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K Y B E R N E T I K A — V O L U M E 23 (1987), N U M B E R 5 

THE MUTUAL INFORMATION. ESTIMATION 
IN THE SAMPLING WITHOUT REPLACEMENT* 

MARIA ANGELES GIL, RIGOBERTO PEREZ, PEDRO GIL 

In previous papers, the "mutual information of order fi concerning two random variables" 
was defined from the concept of conditional entropy of order p (Z. Dar6czy, 1970). The aim 
of the present paper is to approach the value of the mutual information of order $ = 2 in a large 
population on the basis of a sample drawn at random and without replacement from it. This 
purpose is achieved by obtaining an unbiased estimator of that value and estimating its mean 
square error. In addition, a contrast between samplings with and without replacement shows 
that the second one entails an improvement in the estimation precision with respect to the first 
one. Finally, we discuss the suitability of adopting the measure of order p = 2 against Shan
non's amount of information. 

1. INTRODUCTION 

Consider an experiment involving the observation of two random variables, X 
and Y, corresponding to measurable characteristics associated with each random 
choice from a certain finite population. The randomness of each variable includes 
uncertainty which usually decreases by revealing the value of the other variable. 

In order to evaluate how much information is conveyed about one of the variables 
by the other one, a usual procedure is to measure it as a reduction in uncertainty. 
When the joint probability distribution of X and Yis known, the uncertainty about 
the identity of the value of the variable X, and the uncertainty about the identity 
of the value of X when the value of Yis revealed, can be quantified by means of prob
abilistic uncertainty measures. Let H(X) and H(X | Y) denote such uncertainties. 
Then, the "information conveyed about X by Y" may be evaluated by the expression 
I(X [ Y) = H(X) — H(X | Y), that is, by means of the "mean decrease in uncertainty 
about the first variable by the revealment of the value of the second one". 

Particularly, when H(X), H(X, Y) and H(X | Y) represent respectively the entropy 

* This work was supported in part by the Comision Asesora de Investigation Cientifica 
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of order /? of X, the joint entropy of order j? of X and Y (cf. Havrda-Charvat [21], 
Daroczy [13]), and the conditional entropy of order ft of X with respect to Y (cf. 
Daroczy [13]), then l(X | Y) = H(X) - H(X | Y) = H(X) + H(Y) - H(X, Y) that 
is, the information conveyed about X by Yis a symmetric measure with respect to X 
and Y (in other words, it coincides with the information conveyed about Y by X). 
From now on, this symmetric measure will be called mutual information concerning 
X and Y, and will be denoted by l(X, Y). 

The mutual information, l(X, Y), may be applied and interpreted in different 
fields. The following are some of the most interesting applications: 

i) Consider the problem of measuring the mutual information between the presence 
of certain species and an ecological parameter or factor, or the mutual information 
concerning the presence of two species. When the entropy associated with the presence 
of the species is quantified through the entropy of order /?, then l(X, Y) could be used 
for quantifying the preceding mutual information (see [11] and [12] for the Shannon 
measures). 

ii) Consider the problem of measuring the "ecological diversity" of a finite popula
tion under a classification process X dividing it into M classes or species, when 
the population is subjected to an additional separate classification process Y that 
divides it into M' classes. If the diversity under a classification within each class 
determined by the other one is measured by means of the entropy of order /? ([5], 
[6], [7], [30], [31]), then l(X, Y) quantifies the mean decrease in diversity (or, the 
mean increase in concentration) under the Z-classification caused by the adoption 
of the additional classification process Y and conversely, the mean decrease in diver
sity under the Y-classification caused by the adoption of the additional classification 
process X. 

iii) Consider a discrete constant channel with input alphabet X, characterized 
by M symbols, and output alphabet Y, characterized by M' symbols. Then, l(X, Y) 
could be used for quantifying the information processed by the discrete constant 
channel (cf. [13]). 

iv) Consider a probabilistic questionnaire having a set of M questions and a set 
of M' answers. Then, l(X, Y) could be used for quantifying the information processed 
and transmitted by the questionnaire ([3], [15], [29]). 

2. PRELIMINARY CONCEPTS 

Statistical Inference deals with the drawing of conclusions about the. variables 
in a population on the basis of a sample from it. In this sense, this paper is devoted 
to estimate the mutual information concerning two variables in a finite population 
from the knowledge of their joint probability distribution in a sample drawn at 
random and without replacement from the population. 

