the addition cannot be 
mechanically transmitted to the multiplicative case, and that rather different approach must be used. 
The main purpose of this paper is to show these differences' and their consequences for the obtained 
results. 

0. INTRODUCTION 

Numerous problems concerning e.g. optimal decision-making, network analysis or plan

ning complex activities are connected with uncertain or vague numerical data. These 

data , often represented by fuzzy numbers or more generally by fuzzy quantities, must 

be usually arithmetically handled at least on the level of elementary operations. It is 

well known (cf. [1], [5] or [6]) that some of the useful properties fulfilled for the crisp 

numbers fail in case of the fuzzy ones. It concerns also the existence of inverse elements 

and the distributivity rule. 

However, it was possible to prove the validity of some of these properties, namely the 

existence of the additive inverse element; and in a special case also the distributivity of 

crisp-fuzzy product, up to certain type of equivalence between fuzzy quantities (cf. [5], 

[6], [7], [8]). It is evident that an analogous way can be used in the case of multiplication 

if the equivalence is rather modified. The purpose of the presented paper is to describe 

this multiplication and multiplicative equivalence, and to show their properties. 

As the methods and many results described below are closely analogous to those 

ones presented e.g. in [5] or [6] for the additive case, their presentation here is often 

abbreviated and focused to the concepts which do essentially differ from the additive 

version. This approach led to certain variety of subjects explained and discussed in 

the following sections. The operation of multiplication over fuzzy quantities is rather 

more complicated than the addition, and the corresponding structures describing its 



338 M. MARES 

properties are necessarily more complex and also more specialized. This fact was one of 

the principal arguments for writing the presented article instead of simple referring the 

analogy with the known results for the additive case. 

1. NORMAL FUZZY QUANTITIES 

In the whole paper we denote by R the set of all real numbers and by RQ = R— {0} the 

set of all non-zero real numbers. By normal fuzzy quantity (n.f. q.) we call any fuzzy 

subset a of R with membership function /„ : R —• [0,1] such that 

s u p ( / . ( x ) : are R) = 1, 

(1) 
3ar, < x2 € R, Var : (x > x2) or (x < a;,), /„(ar) =• 0. 

The set of all normal fuzzy quantities fulfilling (1) is denoted by E. The special position 

of 0 among real numbers concerning the multiplication has to be respected also if the 

multiplication of fuzzy quantities is considered. Due to [1] we often assume for an n. f. q. 

a also 

W) = 0- (2) 

The set of n. f. q. fulfilling (1) and (2) is denoted by R0 C ffi. 

The first one of conditions (1) is not quite necessary and its absence can be treated 

analogously to the procedure used in [5] for the additive case. The second condition of (1) 

will be essentially used in Section 4.1 (in Theorem 6) and in this sense its acceptance is 

more significant. However, both conditions (1) can be considered for natural and realistic, 

and moreover they mean an important simplification of the formalism used below. The 

connection between (2) and the properties of multiplication over real numbers (R is not 

the multiplicative group, e.g.) is mentioned above as well as in [1]. 

In the following sections we use the strict equality relation between n.f. q. If a, b e IK 

then we write a =s b iff f„(x) = fb(x) for all ar e R. This approach does not reflect 

the naturally vague relations between fuzzy quantities. It is only a simplified notation 

for certain very strong connection between membership functions. A weaker similarity 

concept was suggested in [5] as an (additive) equivalence (cf. also [6], [7] and [8]), and 

its analogy suitable for the representation of multiplicative similarity is suggested below 

in Section 4. In general, the concept of fuzzy equality relation between fuzzy quantities 

can be approached in more ways which do not concern the topic of this paper and are 

not mentioned here at all. 

1.1. Mul t ip l i ca t ion 

Def in i t ion 1. If a, b e ffio are normal fuzzy quantities with membership functions 

fa, fb, respectively, then the n. f. q. a 0 b e K with membership function /0©6 defined by 

/ * * ( * ) = sup (min ( / . (* ) , h(x/y))) (3) 
ueRo 
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is called the product of a and b. To distinguish the multiplication over real numbers and 

over n. f. q. we denote x • y for x, y € R and aQb for a, b e 1 0 . 

R e m a r k 1. Relation (1) immediately implies that for a, b g 1 0 also a Q b 6 1 0 , and 

that 

/ . @ 6 ( x ) = sup (min ( / . ( x / y ) , / » ( » ) ) ) . (4) 

yeflo 

L e m m a 1. If a, 6 € 1 0 then aQb = bQa. 

P r o o f . The commutativity follows from (3) and (4) immediately. O 

L e m m a 2. If a, b, c € l o then 

( a 0 6 ) 0 c = a 0 ( 6 0 c ) . 

