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KYBERNETIKA- VOLUME 21 (1985), NUMBER 6 

A CONVERGENT ALGORITHM 
FOR SOLVING LINEAR PROGRAMS 
WITH AN ADDITIONAL REVERSE CONVEX CONSTRAINT 

LE DUNG MUU 

An inequality g{x) 2i 0 is often said to be a reverse convex constraint if the function g is conti­
nuous and convex. The feasible regions for linear program with an additional reverse convex 
constraint are generally non-convex and disconnected. 

In this paper a convergent algorithm for solving such a linear problem is proposed. The 
method is based upon a combination of the branch and bound procedure with the linearization 
of the reverse convex constraint by using the cutting-plane technique. 

1. INTRODUCTION 

The problem, denoted by (R), to be considered is 

(1.1) Min/(x) 

(1.2) s.t. Ax ^ b 

g(x) ^ 0 

w h e r e / : R" —> R1 is a linear function, g : R" -* R1 is a convex function and A is an 
m x n matrix. We shall assume that the constraints (IT) define a polytope, i.e., 
a bounded polyhedral convex set. Since the constraint (1.2) would be convex if the 
inequality were reversed, it is called a reverse convex constraint. So Problem (R) 
differs from an ordinary linear program only by an additional reverse convex con­
straint. However, it is this additional constraint which causes the main difficulty 
of the problem, because the feasible set (IT), (1.2) is no longer convex, nor is it 
necessarily connected. 

A number of problems in engineering design, control theory, operation research 
(e.g. resource allocation problems where economies of scale are prevalent), comple­
mentary geometric programming can be given in the form of Problem (R). The more 
details about the nature of practical problems which lead to the problem of this 
rather special type can be found in [ l ] - [ 4 ] and [7], [8]. 
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Note that any concave program of the form: 

(C) Min G(x) 

s.t. Ax ^ b 

(where G : R" -* Rl is a concave function) can be converted into a Problem (R) 
by writting 

Min z 

s.t. Ax ^ b 

z - G(x) ^ 0 

Thus, there is a very close connection between concave programming and linear 
programming with an additional reverse convex constraint. This suggests that ideas 
and methods of concave programming could be useful for the study of Problem (R). 
In fact, Tuy cuts (see [10]) originally developed for solving Problem (C) have been 
applied by some authors (see e.g. Hillestad and Jacobsen [6]) to optimization problem 
with reverse convex constraints. Although the convergence of cutting methods 
of this kind is still an open question, Hillestad and Jacobsen [6] have reported 
successful applications of Tuy cuts to problems that would be otherwise unapproach­
able. 

In this paper we shall present a branch and bound method for solving Problem 
(R) which borrows essential ideas from the cone splitting method first proposed 
by H. Tuy [10] and further developed by Ng. V. Thoai and H. Tuy [9] for solving 
the concave minimization problem. Our method proceeds according to the same 
scheme as that of Thoai and Tuy's. Namely, starting from an initial cone containing 
the feasible set, we split it into smaller and smaller subcones. Then subcones are 
fathomed by bounding operations based on Tuy cuts. If some step occurs where all 
the generated subcones have been fathomed, the incumbent (i.e. the current best 
known feasible solution) gives an optimal solution. Otherwise, the algorithm generates 
a sequence having a limit which is an optimal solution of the problem. The method 
is thus guaranteed to converge, without any condition imposed upon the data, 
apart from the boundness of the set defined by the linear constraints (1.1). 

2. DESCRIPTION OF THE METHOD 

Denote by S the polyhedral convex set defined by the linear constraints (1.1) 
and assume that this set is nondegenerate. 

The algorithm we now propose for the solution of the Problem (R) is a procedure 
of the branch and bound type. The outline of this method had been used in [9] 
for minimizing a concave function over a polytope. At each step of the algorithm 
a certain collection of cones must be examined and three basic operations must be 
performed: 
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1) Compute for each new cone C a suitable lower bound n(C) of the objective 
function/over F n C(F denotes the feasible region of the Problem (R)). 

2) Split a cone into two smaller cones. 
3) Investigate some criterions for deletion of a cone. 

We shall specify later the precise rules for these operations. Assume for the moment 
that these rules have been defined. Then the algorithm can be described as follows: 

Initialization. Solve the following linear program by the simplex method: 

(L) Min {f(x) : Ax < b} . 

Let s° be the obtained solution of this problem which is a vertex of the set S. If s° e F, 
stop: s° is an optimal solution of (R). 

Otherwise, denote by C0 the convex polyhedral cone generated by n rays emanating 
from s° and passing through n extreme points s1 , . . . . s" of S adjacent to s°. Let 
(6o = {Co} and compute a suitable lower bound of /over F n C0. 

If a point of F is available, let x° be the best one currently known and let y0 = f(x°). 
In the contrary case let y0 = oo. The feasible points of the Problem (R) may be 
generated when we solve the linear program (L) and when we compute the lower 
bound of/. 

Step k (/< = 0,1 . . . ) . Delete all C e ^k if either there is no point of F in C or the 
best point of F in C is already known. 

Denote by 0tk the set of remaining cones. If fflk = 0, stop: xk is an optimal solution 
if 7k < °°> F = 0 if yk = oo. 

Otherwise, if Mk + 0 then select Ck e Mk with the smallest n(Ck). Divide this 
cone into two smaller subcones Ckl and Ckl such that Ck = Cki u Ckz. 

