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KYBERNETIKA- VOLUME 23 (1987), NUMBER 5 

EFFICIENCY RATE AND LOCAL DEFICffiNCY 
OF THE MOST POWERFUL TESTS IN THE MODEL 
OF CONTAMINACY WITH GENERAL NEIGHBOURHOODS 

JAN AMOS VISEK 

Efficiency rate and local deficiency for the most powerful tests in the model of contaminacy with 
general neighbourhoods are found. These two means compare behaviour of different statistical 
procedures (in this case — tests) from a family Sf with respect to an apriori given probability me
asure, i.e. they may be applied e.g. to find an optimal member of S? with respect to a given 
level of contamination (in the case then Sf is not a family of optimal procedures with respect 
to the considered model of contaminacy (see [7])) and characterize losses we incur when selecting 
the procedure which does not correspond to actual level of contamination. 

1. INTRODUCTION 

Let us recall that it was in 1964 when P. J. Huber introduced new families of tests 
and estimators of location. Each member of these families was related (or optimal 
in some sense) to one fixed contamination level. 

Had we learnt the actual contamination level we could have selected the pertain
ing optimal procedure, if any (with respect to considered model of contaminacy). 
Generally, we do not know contamination level and hence we select a procedure 
relying on our idea (or if you want our guess) of contamination level. Then, we 
could try to introduce a measure which compares the behaviour of the selected 
statistical procedure with the best one in the case of a fixed contamination level or, 
more precisely, in the case of known corresponding least favourable distribution. 
One possible measure of this kind is the local deficiency introduced in Section 3. 

Another measure which we shall consider is the efficiency rate; it could be suitably 
used, e.g. for the study of minimum distance estimators in the framework of the 
contamination model — see [7]. 

From what was said follows that efficienty rate and local definciency are characte
ristics of (robust) procedures dual to the Hampel's influence curve and power and size 
dependency (see [8]). 
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While Hampel's characteristics measure the sensitivity of a given statistical procedure 
to a change in the model, our characteristics compare different statistical procedures 
in a fixed model (see [7, 8] for a more detail discussion and explanation). 

2. NOTATIONS 

Let N denote the set of all positive integers and R the real line being endowed 
with the Borel cr-algebra 8$. Let (3C, %!) be a measurable space and M the class of all 
probability measures on it. For any P e M let P (n ) denote the product measure on 
the corresponding product space. Finally, A0 will denote the interior of a subset A 
of a topological space <W. 

3. DEFINITION OF EFFICIENCY RATE AND LOCAL DEFICIENCY 

Definition 1. Let P and 0 be linearly ordered topological spaces and Sf = {SP,}?e r 

and "W = {^fl}e€6) a family of statistical procedures and a family of subsets of M, 
respectively, such that for any 0O e 0 ° we have 

-**, - U &e = n SP» • 
0S8O 9 g e 0 

Moreover let C(y, 9): r x 0 -> R be a statistical characteristic of the statistical 
procedure SPy with respect to a class 3P6. Then if for some (y, 9) e F x 0 there 
exist a limit 

hmC(V,9)-C(y,6) 
v-y v - y 

we shall call it the efficiency rate of the family Sf with respect to "W at the point 
(y, 9) and denote it by ER(y, 9). Moreover let for some 9 e 0 there are point(s) y, = 
= yt(9) e r such that ER(yu 9) = 0 for i = 1, . . . , fe, and neighbourhood(s) 0(y^ 
such that for all v 6 0(y,) ER(v, 9) exists. If then exist(s) limit(s) 

Km £-&*) = (̂0) 
v - y , V - 7 ; 

we shall call lj(9) = min Zf(0) the local deficiency o$Sf with respect to 'W at the point 

0 and denote it by LF(9). In this case we shall say that the SPyj is the optimal 
procedure in S" for &>e. 

Remark 1. As we shall see later the typical case is with k = 1, i.e. in the family Sf 
there is just one procedure with efficiency rate equal to zero for given contamination 
level (see also [7]). 
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4. MODEL OF CONTAMINACY 

In what follows we shall use the general neighbourhoods model of contaminacy 
(see [3]). Let us recall it in a form suitable for our purposes. 