P r o o f . If a, b, c S l o then 

/(a©6)0c(«) = sup (min (faeb(v), fc(u/v))) = 
,-5*0 

= sup ( mill ( sup (min ( / . ( x ) , fb(v/x))), fc(u/v) 
v*0 \ \x?0 

= sup sup (min ( / . (x ) , fb(v/x)), fc(u/v)) = 
v*0 W<> 

= sup i sup (min ( / 6 (u /x ) , fc(u/v)), /„(x)) ) = 
x?ÍO \vjt0 / 

= sup ( min ( fa(x), sup (min (fh(v/x), fc(u/v))) 
x#0 V V v*0 

= sup mill /„(;e), sup (min (fb(y), fc(u/(x • y)))) 
x?0 \ \ >„t0 

= SUp (mill (fa(x), fb@c(u/x))) = fa@(b@c)(u)-
x£0 

If y 6 R is a real number, then we denote by (y) the n. f. q. with membership function 

/(j,) defined by 

/(j,) = 1 for x = y (5) 

= 0 for x^y. D 

L e m m a 3 . If a € E0 then (1) 0 a — a. 

P r o o f . By (4) 

/ ( 1 ) 0 . ( x ) = sup (min (f(l)(y), fa(x/y))) = / . ( x / 1 ) = / t t (x) . D 

ys'o 
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T h e o r e m 1. The set E0 of normal fuzzy quantities fulfilling (1) and (2) is a com

mutat ive monoid according to the multiplication relation (3). 

P r o o f . The s tatement follows from Lemmas 1, 2 and 3 immediately. • 

Corol lary . The previous theorem implies that ffi0 is a commutat ive semigroup. 

If a £ Mo then we denote by 1/a the n.f. q. for which 

/ . / . ( * ) = fa(\/x) for all x € R, x ± 0, (6) 

/ i / . ( 0 ) = 0. 

It is not difficult to verify tha t generally a 0 (1 /a) is not (1), as shown in the following 

simple example. 

E x a m p l e 1. Let a g K0, / 0 (1 ) = 1, /„(2) = 1, fa(x) = 0 for 1 / x ^ 2. Then also 

(1 /a ) € ffi0 and 

/ i / . ( l ) = - l - = / . / . ( - / - ) . / , / . ( * ) = 0 for 1 / 2 ^ x ^ 1 . 

Hence 

/(1/.)0.(1) = /(i/.)Q.(l/2) = /(l/.)0«(2) = 1, f{Ua)@a(x) = 0, X ± {1/2, 1, 2}. 

bigskip 
The previous fact shows that E0 cannot be a multiplicative group. An analogous 

problem appeared in the additive case where it could be solved by subst i tut ing certain 

type of equivalence for the equality, as suggested in [5]. The multiplicative case, however 

more complicated, can be treated in rather similar way, presented and discussed in 

Section 4. 

1.2. Cr isp P r o d u c t 

It is useful in numerous practical models of uncertainty to multiply an f. f. q. by crisp 

( i .e . deterministic) real number. 

Def in i t ion 2 . Let a £ K and r € R. The normal fuzzy quanti ty r • a with the 

membership function 

fUx) = fa(x/r) for r -4 0, (7) 

= / ( 0 ) (x) for r = 0, x € R, 

is called the crisp product of r and a. 

Even if we, for practical reasons, distinguish between the product of two fuzzy quan

tities 0 and the crisp product, both operatibns coincide. 



Multiplication of Fuzzy Quantities 341 

R e m a r k 2 . Comparing Definitions 1 and 2 it is easy to verify that for r € Re and 

o € Ro 
r-a = (r)Q a. 

R e m a r k 3 . Evidently for ;• ^ 0 and a 6 R0 also r -a € Ro-

R e m a r k 4. Definition 2 immediately implies that for r, r ' € R, a € R, the equality 

r • (?•' • o) = (r • r ' ) • a holds. 

1 .3. A d d i t i o n 

Even if the addition of n.f. q. is investigated in other papers it is worth mentioning it 

here. 

Def in i t i on 3 . If a, 6 € ffi are normal fuzzy quantities then the n. f. q. a © b € R with 

membership function defined by 

fa9b(x) = sup (min( /„ (y) , fb(x - y))), x € R, (8) 
v 

is called the sum of o and 6. 

The properties of the addition operation © are described e.g. in [1], [5], [6] or [8]. 

Here we remember its connection with the distributivity of the crisp product. 

L e m m a 4 . If o, b € R and r e R then r • (a © b) = (r • a) © (r • 6). 

P r o o f . The s ta tement follows from (7) and (8) immediately. D 

The opposite distributivity law, (r ( + r2) • a = r\a(&r2a for f ] , r2 € R, a € R, does 

not generally hold, as shown e.g. in [1] or [5j. A way how to guarantee its validity in a 

weaker form for at least certain class of n.f. q. is suggested in [7]. This class is formed 

by the symmetric n. f. q. specified in the following subsection, and the weaker form of 

distributivity means that the equality in the distributivity formula is substi tuted by an 

equivalence relation "up to fuzzy zero" (cf. [7]). 

However, if we consider an n.f. q. a € R then generally 

a + a ^ 2 • a 

and this fact provokes some considerations. Loosing the exactness of crisp numbers, we 

inevitably loose some of their pleasant properties, even such which we used to accept 

for being selfevideut. We may also ask if really the repetitive addition of two (or n) 

numbers is arithmetically exactly the same like the multiplication of the same number by 

a coefficient which can be arbitrary (including non-integer values) and which only in this 

case is equal to 2 (or n), i.e. to the number of the repetitions of the considered quanti ty 
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in the addition. The coincidence of both operations, selfevident for crisp numbers, can 

vanish if vague (fuzzy) quantities are considered.1 

Essential results concerning the interconnection and distributivity between the oper

ations of addition 0 and multiplication Q are summarized in [1]. 