In order to achieve this purpose we are going to consider the quadratic mutual 
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information, or mutual information of order fi = 2, which will allow us to construct 
an unbiased estimator. 

Consider a finite population with JV members, and let X and Y be two random 
variables in the population such that the random vector (X, Y) takes on the values 
(xt,yj) with joint probabilities pi} (i = 1, ...,M, j = 1, ...,M'), respectively. Let 

M ' M 

Pi. = £ pij (i = 1, ..., M) and p.} = £ pu (j = 1, ..., M') the marginal probability 
j = i ' ; = i 

distribution of X and Yin the population. 

According to definition and results stated by Havrda and Charvat [21] and Da-
roczy [13], the mutual information concerning the variables X and Y in the population 
can be quantified as follows: 

Definition 2.1. The value I2(X, Y) defined by 

I2(X, Y) = H2(X) + H2(Y) - H2(X, Y) = 
M M' M M' 

= 2 ( i - E p 2 - E p 2
y + E X>2-) 

i = i y = i i = i j = i 

is called quadratic population mutual information concerning the variables X and Y. 

It should be remarked that the quadratic entropy H2 has the qualitative significa
tion and essential properties in Shannon's entropy (limit entropy of order ft as 
f} -*• 1) for quantifying the probabilistic uncertainty. 

In previous papers ([36], [37]) the average conditional quadratic entropies were 
defined by the values 

M' W M 

82(x 1 -0 -2 P.JH2(X I y,) - 2 £ P,[i - £ (PM*] 
J = l J = l i = l 

M M M' 

H\Y\ X) = E P,H2(Y\ Xl) = 2 £ -,.[1 - E (PulPifl 
i = i ; = i j = i 

Applications of this concept can be viewed in [15], [36] and [37]. 

On the other hand, Definition 2 1 admits the equivalent expression I2(X, Y) = 
= H2(X) - H2(X | Y) = H2(Y) - H2(Y\X), when the conditional quadratic en
tropies H2(X | Y) and H2(Y | X) are intended as in [13] (that is, 

M ' M ' M 

H2(X | Y) = E P2jH2(X | yj) = 2 E P2j[l - E (Pij/P,)2] 
j = l J = l i = l 

H2(Y\X) =Tp2H2(Y\Xi) = 2Srf.[l - EWP.i)2]) 
i = i i = i j = i 

We have taken into account the conditional entropies in the sense of Daroczy 
since they are well adapted to the problem in this paper. More precisely, the following 
are the basic arguments justifying this consideration: 

— the strong non-additivity of the quadratic entropy H2 entails (cf. [24]) that the 
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joint entropy (uncertainty) is 
M' M 

H\X, Y) = H2(Y) + £ p2,H2(Z | yy) =H2(X) + £ p2H2(Y\ x() 
7 = 1 « = 1 

M ' M 

and hence, £. P2jH2(X \ yj) an& E P2.II2(^ I x>) could be respectively inter-
;= i ;=i ' 

preted as the entropy (uncertainty) remaining in X given the value of Y and the 
entropy (uncertainty) remaining in Ywhen the value of X is known. 

— the measure I2 in Definition 2.1 is symmetric, that is, the information contained 
in X about Yand that contained in Y about X coincide, so that it represents 
a "mutual" information. 

— in [6] the use of the conditional quadratic entropy H2(X \ Y) is justified by its 
application to evaluate the conditional diversity of a classification process X 
under the classification process Y In addition, in [13] and [15] the adoption 
of the measure in Definition 2 1 has been warranted in terms of its adaptability 
to the problems of information transmission in discrete constant channels and 
pseudoquestionnaires. 

— the measures H2(X\ Y) and H2(Y\X) are easier to estimate unbiasedly than 
R2(X | Y) and H2(Y\X), as it can be later corroborated. 

We now state some immediate properties of the quadratic mutual information 
in Definition 2.1. 

Whatever the random variables X and Ymay be, we have: 

Theorem 2.1. (Nonnegativity.) 

I2(X, Y) = 0. 

Theorem 2.2. (Symmetry.) 

I2(X, Y) = I2(Y, X). 

Theorem 2.3. (Maximum Information.) 

I2(X, Y) ^ I2(X, X) = H2(X). 

Theorem 2.4. If X and Y are independent variables, then 

I2(X, Y) = H2(X) . H2(Y)j2 . 