Let for i = 0, 1, P, e M, P 0 4= P . be fixed and let s,: [0, 1) -> [0, 1) and <5,[0,1) -> 
-• [0, 1) be continuously differentiable and strictly increasing mappings such that 
for any T e (0, 1), £,(T) + <5,(T) e (0,1), 6,(0) and <5;(0) = 0. Then put 

^ ; ( T ) = {Q e M: Q(B) £ (1 - e,(t)) P,(B) - <5,.(T) for all Z 7 e ¥ } . 

Let us restrict ourselves to J <=• [0,1) such that, for all ^eI, 

^ 0 ( T ) n £? . (T) = 0 . 

5. CLASS OF TESTS 

It has been proved by Rieder in [3] that, in the above framework, there exists 
a family of the most powerful tests, say {^„,a,t}„eN>ae(0)i),tEr (yn.*,t: &" ~» [°> !]) f ° r 

testing Jf t: Q e ^ 0 ( T ) against s/x: Q e &&c). Then we have 

sup EQYnAtX g a 
Qe3»o(t) 

and 

( 0 inf EQf „>it>, = sup inf Egf , 
Qea»i(t) « re# ,„,« t. QS3>I(T) 

where 

•^„,..t = {V: 3Cn -+ [0, 1] , sup EQ<P g «} 
Qe3»o(t) 

and EGfBi„(. denotes the mean value of !P„a)t with respect to the product measure 

11 Si (defined on the corresponding product space) with Q, = 6 for all i. 

Let us recall that TnAti is in continuous case of the form 

1 x J * 6 S - » : £ l o g f e f e ) z c a a l , 

^ i * ) = <( <• i = 1 d20r(*i) " J 
0 otherwise, 

where ( 8 0 t , Qu) is a least favourable pair of distributions with respect to (0>o^), 0 \ ( T ) ) 
and c„>a>t is chosen so that 

E Q o t ^ . a > t = « 

(For the definition of the least favourable pair see [3]; a way how to find this pair 
will be recalled later.) 

The following illustrative example will give more motivation to what was said 
in Introduction. 

Le tP 0 = ^"(0 , \ ) ,P 1 = Jf(\, 1),£O(T) = et(T) = 2C50(T) = 2<5t(T) = % andn = 40. 
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Now let us assume that T = -03. Then we may construct for all a e (0, 1) the test 
*r4o,«,.o3- The full line in Fig. 1 presents the dependence of the second kind error 
probabilities on the first ones. (Let us call this curve "the assumed".) But if the 
actual value of T is -05 then the test¥4o,«,.o3 will have the dependence of the second 
kind error probabilities on the first one given by dashed line. Finally having learnt 
that the actual value of T is .05 we could construct the test ¥40,,., .os which would 
have better performance under this actual value of T then the test 5Pr4.o,*,.o3- These 
attainable (i.e. the best possible for T = .05) values of the second kind error probabili
ties (in dependence on the value of the first kind ones) are drawn by dotted-and-d ashed 
line. 

.075 

.025 

.025 .050 .075 .100 

Fig. 1. The assumed ( ), actual ( ) and attainable ( ) dependence of the second 
kind error probabilities on the first kind errors. 

Now we see that while a "difference" between the assumed and actual curve of 
dependence can be characterized by means of size and power dependency (see [5, 6]), 
the difference between the actual and attainable curves of dependence can be measured 
by the local deficiency. It seems that for testing statistical hypotheses the help of the 
both tools — size and power dependency as well as efficiency rate and local deficiency 
is of the same importance since we need to have an idea about possible actual and 
attainable values of the first and second kind error probabilities with respect to the 
assumed ones. On the other hand, in the case of point estimation, the efficiency rate 
and the local deficiency may be more useful than the influence curve in the practice 
(cf. [7, 8]) since it is usually sufficient to know that the performance of selected 
estimator is not too much worse than the performance of the best possible one without 
having at hand precise knowledge, e.g., about actual value of the asymptotic variance 
of the used estimator. 
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6. EFFICIENCY RATE AND LOCAL DEFICIENCY FOR ROBUST 
TESTING SCHEME 

In this section we shall first describe the concepts introduced in Definition 1 in the 
robust testing framework. Then we shall derive the formulas for the efficiency rate 
and the local deficiency and give a graph of the local deficiency in a special case. 