1.4. S y m m e t r y 

Symmetric n. f. q. especially dealt in [7] and partly used also in some other papers 

concerning the addition of n. f. q. can be interesting also for the multiplicative case. 

Def in i t ion 4. If y £ R and « € R then we say that « is y-symmetric iff for all x € R 

fa(V + •'•) = fab ~ X). (9) 

The set of all y-symmetric n. f. q. will be denoted by Sy, the union of these sets is denoted 

by s, 
s = ( J s v . (10) 

yeR 

If we denote for « 6 R the n. f. q. (—a) where 

/ _ „ ( . T ) = / . ( - * ) , for all x € R, (11) 

then evidently a € S0 iff « = (—«). 

R e m a r k 5 . It follows from (8) and (9) immediately (cf. [5] or [6]) tha t for any « € R 

« + ( - « ) 6 S0. (12) 

R e m a r k 6 . If r € R and « € 1 then r • ( - « ) = ( - r ) •« = -(r • a) as follows from 

(7), (9) and (11) immediately. 

R e m a r k 7 . It can be easily seen (cf. [7]) that for any « g S-, y G R, there exists 

•s € S0 such tha t « = (y) 0 s. 

L e m m a 4 . If « € R0 and .s € S0 n i 0 then « 0 s £ S0 n R0. 

P r o o f . Preserving the notation used in the statement, 

/ ,©,(*) = sup (min (f„(y), f,(x/y))) = 
s#o 

= sup (min (f„(y), f,(-x/y))) = / „ © . ( - * ) 
H?SO 

for all c e R. O 

'The author thanks Dr. Kainila Bendova from the Institute of Mathematics in fragile for this idea 
which in its essence offers new view on some traditional certainties of numerical calculations. 
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Lemma 5. If a G !o then aQa — (—a © (—a)). 

Proof . For all x € R, 

/ .0 (_.,(x) = sup(min(/.(»), /_.(_/_))) = 
ys«> 

= sup (min (fa(y), fa(~x/y))) = /«©.(-*)• _ 
y*o u 

Remark 8. If a € So then also (1/a) € S0 as follows from (6) and (9). 

2. SIGNED NORMAL FUZZY QUANTITIES 

In the case of multiplication over n. f. q. the fact if their supports belong to exactly one 
(positive or negative) semiaxis plays a significant role. 

Definition 5. Let a € !o be an f. f. q. We say that a is positive iff fa(x) = 0 for 
all x < 0, and that a is negative iff /tt(x) = 0 for all x > 0. The sets of all positive 
or negative n.f. q. will be denoted by ! + or !~, respectively. Fuzzy quantities from 
R* = ! + U R~ C !o will be called signed. 

Lemma 6. If a, b 6 ! + , r,, r2 € R, r, < 0 < r2, then a©&€ 1 + , rxa € !~, r2-a € 
! + , a® be ! + , (1/a) € ! + . 

Proof . Relations r, • a € ! _ , r2 • a € ! + and (1/a) € ! + follow from (7), (6) and 
Definition 5 immediately. Let us choose an arbitrary x < 0. Then by (3) L©t(x) > 0 iff 
both, fa(y) and fb(x/y), are positive for some y € R, y ^ 0. It is impossible as either 
y > 0 and x/y < 0 or vice versa for any such y and a, b € ! + . Analogously fa$b(x) > 0 
iff both, fa(y) and fD(x — y), are positive for some y 6 R, as follows from (8). D 

Lemma 7. If a, 6 € !~, r., r2 € /_, r« < 0 ' < r2, then a© 6 € ! + , r r o £ R+, r2-a € 
!~, a © o € R~, (1/a) € !~. 

Proof . The proof of this statement is completely analogous to the one of Lemma 6. 
D 

Lemma 8. Let a € ! + , 6 € R~ then a 0 6 € !~. 

Proof . Also this statement can be proved analogously to the proof of the corre
sponding statement of Lemma 6. If x > 0 and y > 0 then x/y caunot be negative which 
means that fa@b(x) cannot be positive as follows from (3). D 

Remark 9. If a € R0 - R* then obviously (-a) € Ro - !*, (1/a) € R0 - R* and 
r • a 6 !o - !* f°r any r € /?«. 
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3. TRANSVERSIBILITY 

The concept of symmetry (9) useful for the investigation of addition over E has its mul

tiplicative analogy. Similarly to the procedure suggested in [5] to guarantee the additive 

group properties of 1 at least up to certain equivalence based on the O-symmetry, we will 

use in the next sections the notion of transversibility and especially 1-transversibility to 

derive a weaker form of multiplicative group properties for ~.0. Here we present some 

auxiliary results concerning this concept. 

Def in i t ion 6 . If y € Ro and a € Ko then we say that a is t/-transversible iff 

fa(yx) = fa(y/x) f o r x > 0 , fa(y • x) = 0 for x < 0. (13) 

The set of all y-transversible n. f. q. is denoted by Tv . By T we denote the union 

T= IJ T„. (14) 
v€~o 

R e m a r k 1 0 . If y € Ro then (y) € T„. Hence T s n ffi* ̂  0. 