It is worth emphasizing that the quadratic mutual information does not vanish 
for independent variables. This circumstance must be hoped because of'the non-
additivity of the quadratic entropy from which the mutual information is defined 
(since H2(X, Y) = H2(X) + H2(Y) - H2(X). H2(Y)j2 for X and Y independent 
variables). Thus, although Shannon's entropy is additive for independent variables 
the entropies suggested in [13] and [21] do not satisfy such a property and, conse
quently, they are often called "nonadditive measures of order (i". 
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Theorem 2.5.12(X, Y) is a concave function with respect to the vectors (pi . , . . . , PM) 

and(p.1 ; ...,p.M). 

Remark 2.1. It should be pointed out that when the mutual information of order 
y? concerning two random variables X and Y is defined by IP(X, Y) = H"(X) + 
+ HP(Y) — Hf(X, Y), then the Shannon mutual information becomes the limit 
of Ip(X, Y) as P -• 1. 

3. AN UNBIASED ESTIMATOR OF THE POPULATION MUTUAL 
INFORMATION IN THE SAMPLING WITHOUT REPLACEMENT 

Following ideas in the estimation of certain population parameters, such as the 
population mean or variance, in order to estimate the quadratic population mutual 
information we first introduce the analogue estimator of that concept and we then 
construct an unbiased estimator from the analogue one. In this way, let (x, y) 
denote the random vector taking on the values (x,, y}) with joint relative frequencies 
fij(x, y) (i = 1, . . . . M, j = 1, ..., M'), respectively, in a generic sample of size n 

M' 

drawn at random from the population. Let / . . = £ / , . (i = 1, . . . , M) and / ,• = 
M j '= l 

= Yjfti 0 = -»•••> ^-"') ^ e t n e marginal relative frequencies associated with X and Y, 
t = i 

respectively, in the sample. Then, the mutual information concerning X and Yin the 
sample can be quantified as follows: 

Definition 3.1. The value I2(x, y) defined by 

l\(x, „) = Hl(x) + H\(y) - H\(x, y) = 
M M' MM' 

= 2 ( 1 - 1 r/,6,)]2 - 1 [/.,W]2 + E E EL/-. )̂12) 
i = l J ' = l < = l j ' = l 

is called quadratic sample mutual information concerning the variables X and Y. 

In order to analyze the suitability of the analogue estimate of I2(X, Y), I^(x, y), 
we first wish to point out that the random vectors (nflt,..., nfMM), ( n / j . , . . . , nfM) 
and («/ , ! , . . . , nf.M.) have multivariate hypergeometric distributions with parameters 
(N, Dn = NPll,..., DMM' = NpMM,, n), (N, Du = NPl.,..., £>M. = Npir., ") and 
(JV, D.j = iVp.i,..., D.M- = NpM., n), respectively. Then, the expected value of the 
analogue estimator over all samples (x, y) of size n in a random sampling without 
replacement is given by 

M M' M M' 

W) = 2[1 - I E(/,?) - Z E(/5) + X I E(/*)] = 
i=i j = i i = i j = i 

= (n-l)NI2(X,Y)jn(N-l) 
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Consequently, the analogue estimator l\ is consistent in the Cochran sense (that is, 
the estimate becomes equal to the population mutual information when n = JV). 
In addition, it allows us to construct an unbiased estimator of l2(X, Y), since whatever 
the sample size n may be we have 

Theorem 3.1. Let (X, Y) be a random vector in a finite population of JV members 
taking on the values (xh y}) (i = 1, . . . , M, j = 1, . . . , M'). In the random sampling 
without replacement from this population, the estimator (l~„2)c allocating to each 
sample (a>, y) of n members the value (l„2)c(&, &) = n(N - 1)l%c, ^)j(n - 1)N 
is an unbiased estimator of the quadratic population mutual information concerning 
X and Y 

Theorem 3.1 suggests the introduction of the following concept: 

Definition 3.2.The estimator (C 2 ) c allocating to each sample (x, p) of size n without 
replacement the value n(N — 1) l\(&, ij)\(n — 1) JV is called the quadratic sample 
mutual quasi-information concerning X and Y corriged by finite population. 

4. EXACT PRECISION OF THE UNBIASED ESTIMATOR 

For the sake of evaluating the precision of the quadratic sample mutual quasi-
information corriged by finite population in estimating the quadratic population 
mutual information, we now measure the mean square error of that unbiased 
estimator. 