We shall see that the supremum of the probability of the second kind error p(v, P) 
over ^ ( T ) is not convenient as a statistical characteristic C(v, T). Actually, using the 
test f BO,ao,v (of sample size n0 and test size a0) instead of ^naA0,% changes not only 
the probability of the second kind error but also that of the first kind error. Hence, 
we have to define a statistical characteristic in a little more complicated way. 

Let us define as a statistical procedure STV the class of tests {x¥„A,v}„m,xtiw,iY i-e-
& = {{^B,<r,v}BeN,«e(o,i)}ve/- As a family W we shall consider {^i(v)}veZ. Now 
fixing a0 e (0,1) and n0eN (large enough — it will be specified later) we define 
C(v, T) as follows. Put 

P„0(v,x,P)=l-EPV„aM,v 

where a0(v, T) is given by 

OE0(V, T) = sup {a: EQoW„0,x,v < a0} . 

(Let us recall that Q0z is the first component of the least favourable pair (Q0t, Qu) 
of the (8P0(x), ^ I ( T ) ) - see the previous paragraph.) Then we might assume C(v, T) 
to be sup P„0(v, T, P). But this supremum is not easy (if not almost impossible) to 

PesJ»i(T) 

evaluate; hence we use the asymptotic approximation of it and denote it by AP(v, T, P). 
So, denoting by $ the distribution function of the standard normal law and for 
a e (0,1) by ux its upper a-quantile, we have 

(2) AP(v, T, P) = $ (U«° Jfy*rQ* W*(X)J + " ° / 2 EEe°- w*(x) ~ EPW*W\ 
\ x/fvarp wv(x)] ) 

where wv(x) = log (d6 lv(x)/dQ0v(x)). Then we put 

C(v, T) = sup AP(v, T, P) . 

Now we need to recall the form of the least favourable pair (see [3], Lemma 4.4 
and Theorem 5.2). 

Let A e dPtJdP0 and put 

( . £;(T) + (5/T) . . (5/T) . _ , 

vfc)^-— YY and mMm\ /x» l = 0 > i - • 
1 - £((T) 1 - £;(T) 

Then there exist (unique) A0 and At satisfying 
(3) A0z P0(A < A0t) - Pt(A < A0r) -= v. + co0A0z 

and 

(4) PX(AU <A)- AUP0(AU <A) = v0Au + w. . 
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Denoting by p0, pu q0t and qlt the densities of P0, Pu Qoz and Qu, respectively, 
with respect to a cr-finite measure fi it holds 

— = min {max {A0r, A,}, Au} Qoz + 6i t a.e., 
?0t 

«o. = (1 - £o) Po P a.e. on {A0t ^ A <, Alz} , 

(1 - e0) Pl A0z
x < a0t = (1 - e0) p 0 /* a.e. {J < J 0 t } , 

(1 - e0) Po <. q0z <(l- s0) Pl A~lz
x p. a.e. {d l t < A} , 

Q0z(A < A0z) = (1 - 60) P0(A < Jot) - h . 

Q0z(Alt <A) = (\- so) P0(Alz < A) + e0 + 50 , 

QU(A < A0z) = (1 - £ l ) P,(A < A0t) + e1+S1, 
and 

Qlz(Alz <A) = (1- Sl) P,(Alz < A) - 5, . 

For evaluation of the efficiency rate (and of the local deficiency) the following 
lemmas will be helpful. 

Lemma 1. A0r is increasing in T (AU decreasing). 

Proof. Let T1 > T0. Putting 

ioli) = (VJ(T) + CO0(T) . t)'1 [t. P0(A < t) - Pt(A < ij\ 

we obtain an increasing function of t e R for any zel (see [3], Lemma 4.4). Moreover 

we have ¥0z(A0z) = 1- Since vi(T) and OJ0(T) are strictly increasing in T we arrive at 

•AotX^Oto) < "Aoto^Oto) • 

Now the monotonicity of i/'0tl implies A0zt > A0zo. • 

Since in what follows we shall integrate repeatedly over the sets {t: 0 <. pi(t)/Po(t) = 
S A0zo} and {t: A0zi ^ Pl(t)lPo(t) < A0zo} for some Tt < T0 let us denote them 
by S(T 0) and S(T1% T0), respectively. 