R e m a r k 1 1 . Equality (13) immediately implies that Tv C 1 + for y > 0 and T, C E~ 

for y < 0. 

R e m a r k 1 2 . The second one of conditions (1) immediately implies tha t for every 

n . f . q . t e T there exists e > 0 and an e-neighborhood of 0, U(0 ,e ) < R, such tha t 

/((a:) = 0ior~€u(0,£). 

L e m m a 9 . Let y € Ro, a € Ko- Then a g Tj, iff there exists t € T, such tha t 

« = t Q (y). 

P r o o f . If a = t Q (y) for t € T, then for x e R 

Myx) = ft@(y)(y -~) = sup (min (ft(y • - / - ) , / < » ) ( - ) ) ) = / . ( ~ ) , 

L(y/~) = /«e<v)(j//-) = sup (min ( / , ( " / ( - • ")) , /<„,(-))) = / , ( l / ~ ) = /« ( - ) , 
**° 

and a € T,. Let, on the other hand, a € T r Then 

« = a 0 (1) = „ 0 ((y) 0 (1/t/)) = (a © (1/j/)) © (y) 

as by (5) and (4) (y)Q(l/y) = ( I ) , !/ ^ 0. It is sufficient, now, to show that aQ(\/y) € 

T, . For x € R 

L©<i/y)(~) = S«P (mi~ ( / . ( - / " ) . /<«/»)(-))) = / » ( x • » ) ' 
j / O 

/.0<i/.>(ll-) = SUP ('"»! ( L ( l / ( - • 2 » ' /<'/»>(-))) = MvM = My • ~). 
z*0 

a n d . = a © ( l / j / ) 6 T , . D 
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Lemma 10. If a, b e T, then o 0 6 e T,. 

Proof . For x e R, x > 0 

/.@6(x) = sup (min (fa(y), fb(x/y))) = sup (min ('/.(1/y), Mv/x))) = 
y?S0 y^O 

« sup (min (/.(-), /6(l/(x • >))) = /„0 6(l/x), 
J;to 

where z = 1/y was substituted. For x < 0 L06(x) = / . 0 6 ( l /x) = 0 by Lemma 6 and 
Remark 10. ° 

Theorem 2. If x, y e Ro, and if a e Tx, 6 e T„, then a 0 6 6 T-.„. 

Proof . Let a 6 T „ i € Ty. Then by Lemma 9 a = r ,0(x) , 6 € <20(y) for tu h € T,, 

and 

a 0 6 = t, 0 t2 0 (x) 0 (y) = < © (x • y) € I"-., 

as follows from Lemma 10, Lemma 9 and from the fact that by (4) and (5) (x) 0 (y) = 

(x-y). Q 

Corollary. The class T of transversible n. f. q. is a closed set regarding the multipli
cation 0 . 

The preceding statements imply a few relations concerning the algebraic structure of 
the set T namely if the multiplication operation over T is considered. 

Remark 13. Let x, y, z e Ro, T*, Tj,, T, C T. If a, b, c, e are arbitrary n. f. q. from 
R0 such that a e T-, 6 6 Ty, c e T,, e € T,, then 

a©6 = 6 © a € T r . v , (15) 

(a 0 6) © c = a 0 (6 0 c) € Tr.v.., (16) 

a © e e T . , (17) 

a © ( l / a ) 6 T , , (18) 

and if s € Ro n S0 then also a © « € 1 0 0 §0. 

The relations summarized in Remark 13 are remarkably similar to the commutative 
group properties which fact can be rather generalized and used to introduce a weaker 
form of group including as many n. f. q. from R0 as possible. 

4. MULTIPLICATIVE GROUP 

We have already introduced the auxiliary concepts and results which enable us to for
mulate the weaker form of multiplicative group properties valid for E*, analogously to 
the procedure used in [5] for the additive case. 
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4 .1 . Multiplicative equivalence 

In this section we suggest certain concept of similarity between n. f. q. up to "multiplica
tive fuzzy 1". 

Definition 7. Let o, 6 € R* be signed normal fuzzy quantities. We say that a 
is equivalent (or multiplicative-equivalent) to 6 and write a ~ 0 6 iff there exist 1-
transversible n.f. q. ?•, t £ T, such that 

r 0 a = <06. (19) 

Theorem 3 . Relation ~ 0 defined above is reflexive, symmetrical and transitive. 

Proof . If o £ K* then for every /. € T, o 0 ( = o 0 t, and the symmetry of (19) 
evidently implies the symmetry of ~ 0 . Let o, 6, c 6 1* and i,, t2, t3, t4 £ T, be such 
that 

a 0 <, = 6 0 t2, 6 0 1 3 = c 0 t4. 

Then by Theorem 2 also h Q U € T,, t2 0 (3 6 T,, t2 0 t4 6 T,, and 

a 0 U © <3 = 6 0 t2 0 t3 = c 0 i2 0 t4 

which means that o ~@ c if o ~ 0 6 and 6 ~ 0 c. • 

Remark 14. If a, b € E*, < € T,, and if o 0 t = b then o ~ 0 b as 6 = 6 0 (1) and 
(1 )€T , . 

Lemma 11. If a e E* then 0 0 (1/a) € T,. 