Theorem 4.1. Let (X, Y) be a random vector in a finite population with JV members 
taking on the values (xf, y}) (i - 1 , . . . , M, j = 1, ..., M'). If (-C2)c is the quad
ratic mutual quasi-information corriged by finite population for random samples 
of size n drawn without replacement from the population, then its variance (or 
mean squared error) 

V((fn
2Y) = (N - n) {[(6 - An)N + 6(n - 1)] N[I2(X, Y)f -

- 12(n - 2) N(N - 1) P(X, Y) + 4[(4n - 7) JV - (n + 1)] (JV - 1) l\X, Y) + 
M Nf 

+ 32(n - 2) N(N - 1) £ £ PiJ(Pi. - PiJ) (Pj - PiJ)} : 
i = i y = i 

: l / ( n ( n - 1)JV (JV-2)(JV-3)) 

being P(X, Y) = H>(X) + H3(Y) - H3(X, Y) = | (1 - £pf . - £ P j + £ £p f , ) 
<=i y = i i=ij=i 

the mutual information of order /? = 3 concerning X and Y. 

Proof. Indeed, the random vectors ( n / u , ...,nfMM), (nfu,...,nfM) and 
(nf.u...,nfM) have the multivariate hypergeometric distribution mentioned in 
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Section 3, and hence 
M M' 

V((Cf) = (N- n) {16(N -n-1)- 32(N - n - 1) £ EPy + 
M M' 

+ 8iV[(6 - 4») iV + 6(n - 1)] [( £ pf) (E p2,) -
i = i j = i 

M M M ' M' MM' 

-(1P2){1 E P 2 , - ) - ( E P : > M E E 4 ) ] + 
,-=i , = i y = i y = i i = i y = i 

M M' 

+ 32(« - 2)iV(iV - 1) E E Pu(Pi.P.j - Pi.Pij - P.JPU) -
i = l J = l 

M M' 

- 16(iV - n - 1) (N - 1) E E Py}/«(» - U M * - 2) (iV - 3) 
; = i j = i 

which accounts for proving the theorem. • 
M M' 

Remark 4.1. the term £ £ Pi/p*. - Py) (p.j - Pij) in F((/^2)c) cannot only 
i = l j = l 

be expressed by means of mutual information measures of order /?, but it may be 
further expressed in terms of measures concerning another related concept in the 
Information Theory and Statistics: the inaccuracy. Thus, the preceding term equals 
I2(X, Y) [1 - H2(P; Q)/2]/2, where H2(P; Q) is the inaccuracy of order p = 2 of 
P with respect to Q, where P and Q denote the probability distribution {p,v} and 
{(p.. - Pij){P.j - PijW(X, Y)}, respectively (cf. [31]). 

Remark 4.2. Theorem 4.1 implies that the mean square error equals zero as n = N 
(i.e., when the considered sample drawn without replacement is the whole population). 
In addition, zero is the limit of the mean square error as n -> N. 

Remark 4.2 allows us to conclude that for a large sample the mean square error 
of the unbiased estimator (-C2)c is small. In addition, we can verify that the greater 
the size of the sample, the lower its mean square error is, since 

Theorem 4.2. Whatever the sample size n > 3 may be, we have 

V{(l?Y) - K(Ci) c) = -(!V - 1) {[0 -A)N+n\(N-2) V^)') + 

+ 4(iV - n) V((i;2Y)l(N - 2)}/»(n - 1 ) 0 - 2)(N - 3) 

5. COMPARING THE PRECISION OF ESTIMATIONS IN SAMPLINGS 
WITH AND WITHOUT REPLACEMENT 

In this section we are going to corroborate that the estimation of the population 
mutual information in a random sampling without replacement improves its estimation 
(more precisely, its precision) in the sampling with replacement. It should be remarked 
that the sampling with replacement may be regarded as a limit situation of the sampling 
without replacement as the size population N tends to oo (since the multinomial 
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distribution with parameter n, pu...,pk is the limit of the multivariate hyper-
geometric distribution with parameters JV, D^ = Npu ..., Dk a- JVp^andnasiV -+ oo) 
On the basis of this remark, we can state 

Theorem 5.1. In estimating I2(X, Y) the precision of (i^2)" is greater than the 
precision of fn

2 — lim(I^2)c. 
iV-»oo 

Proof. Indeed, if AFdenotes the variation V{fn
 2) - V((C2)C), we have 

AV = 2(JV - n) {(n + 1) (JV - 1) V(/2~
2) + (N - n - 1) [I2(X, Y)f} : 

: n(n - 1)JV(JV - 2)(JV - 3) + {(JV - 2) (JV - 3) - (JV - 1) (JV - n)} x 

x V(/„~2)/ (JV - 2) (JV - 3) 

and then, A V takes on a nonnegative value, whatever the sample size n may be. • 

Remark 5.1. AV converges to zero a:s JV -» oo, and this result is coherent with 
comments at the beginning of this section. 