Lemma 2. A0t (and A lt) is continuous in T. 

Proof. Let T < T0. Expressing the defining equation (3) in the form 

^ot Js(t) Po(t) dfi(t) ~ Js(t) Pi(t) Mt) = vi(t) + CO0(T) A0t 

and subtracting this expression from the analogous one for T0 we obtain 

"̂oto JS(tt,t0) Po(t) Mt) + (^ot0 ~ ^ot) JS(t0) Po(t) d[i(t) - JS(tl>t0) Pl(t) dfi(t) = 

= Vi(T0) - VJ(T) + [CO0(T0) - O)0(T)] .d0to + <O0(T) [A0zo - A0z] • 

Rewriting the last equation we have 

(5) A0zo JS(tl>t0) p0(t) dfi(t) + [A0to - A0z] {JS(to) p0(t) dfi(t) - CO0(T)} -

- Js(t„to) Pi(t) dn(t) m V I (T 0 ) - V,(T) + [CO0(T0) - O)0(T)] A0ZO • 
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Since for t e S(r, T0) we have pt(t) g p0(t) - O t o it follows that 

(6) fe„.*, {Po(t) ^o,0 " PM dfi(t) _ 0 . 

On the other hand from (3) we can derive 

^Or fs(to) Po(t) Mf) - VX(«) + W0(T) _ 0 t _ _0(T) _0r . 
i.e. 

(7) J ^ P o ^ d ^ - c o ^ ^ O . 

Making use of (6), (7) and Lemma 1 we get from (5) 

(8) 0 g [A0t0 - _ „ ] {W o ) Po(t) d»(t) - _ 0 ( T ) } = 

_ V!(T0) - Vj(T) + [C00(T0) - C00(T)] A0t0 . 

Since vx and co0 are continuous we have obtained the continuity of _ 0 t from left. 
Similarly we may find continuity of _ 0 t from right as well as the continuity of Alt. • 

Lemma 3. In the above given framework we have 

(9) - 4 * = {P0(_ < _„) - o,0(T)}- { ^ + ^ . J 
dT (dT dT J 

and 

(10) *£ = - {P0(„ > Alt) + v0(T)}- | ^ _ l t + d ^ } . 

Remark 2. The relations (9) and (10) seem to be at the first glance somewhat 
asymmetrical (in this form — as we shall see from proof of them they are consequences 
of (3) and (4)). Using (4) relation (10) can be transformed e.g. on 

d^=-{P1(_>_ l t)-„ l (T)}-_ l t{^_ l t+
d^} . 

Nevertheless this relation is not also completely symmetrical to (9). It is due to fact 
that A e dP«/dP0, i.e. A: R -> [0, oo). 

P roof of Lemma 3. We may rewrite (5) (for T < T0) into 

(11) ls(,,,0) K , 0 ~ ^) Po(t) dn(t) + [A0to - _ 0 t ] {JS(t0) p0(t) dfi(t) - „ 0 ( T ) } -

= V^TQ) - VJ(T) + [O)0(T0) - _ 0 ( T ) ] ^o,o • 

Moreover due to continuity and positivity of the function 

Js<,') Po(t) dn(t) - _ 0 ( T ' ) 

in T' on the interval [T, T 0 ] we may find an M > 0 such that 

(12) lS(,.)Po(t)d/.(t)-~0(T')_M 

for all T' e [T, T0] . Now using (8) we obtain 
0 _ [_0to - _0t] . M S VX(T0) - VI(T) + [O>0(T0) - CO0(T)] _ 0 t o 
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which implies that 

ц m s u p M____- A " 
T - T 0 

and finally that 

(13) Km sup JS(_ _o) (___*______) P o(.) d M( () < 
t-»to_ T 0 — T 

< lim sup -*-_-_--J___ j s ( t t o ) p o W d / . ( i ) __, 0 

t-> t o - T 0 — T 

Now taking into account (11), (12) and (13) one easy finds that 

___ __«__________. = {P0(_ < A o z o ) - _ 0 ( T 0 ) } - J ^ + p A J . 
t-to_ T - T0 {d.X0 dT 0 J 

Similarly, derivation of the limit from the right is also straifhtforward and gives 
the same value. Q 