Proof . Lemmas 6 and 7 imply that o 0 (1/a) € E+ for any o € R*. For a: > 0 

L©<i/a)(z) = sup (nxin (fa(y), f(Va)(x/y))) = 

= sup (min (/,,/„,(\/y), fa(y/x))) = 
y±o 

= sw(mm(f0/a)(z), fa(\/(x- z)))) = faQ(Ua)(\/x). . Q 

Theorem 4. If o, 6 € K* and a 0 (1/6) G T,, then o ~ 0 6. 

Proof . If o 0(1/6) =t 6Ti then also 

0 0 ( 1 / 6 ) 0 6 = U-)6 

and by Lemma 11 (1/6) 0 6 = r € T,. It means that a 0 r = 6 0 t and o ~ 0 6. • 
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T h e o r e m 5. Let a, b, c, d € E* be signed n . f .q . If a ~ 0 6 and c ~ 0 d then also 

a 0 c ~ e 6 (•) d. 

P r o o f . Equality (3) means that that for n . f .q . at, «2 , «0 € R the equality e»j = a2 

implies «i (•) a0 = a2 (•> a0. If a ~ 0 6 and c ~(., d then for some t\, t2, Z\, z2 € T] 

a 0 <, = 6 0 2], c 0 t2 = d 0 22 . Then 

a 0 c 0 <] 0 <2 = 6 0 d 0 2, 0 22 

and by Lemma 10 

aQcQt=bQdQz 

for t = <i 0 i2 € T,, z = z-i 0 22 € T,. Hence a 0 c ~ @ b 0 d. D 

R e m a r k 15 . If « ~ 0 b for «, fo S E* then (19) and Lemmas 6 and 8 imply tha t either 

both a and b are positive or both of them are negative. 

4 . 2 . E q u i v a l e n c e of t ransvers ib le n . f. q . 

As ~ 0 is a correct equivalence relation, which follows from Theorem 3, it par ts the set 

E* into disjoint equivalence classes. Each of them is either a subset of R+ or of E~, 

as mentioned in Remark 15. For the special case of trausversive n.f. q. from T the 

equivalence classes can be specified as follows. 

T h e o r e m 6 . The equivalence relation ~ w parts the set T of trausversive n. f. q. into 

disjoint equivalence classes T„, y S RQ-

P r o o f . If a € Tv for y -£ 0 then by Lemma 9 n = ( 0 (y) for some t £ Ti and, by 

Remark 14, a ~ 0 (y). It means that for a, b € Ty the transitivity of ~ 0 implies a ~ @ b. 

Let a £ Tx, b £ Ty, x ^ y, and let « ~ e b. Then a = U Q (x), b = ?-j © (y), for some 

ti, »"i € Ti, and there exist t2, r2 € T, such that 

(x) 0 <, Qt2 = a 0 tt = b 0 ?-2 = (y) 0 ?•] 0 ?'2, 

or 

( » > 0 < » W 0 r (20) 

if we denote t = «, 0 t2 € Ti, ?• = r . 0 ?2 € T. (cf. Lemma 10). If it is so then either 

both x > 0, y > 0 or both x < 0 and ?y < 0. Let us suppose, now, tha t x > y > 0. Then 

by (13) for any z € Ro 

/(->«(**/*) = /<->e«(-) - /wsr(-) - fmAvVz). (2i) 

Condition (1) implies tha t there exists zu > 0 and £ € /? such that 1 > £ > y2/x2 > 0, 

and 

/<*)®i(-0) = /(!/)©r(50) > 0, /W@|(*) = /(l/)0r(-) = 0 



348 M. MAREŠ 

for all z € (0,£ • z0). Then also, using (21), 

/<*) .(*7~o) = fшЛvVz) > 0 
/(-.©.(-^i-) = fшЛy2/*) = 0 for z Є (0,£ • 2b), 

(22) 

/<x)0.(«) = 0 = / W 0 r ( u ) for all u > y2/(e • z0). (23) 

But 

x2/z0 = (x2-y2)/(z0-y
2)>y2/(ez0) 

and then by (22) f(x)@t(x
2/z0) > 0 and by (23) f(x)Qt(x2/z0) = 0. This contradiction 

means tha t equality (20) cannot be fulfilled. O 

4 . 3 . G r o u p u p t o equiva lence 

The multiplication C-) over R* does not fulfill all group properties in the usual equality 

form. However, R* is a group up to the equivalence ~ 0 as shown below. 

T h e o r e m 7 . The set R* of signed normal fuzzy quantities and the product operation 

© defined by (3) form a multiplicative commutative group up to the equivalence relation 

~ 0 , i .e. 

0 0 b ~ 0 6 0 a, (24) 

a 0 ( 6 0 c ) ~ 0 (a 0 6 ) 0 c, (25) 

a © ( l ) ~ 0 a , (26) 

a 0 ( l / a ) ~ 0 ( l ) , (27) 

for any a, 6, c € R*. 

P r o o f . If a, 6 € R* theu also a 0 6 6 R* as follows from Lemmas 6, 7 and 8. 