6. ESTIMATED PRECISION OF THE UNBIASED ESTIMATOR 

As the mean square error of (-C2)c involves population probabilities of the variable 
values, this error will not be known in practice. However, this error can be estimated 
from the considered sample. We are now going to construct an unbiased estimator 
of V((/^2)c) following arguments in Section 3. 

Theorem 6.1. Let (X, Y) be a random vector in a finite population of JV members 
taking on the values (xh y-) (i = l,...,M,j = 1 , . . . , M'). If t>((L,2)c) is the estimator 
allocating to each sample (cc, y) of n members in a random sampling without re
placement the value given by 

v((i;2Y) = n(N - 1) (JV - n) {[(6 - 4n) JV + 6(n - 1)] n\l\(*, ¥)f -

- 12n(n - 1) (JV - 2) l\(x, ¥) + 4(n - 1) [(4n - 1) JV - In - l ] Iz„(a;, y) + 

+ 32n(n - 1) (JV - 2) £ £ / . / * , f) [/,.(*) - f>, y)] x 
• = i j = i 

x UM ~ fth> *)]}/(» - !)2 (« - 2) (» - 3) !V3 

M M' 

being /?,(«:, y) = H\(x) + H\(¥) - H\(x, y) = |{1 - £ [A(*)]3 - I [/,U)]3 + 
M M' i=l j = l , 

+ Z Z [ftj(a:> &)Y} t n e mutual information of order /? = 3 concerning X and Y 
•=u=i 

in the sample (cc, y ) , then, «((E, 2)c) is an unbiased estimator of V((T~2)C). Q 

Remark 6.1. Theorem 6.1 connects n with an unbiased estimator of the precision 
of (/„ 2)c . With such a connection one could readily estimate the suitable size for 
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estimating the quadratic population mutual information (and consequently the 
mutual information between the presence of species and ecological factors, the mean 
decrease in diversity, the information processed by a discrete constant channel, 
and so on), by means of the quadratic sample mutual quasi-information corriged 
by finite population, with a desired degree of precision. The estimation of this suitable 
size could be accomplished either by using a previous sampling from the population 
(in order to approximate l\(a>, p), l\(x, y), fij(x, $f), L.(V) and f.j(^)), or by using 
a sequential sampling. 

7. ADVANTAGES OF THE QUADRATIC MUTUAL INFORMATION 
AGAINST THE SHANNON MUTUAL INFORMATION 

Consider a finite population with N members, and let X and Y be two random 
variables in the population such that the random vector (X, Y) takes on the values 
(x;, yj) with joint probabilities pi}(i = 1,..., M,j = 1, . . . . M'), respectively. Let pt 

and p j the marginal probabilities of the values xt and ys in the population. 

Following Shannon, the mutual information concerning the variables X and Y 
in the population (limit of the population mutual information of order P as /? -* 1) 
is quantified by means of 

Definition 7.1. The value I\X, Y) defined by 

1\X, Y) = H\X) + H\Y) - H\X, Y) = 
M M' MM' 

= - E Pi. 1°S2 Pi. - E p.j loS2 P.J + E E Pi] log2 Pi] 
; = i j = i i = i j = i 

is called Shannon's population mutual information concerning the variables X 
and Y. 

The analogue estimator of Il(X, Y) for a random sample («, g>) drawn from 
the population and characterized by a random vector taking on the values (xh y,) 
with joint relative frequencies fij(&, g*) (i = 1, . . . , M, j — 1 , . . . , M'), respectively, 
is defined as follows: 

Definition 2.2. The value l\(a;, p) defined by 

I\(a>, ¥) = Hlfe) + H\(¥) - H\(x, w)=- £/..(<*) log-/,.(*) -
i = i 

M' M M' 

- Zf.jW) toSifJy) + E E/y(«- w) log2fy( ,̂ y) 
y = l i = i j = i 

is called Shannon's sample mutual information concerning the variables X and Y 

When we examine the expected value of l\ over all samples of size n in a random 
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sampling without replacement, we obtain 

W) - I E E(/„. loga/y) - £ E(/, loga/f.) - E E(/. log2/.) 
i = U = l ; = l y = i 

Nevertheless, an exact relation, irrespective of the variables X and Y cannot be 
established between E(/y l og 2 / y ) and E(/y) log2 E(/y) = pn log2 pip and so on. 