Now let us turn to evaluation of the efficiency rate for our class of tests. It follows 
that for n0 large enough — due to the factor Jn — we reach supremum in (2) for 
such a P e -^(T), if any, for which the difference 

(14) EQo_wv(.)-.EPwv(.) 

attains its maximum. To be able to find such probability let us recall that another 
form of the definition of ^.(T) (i = 0,1) is the following one: 

_.,(.) = {Q e M: \\R - _|| < <5„ R e {S e M: S = (1 - £,.) P. + etH; H e M}} 

where || || denotes total variation. For the simplification of notation let us put zt(x) = 
= log Atx for i — 0,1. Rewritting (14) into 

_0(v){e0t(_1 < _t0v) - P(A < A0v)} + .{(„_Uov,,lv]} {wv(0dQOt(0 - wv(.)dP(f)} + 

+ _1(v){Q0 t(_ l t<_.)-P(_1 l t<_)} 

we may easy find that 
sup {EQo_wv(f)- EPwv(0} = 

_3_ , ( t ) 

= z0(v) {Q0t(z1 < A0v) - [1 - £,(.)] Pt(A < _0v) - £I(T) - ..(T)} + 

+ _*(,:__[_„.._„],{[1 - «(*)] . [Po(t) - Pi(t)] Wv(f) d/l(f) + 

+ z_(v) {Q0z(Au < A) - [1 - E(T)] P_(_1V < _) + __(T)} . 

Let us denote the corresponding probability measure Rv,t, i.e. we have 

sup {EQo_ wv(t) - EP wv(t)} = EQo_ Wv(t) ~ -*v.. wv(t) . 
FeS'.(t) 

Now let us denote by a(v, T) 
(15) {«_,. varQ'0t wv(f) + „0'

2[EQo_ wv(f) - ERv._ wv(t)]} var",1'.2 w,(t) 
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and by #(t) the density of the standard normal distribution #. Then we have 

(16) ER(v, T) = lim * ( < M ) ~ <K«(v^)) , ^ t ) ) df^r) 
»->v 9 — v dv 

if the last derivative exists. It implies that we shall need to find 

lim Eeo, w°(x) ~ Eeo, w*(x) > 

8-.V 0 - V 

lim E R " - W " ^ ~ E R - T W V ^ 
8->v 0 - V 

lim Varg0- w'(*) - V a r g°- Wv^ 
e-v 0 - v 

and 

l i m ^rRe,rW$(
X) ~ V a r f iv , Wv(X) 

e->v 0 - V 

(denote these limits D0(v, T) , Dt(v, T) , »%(v, T) and Wt(v, T) , respectively). Let us 
evaluate at first Z>0(v, T) . We have for 0 > v 

EGo, w*(x) ~ EQo« wv(x) = 

= [zo(0) - z0(v)] {(1 - a0(T)) P0(A < A0v) - «50(T)} 

( ! - £oW)J(t:^[d„v,JO9]}(zo(0) - Wv(x)) Po(x) dfl(x) + 

+ ( l - EO(T))J { ( :^1 O , ,1 V ] }(Z1(0) - Wv(x))p0(x)d/.(X) + 

+ [z ,(0) - Z l (v) ] {(1 - £ O ( T ) ) P0(A1V <A) + £ O ( T ) + 50(-c)} . 

One may verify that 

l i m W w . . ] } (zo(0) - wv(x)) Po(x) dfi(x) = 0. 
«-»v+ y — v 

Hence 

(17) lim - - - - [EQ o t wfl(x) - E ^ wv(x)] = 
8->v+ 0 — V 

= [ ^ ] {(1 - «o«) Po(-1 < Ôv) ~ *oM} + 

+ [ ^ d 0 ~ l { ( 1 - £ o W ) P o K < ^ ) + £o(r) + <5o(r)}. • 

Similarly we can find the analogous limit from the left and finally we obtain that 
D0(v, T) is equal to the right hand side of (17). Almost the same way gives 