Relations (24) and (25) follow from Lemmas 1 and -2, respectively, as by Definition 7 

a = 6 implies a ~ 0 6. Analogously (26) follows from Lemma 3. Finally Lemma 11 shows 

tha t a 0 (1 /a ) e Ti which means, by Theorem 6, the validity of (27). D 

4 . 4 . W h y R* on ly? 

The limitation of our preceding considerations to the signed n. f. q. only is rather strong 

as doing so we omit a wide class of possible fuzzy quantities. The necessity to proceed 

in such way follows from serious difficulties appearing when we apply the procedures 

described above to more general n. f. q. The most essential of them are briefly discussed 

in this section. 

Let us call an u.f. q. a £ Ro bisigned iff there exist xx < 0 and x-2 > 0 such tha t 

/ . ( x i ) > 0, / . ( * , ) > 0. 
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First, it is very easy to verify that , for bisigned n. f. q. a, a Q (1 /a ) #5 Ti but it is also 

bisigned even if also in this case a 0 (1 /a) £ ffio and 

/»©(./.)(*) = L ® ( i / . ) ( l / x ) for all x € Ro. (28) 

It means tha t there are no t\, t2 € Ti such that 

« O ( l / a ) 0 ( , = (\)Qh 

and the group property (27) cannot be fulfilled for bisigned n.f. q. 

If we suggest a wider concept of the y-transversibility, e. g. if we say tha t a 6 K0 is 

y*-transversible, y € RQ, iff 

/ . ( » • x) = / . ( » / * ) for all x -£ 0, (29) 

and if we denote by T* the set of all j/*-transversible n.f.q. then evidently (—1) € T*, 

(1) G I t , , T* n S0 ^ 0, T* n I t , ^ 0, etc. 
If we proceed in this way then evidently a 0 (1/a) 6 T* for any a € ffi0, but it is 

necessary to modify the equivalence concept in the way resulting to the equivalence 

between (1) and a © (1/a) for general n . f .q . a € ffi0. Let us define the *-equivalence ~ Q 

as follows. If a, b € M0 then a ~ Q b iff there exist t\, t2 € T* such that 

a 0 i i = 6 0 < 2 . 

Then always a 0 (1 /a) ~ g (1) but also (-?/) ~ Q (J/) for arbitrary y € Ro as also the 

n . f .q . (—1,1) such that 

/<-i,i)(x) = 1 for x = 1 or x = - 1 , 

= 0 for - 1 £xjtl, 

belongs to T*. By Lemma 4 a 0 (—1,1) g S0 and it is easy to prove tha t generally 

« 0 ( - l , l ) = ( - a ) 0 ( - l , l ) 

for (—a) fulfilling (11), which implies that a ~*., (—a) for any a € R0-

These and other possible paradoxes essentially complicate, the application of the 

method suggested for signed n . f .q . to their more general types. 

5. P O W E R S 

Some of the concepts and results derived in the preceding sections can be used also for 

the fuzzy version of powers. A brief note about the crisp exponents over fuzzy quantit ies 

can be found in [1]. In fact, the precision of definitions and s tatements in the general 

case of n. f. q. and also in the case of signed n. f. q. from ffi* demands rather complex and 

sophisticated formalism. As the powers represent a marginal topic as regards the main 

subject of this paper we limit our interest to the very simple case of positive normal fuzzy 

quantit ies from E + and their crisp or fuzzy exponents. More detailed and more general 

approach to this topic would demand the complexity of presentation fairly exceeding the 

expected extent of this paper. 
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5.1. Crisp exponent 

In some applications it is useful to manage at least the basic algebraical operations 
concerning the crisp (often integer or natural) exponents over (positive) n. f. q. 

Definition 8. Let a ' E+ be positive n. f. q. and let r ' Robe non-zero real number. 
Then we denote by ar and call the rth power of a the n. f. q. aT with membership function 

/ . ' ( - ) = / . ( * V r ) for all x > 0 , 
= 0 for all x < 0. 

Remark 14. If a ' E+ then ar € 1 + as well. 

Lemma 12. If a € 1 + , r € Ro then a~r = l/a r = ( l /a) r . 

Proof . For any x > 0 

/.--(*) = / . ( ^ , / r ) = / . (*"')') = / .-(I/*) = / . / . ' (* ) , 

and 

/ . - ( * ) = / . (*" , / r) = / . ((* r)- ') = / . / . (* ') = /(!/.,'(*)• D 

Remark 15. The preceding lemma implies that (a r ) - 1 = a - r for a € 1 + , r € /to-

Theorem 8. For any a € 1 + and r e Re the relation ar 0 a~r ~ Q (1), i.e. 
ar 0 r " r € Ti, holds. 

Proof . The statement follows from Lemma 12, Lemma 11 and Theorem 7 immedi
ately. D 

Corollary. For any a ' 1 + the relation a 0 a - 1 £ Ti holds. 

Theorem 9. If a 6 »+ and r, « € #0 then (ar)* = ar". 

Proof . For all x > 0 

/(вr).(*) = /.ФП = L(И'A1/r) = 
= /.(*i/(м)) =/."(*)• 
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T h e o r e m 10 . If r G R0 and a, b G K+ then a r 0 6r = (a 0 6) r . 