The preceding argument leads to the following conclusion: An unbiased estimator 
of Shannon's population mutual information irrespective of the concerning 
variables X and Y cannot be immediately defined from Shannon's sample mutual 
information. 

In the same way, if If and if denote respectively the population and sample mutual 
information of order yS (where /J 4= 1,2) which can be defined in a similar form 
following Daroczy [13], to state exact relations between E(l£) and / ' is either impos
sible or more complicated. 

8. CONCLUDING REMARKS 

The results we have just expounded could be used for estimating the information 
conveyed by a random sample about its corresponding population with respect 
to a random variable. 

On the other hand, the study in this paper was developed in a previous paper [19] 
for the random sampling with replacement and it might be accomplished for the 
stratified random sampling, which would provide greater precisions. In the same way, 
the estimation of the population mutual information could be examined for the 
case when the adopted sampling is not random. 

It is worth remarking that in [27] we have recently analyzed the problem of estimat
ing the uncertainty associated with a random variable in a finite population in both, 
the samplings with and without replacement. This analysis leads to a conclusion 
similar to that in the present paper: the quadratic entropy, or entropy of order 
P = 2, is the best adapted for the random sampling and, consequently, it is more 
suitable than Shannon's entropy in such a situation. 

Another interesting study leading also to similar conclusions would be determined 
by the estimation of the unquietness associated with a random variable in a finite 
population, which could directly be applied to the estimation of the income inequality 
in a large population (cf. [8], [10], [14], [16], [17], [18], [26], [33], [35] and [38]. 
This study has been introduced in [28]. 

Finally, it should be emphasized that the research about the unbiased*estimation 
of the mutual information could be complemented by examining the asymptotic 
distribution of the estimators, following ideas in [23] and [39], and using results 
in [7]. 
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APPENDIX 

MOMENTS OF THE MULTIVARIATE HYPERGEOMETRIC 

DISTRIBUTION 

Let (nu ..., nM) be a random vector with multivariate hypergeometric distribution, 
where JV, D± = Npt,..., DM = NpM and n are the corresponding parameters. Then, 

E(n.) = npi 

E(nf) = (JV - n) nPi[N(n - 1) Pij(N - n) + 1]/(JV - 1) 

E(»f) = (N - n) nPi[N2(n - 1) (n - 2) p2j(N - n) + 3JV(n - 1) Pi + N - 2n] : 

: ( J V - l ) ( J V - 2 ) 

E(nf) = (JV - n) np£JV3(n - 1) (n - 2) (n - 3) p3J(N - n) + 6(n - 1) (n - 2) x 

x N2p2 + N(n - 1) (7JV - l ln + 1) Pi + N(N + 1) - 6n(iV - n)] : 

: (N - 1) (JV - 2) (JV - 3) 

E(ninj) = Nn(n - 1) Pipjj(N - 1), i + j 

E(n2n2) = n(n - 1) JV2(JV - n) piPj[N(n -2)(n- 3) piPjj(N - n) + 

+ (n - 2) (Pi + Pj) + (N-n- 1)/JV]/(JV - 1) (JV - 2) (JV - 3), 

i*J 

E(nfn,-) = (JV - n)N2n(n - 1) piPj[N(n - 2) (n - 3) P]\(N - n) + 

+ 3(n - 2) Pi + (N -2n + l)/iV]/(JV - 1) (N - 2) (N - 3), 

i * J" 

E(n?n,n,) = (JV - n)JV2n(n - 1) (n - 2) p ^ - f t ^ n - 3) pf/(JV - n) + 1] : 

: (JV - 1) (JV - 2) (JV - 3) j *i,k* i,j 

E(nin;ntn,) = N3n(n - 1) (n - 2) (n - 3) ptPjpkPil(N - 1) (JV - 2) (JV - 3), 

j =i= i; fc =1= i, J ; 1 + t , j , k 
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