H*> *\ = [ ^ f ] {(1 - -<f)) -M-l < -W + et(r) + 5.(T)} + 
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»T0(v, т) = 2 Г ^ Л z0(v) {(1 - Єo(т)) Po(A < A0v) - ð0(x)} + 
L dö J 9 = v 

+ 2 [ - - ^ zi(v) {(1 - «,(-)) Po(.4., < .4) + в0(т) + «50(т)} -

- 2D0(v. T) . EQot wv(x) 
and 

Wl(v, T) = 2 ^ ) | 2 o(v) {(1 - 8I(T)) Pl(A < A0v) + «.(t) + *.(*)} + 

+ 2 ^ ^ ® | Z l(v) {(1 - £ I (T) ) Pl(Alv <A)- «.(T)} -

- 2 . J D 1 ( V , T ) . E R V , I W V ( X ) . 

Theorem 1. The efficiency rate for above defined family y with respect to #" is 
equal to </>(a(v, T)) . (da(v, x)jdv), where a(v, T) is given by (15) and 

(18) Mvr) = w / x ) ]_1 [{Ha i var_ol/2 Wv(x) %(v> f) + 

dv 

+ ny\D0(v, T) - D.(v, T)]} v a r ^ , wv(x) - {ua varQ£ wv(x) + 

+ "o/2[EQot wv(x) - ERv,r wv(x)]} . J var-v</2 wv(x) . Wtfv, t)] . 

Proof. Using the above arguments the proof follows from (15) and (16). • 

Lemma 4. For any x el there exists T* such that £ R ( T * , T) = 0. 

Proof. Our family y is optimal for if in the sense that Sf includes the most 
powerful tests, and hence had we chosen C(v, T) to be equal precisely to the supremum 
over ^ ( T ) of the second kind error probabilities we would have ER(x, X) = 0. 
Now, since the convergence of the distribution function of our test statistics to 
the normal one is uniform (over x from a compact subset K of/) we have ER(x', x) < 0 
and ER(x", T) > 0 for some x < x < x" and n0 sufficiently large. The rest follows 
from the continuity of all functions in (18). Q 

Remark 3. From the proof of previous lemma we have T* = x. This fact may be 
illustrated by the following table in which the values of £ R ( T , T) are given for the 
framework: 

n0 = 40 P 0 = JV(0,1) P l = Jf(\, 1) <x0 = .10 

s(x) = T 5(x) = \x (both functions defined on I = [0, .1]) 
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TaЫe 1. Efficiency гate ER(т, т). 

т -01 -02 •03 •04 •05 

ER(т) 5-0. 1 0 " 6 5-6. 1 0 " 5 3-9 . 10~ 4 1-8. 10~ 3 6-6. 10~ 3 

Theorem 2. The local deficiency LD(x) exists and is approximately equal to 

(19) ^ ' T » [ ^ " v _ t 

where d2(a(v, T))/dT2 is yielded by a straightforward computation from (15). 
The proof is transparent and hence will be omitted. 

For the framework given a few lines above the expression (19) was evaluated 
for a few values of x from [0, 1] and the corresponding graph is offered in Fig. 2. 

Fig. 2. Dependence of local deficiency LD(T) on T for the most powerful robust test under the 
framework given before Table 1. 

Remark 4. The fact that LD(x) is increasing in T may be surprising noting that 
LD(e) is decreasing in £ in the case of location estimation — see [7]. The source 
of the mentioned increase lies in the following: Since the "centres" of hypothesis and 
alternative are fixed (i.e. P0 and P t are fixed) the increase of x implies the increase 
of the second kind error probabilities in such a way that it causes increase of LD(x). 
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7. CONCLUDING REMARKS 

From the above text it seems that the definition of the efficiency rate is only a tech

nical matter. For an example of practical usefulness the reader is referred to [7]. 

The local deficiency may be used directly for building up an idea about behaviour 

of the statistical characteristic C(y, 9) in a neighbourhood of "the optimal point 

y(0)" using an approximate relation 

2[C(y, 0) - C(y(0), 0)] £ LD(9) (v - y(0))2 . 

To see a possibility of utilization of the local deficiency for comparing statistical 

procedures the reader is again referred to [7]. 
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