P r o o f . For any x > 0 

W O - ) = s u p ( m i n ( / a ( j / 1 / r ) , / 6 ( x 1 l r / , v 1 l r ) ) ) = 
5/5*0 

= s u p ( m i n ( / ( l ( 2 ) , / 6 ( x V r / z ) ) ) = 
z*0 

= L@6(x,/r)=/(a0tr(x), 

where the substitution j/1 l r = z was used. • 

Some of the useful properties of deterministic powers are not true in case of fuzzy 

variables. Namely the equality aT 0 as = aT+' is not generally fulfilled, as shown by the 

following example. 

E x a m p l e 2. Let us consider an n.f. q. a G 1+ as follows. 

/ . ( 1 ) = / „ ( 2 ) = 1 , / . ( * ) = - 0 for l / x ^ 2 . ^ 

Then 

L0.(x) = 1 for x = 1,2, 4, 

= 0 for other x, 

and 

/„»(x) = 1 for x = 1,4, 

= 0 for other x. 

It means that , />(2) ^ Le.(2), and 

aQa^ a2. 

R e m a r k 16. If y > 0 then (29) implies that (y)T = (yT) and consequently (y)T Q 

(v)' = (y)r+s for r, s e R0. 

Some other lesults can be derived for (positive) transversible n.f. q. 

L e m m a 13. If a G Tj and r G fl0 then aT G Tj. 

P r o o f . For any x > 0 

w*) = L(^,/r) = L(--,/r) = L((*-,),/r) = 
= /.-(«-')--Mi/»). • 
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T h e o r e m 1 1 . If y > 0, a g T„ and r ^ 0 then a r g Tyr. 

P r o o f . Lemma 9 implies tha t there exists t g Ti such that a = (y) • t. Then, using 

Theorem 10 and Remark 16, 

ar = (y)r 0 f = (yr) © tr, 

where tr g Ti by Lemma 13. Hence, ar G Ty<-- -

T h e o r e m 12 . If y > 0, a£ Jy and r, s e Ro, r + s =£ 0, then ar 0 as ~ a a r + s . 

P r o o f . By Lemma 9 and Theorem 11 for r ^ — s 

ar © a s = (y)r © i, 0 (y) s 0 <2 = (y r) 0 (?/) 0 i, © t2 

for some £., t2 € Ti . Relations (3) and (5) immediately imply that 

(f)o(y') = (yr-ys) = (yr+°) 

and by Lemma 10 ii © t2 g T]. It means that (cf. Remark 16) 

(yr) © (ys) © ti © k = (yr+s) 0 t g v + . . 

On the other hand, Theorem 11 implies that also ar+s £ Tj,r+S and, due to Theorem 6, 

ar 0 as ~ 0 ar+s. p 

R e m a r k 17 . The power n° is not defined. However the modification of the previous 

theorem for r = —.s is given in Theorem 8. 

5 . 2 . Fuzzy e x p o n e n t 

The concept of the power with crisp exponent over a positive n. f. q. can be generalized 

to the case of fuzzy exponent. 

D e f i n i t i o n 9. Let o € K+ and b G K0 be normal fuzzy quantit ies, positive or signed, 

respectively. Then the n.f. q. o with the membership function 

/„ . (* ) = sup(mm(fa(x"»),fb(y))), x > 0, ' (30) 

= 0 for x < 0 

is called the 6th power of a. 

As any crisp number r g E0 is a special case of (signed) n.f. q. (namely (?•) g K*), 

the contraexample 2 keeps generally significant, and for a g M+, 6, c g m0 the equality 

ab 0 ac = ab(i>c cannot be generally fulfilled. 
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L e m m a 14. If a g E + and r € RQ then the crisp power ar by (29) is identical with 

the fuzzy power a(r> by (30). 

P r o o f . If x > 0 then 

/ .«„ = s u p ( m i n ( / . ( x , / " ) , / ( r ) ( y ) ) ) = 
v 

= f*(x^) = U(x)- • 

T h e o r e m 13. If a £ 1+ and b € K0 then a"6 = (1 /a) 6 = 1/a6. 

P r o o f . For any x > 0 

/„_,(:-) = sup (min ( / - ( . r 1 ^) , / _ . (y ) ) ) = sup (min ( / . ( - ' / " ) , / . ( - y ) ) ) = 
!/̂ 0 v^o 

= sup (min ( / . ( a r ' / * ) , / . ( _ ) ) ) = sup (min ( / . ( (aT 1 ) 1 ! 2 ) , /„(_))) = 
-540 2 ^ 0 

= /..(--1) = /./„.(-), 

/ . - .(_•) = sup (min ( / . (x1!*) A ( - y ) ) ) = sup (min ( / . (x1!*)"1) - / . ( * ) ) ) = 
V/O j-i-0 

= sup ( / , / . (*«/*) , /»(_•)) = / , . , . , . ( * ) . • 
-5-0 

L e m m a 15. If y > 0, y ^ 1, and if a g E0 then the membership function of (y)" is 

given by 

/„,W - / . (£ for all _ •>( ) . (31) 
y; 

P r o o f . For all x > 0 

/,,, .(_:) = sup (min (/<y)(x-1/z), / . ( * ) ) ) = / . ( - _ ) 
_?-0 

for the zT £ R for which /(_)(z_) = 1. It means that by (5) z- = y. It is valid for the z 

for which x1/* = y, which means (1/z) • In x = lny. Consequently 

z = l n _ 7 my . • 

T h e o r e m 14. If a _ E + , 6 g R0 then 

o*0o ( - f c ) 6 T , , i.e. B ' 0 - " 1 ~ 0 ( 1 ) . 

P r o o f . The s tatement immediately follows from Theorem 13, as a* ('•) a'""6' = a6 (•) 

(1 /a 6 ) , and Theorem 7 holds. • 
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T h e o r e m 15 . If a 6 R+ , b, c 6 K0 then (ab)c = ab@c. 

P r o o f . For any x > 0 

/(..,«(:-) = sup (min (fA*U% /«(«))) = 
u^o 

= sup min ( sup [min ( / . ( ( x 1 ^ ) 1 J , fb(v)j , fc(u)\\ = 

= sup [min ( s u p [min ( / . (x1""'"*) , fb(v)) , fc(u))])} = 

u,S0 L V<*0 J \ 
= sup min ( sup [min ( / . (xUw) , fb(v)) , fc(w/v))] ) = 

»/o[ V»*o /J 

= sup min ( /„ (xl/w) , sup [min (fb(v), fc(w/v)))] ) = 
u*o L V v/o / J 

= sup [min (fa(x'/w), fbQc(w))] = fa^(x), 
w*0 

where the substitution w = u • v was used. • 

T h e o r e m 16. If a € K+ and s 6 S 0 n K0 then a' <E T,. 

P r o o f . For any x > 0 

/„..(x) = sup (min (f«(x1'*), f,(y))) = sup (min (f.(xl'»), f.(-y))) = 
y#o y#0 

= sup (min ( / . ((x-l)Y/z , / . ( - ) ) ) = / . . . ( x - 1 ) . D 

Corol lary. If a e K+ and s £ S 0 n K0 then a' ~ 0 (1). 

T h e o r e m 17. Let a, 6 € K+ and c € K0. Then o c 0 l c = (a Q b)c. 

P r o o f . Let us remember relations (30) and (3). Using them we obtain for any x > 0 

fac@bc = sup(mm(fac(x/y), fbc(y))) = 
!*0 

= sup ( m i n [sup.(min ( / . (x ' lVy' l 1 ) , fc(i))), sup (min (fb(y"% fe(i)))\) = 
ŷ O V Li#0 #0 J / 

= sup [sup (min [/. (x^/y*) , fb(y^'), fc(i)])} = 
v±o L-*o J 

= sup [sup (min [/„ (x^'/y4'4) , fh(v*'% / . ( . ) ] ) ] = 
i#o LJ*O J 

= sup (min [ L ( i ) , sup (min (/„ ( x ' l V y ' l 1 ) , ^ ( y ' l ' ) ) ) ] ) = 

= sup (min (fc(i), fa@b(x^'))) = f(a@b)c(x). a 

i?o 
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Some further results can be derived for transversible n . f .q . 

L e m m a 16 . Let a G R0, t € T.. Then ta G Tj and consequently ta ~ 0 t. 

P r o o f . For any x > 0 

/..(*) = 8up (min (/«01/v), /.(»))) = 
y#o 

= sup (min (/, ( / I /* ) 1 ' " ) , /„ (»)) ) = / , . ( l / x ) . • 
v#o 

Some analogies between the classical deterministic and fuzzy powers are at tractive, 

but the analogy is not universal. So, it seems natural to expect for y > 0, o g l , and 

i S T i the validity of 

a' G Ty, or at least, (y)1 G Ty. 

The following example shows that for y ^ 1 this is not generally t rue . 

E x a m p l e 3 . Let us choose y = 4, t G T., / . (1 /2) = / ,(2) = 1, / ( (x ) = 0 for 

1 / 2 ^ x ^ 2 . Then by (30) 

/<->«(2) -*/(->• (16) = 1- /(y) 'O) = 0 for 2 ^ x ^ 1 6 . 

Then evidently (j/)' ^ Tv, in our case (4)' ^ T4. 

6. CONCLUSIVE REMARKS 

Formulating and discussing some multiplicative analogies to the methods developed for 

the addition over real-valued fuzzy quantities we can see tha t the multiplication (and 

power) forms rather more sophisticated structure. The procedures used in the additive 

case without any practical limitations can be transformed to the multiplicative operation 

very carefully with consequent checking of the range of their validity. 

Nevertheless, even the results and methods presented above offer interesting tools for 

the application of (mainly linear) algebraic methods to the n. f. q. Having developed 

both, additive and multiplicative, formal apparates regarding the ari thmetics of fuzzy 

quantit ies we can also manage at least the fundamental elaboration of the additive or 

multiplicative fuzzy noise acting in realistic data processing. 

The mutual connection between addition and multiplication, represented in the crisp 

case by the distributivity, is not so,easy in the fuzzy case. Its validity in some special 

cases (cf. also [1] or [7]) does not cover the general set E of n.f .q. It is not clear yet 

if e.g. some type of equivalence (derived from ~ e and the additive equivalence [5], for 

example) could guarantee at least some weaker form of the distributivity, analogously to 

the weaker form of group properties shown in [5] and in the above sections. 

(Received November 11, 1991.) 
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