For each i = 1,2 compute a lower bound fi(Cki) o f / o n F n Ckr These operations 
may generate some new feasible points. Let xk+i be the best among xk and all newly 
generated feasible solutions and let yk+1 =f(xk+1) be the new current best value. 
Form the new set cgk+xhy substituting Ckl and Ckl for Ck in 0lk, then go to step k + 1. 

Understandably, the convergence as well as efficiency of the above algorithm 
depends upon the concrete rules for the bound estimation, the bisection and for the 
deletion. We proceed to describe these rules in the next part of this section. 

Firstly, let us compute a suitable lower bound of/ on the intersection of a cone C 
(vertex at s°) with F. 

Denote by T the simplex defined by the extreme points s1, ...,s" of S adjacent 
to s°. Let i>; be the intersection of T with the j th edge of C. Let 

(2.1) tj = max {t: g(s° + t(vJ - s0)) S 0} 

Since g(s°) < 0 and g is convex on R", tj > 0 for each j e { 1 , . . . , n). 

Let Jc = {j : 1 <. j g; n, tj < oo} and 

(2.2) yJ = s° + tj(vJ - s°) jeJc 
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and denote by a c the largest lower bound of / on C n F, which is available for us. 
Since /(s°) = Min {/(x) : x e S}, <xc ^ f(s°). 

Now, a lower bound of/ on C n E may be computed as follows: 

{
co if J c = 0 
Max {ac, min / (y )} if f(S0)*f(v>) V i e J c 

JeJc 

ac otherwise. 

Lemma 2.1. The just defined fi(C) is a lower bound of/ on C n F. 

Proof. If J c = 0 then by the convexity of g we have #(x) < 0 for all xeC. Hence 
F nC = 0. 

Now, by virtue of the choice of ac, it will suffice to prove the lemma when n(C) = 
= Min {f(yJ) : j e Jc) and ju(C) > ac. In this case using the linearity of / we can 
choose for each i$ Jc a point u! on the edge passing through v' (i $ Jc) so that 

/(»') = Kc)-
Denote by Kc the hyperplane defined by yJ (j e Jc) and u' (i $ Jc) and by Kc 

the open halfspace determined by Kc containing s° and by Kc its complement. Then 

C n S n Kc c e o {s°, y , u1' : jf e Jc, i £ J c} 

where co A stands for the convex hull of A. 

Let x be any point of C n S n X c then 

x = a„s° + X a,-/ + £ aj«'' 
ye^c i#Jc 

with a* ^ 0 for every k and a0 + £ a,- + ^ af = 1 . 
J E J C i(fjc 

From this and the convexity of g and from x e Kc, it follows g(x) < 0. This 
implies F n C ^ Kc . Hence, if x is any point of C n F, the segment (s°, x] must 
meet Kc at a point v e (s°, x] . 

Since / is linear and / (x) ^ /(s°) we have 

(2.4) f(v)<f(x). 

On the other hand 

f(v) ^ Min {/(x) : x e co {/', a ' : j 6 J c , i §§ Jc} = fi(C) . 

This and (2.4) imply f(x) > /i(C). D 

There are several ways how to compute a lower bound of / over C r\ F besides 
(2.3). The following lower bound seems to be suitable: 

(2.5) n(C) = Min {/(x) : x e S n /J+ n C} 

where Hc is the closed halfspace not containing s° and defined by the hyperplane 
through yJ (j e Jc), parallel, to v' - s° (i£ Jc). 
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Here, as usual, let Min {f(x) : x e 0} = oo. 

The problem (2.5) is a linear program. Since Hc n S n CTmayjbe empty, it is 
expedient to solve (2.5) by the dual-simplex method. 

The bisection process 

We shall use the same bisection as was used in [9]. More precisely, let vJ be the 
point where the j'th edge of the cone C meets T= [a1,..., s"]. Choose the longest 
side of the simplex [vl,..., if], say [vJl, vJl], and let u be the midpoint of this side. 
Then for each k = 1, 2 take Ck to be the cone whose set of edges obtains from that 
of C by substituting the halfline from s° through u for the edge passing through v'" 
(k = 1, 2). It is immediate that C = Cx u C2. 

This bisection has the following property which was proved in [9]. 

Lemma 2.2. Any infinite decreasing sequence of cones Cj generated by the above 
bisection process tends to a halfline emanating from s°. 

(By a decreasing sequence Cy we mean a sequence such that C,. <-. CJ+1 for every;'). 

Deletion rules 

At the (k + l)th step of the algorithm a cone C is deleted if either of the following 
conditions holds: 

(0 n(C)^yk 

(ii) C n S <= Hc 

Hc being the open halfspace containing s° and determined by the hyperplane Hc 

through y1 (j e Jc) and parallel to vJ - s° (j $ Jc). 

Lemma 2.3. The above rules (i), (ii) delete no feasible point whose value (with 
respect to / ) is less than the value of the best available feasible point. 

Proof. Obvious since n(C) is a lower bound of/ on C n F, yk is the best currently 
known value and since C n F c Hc. • 

To verify the rule (ii) solve the following linear problem: 

(L.) Max ( £ Xj/tj) subject to A(s° + BX) *£ b, X £ 0 
JeJc 

where B is the (n x rc)-matrix with columns v' — s° (i = 1,..-.-, n) and A 6 R". 

Let A* be an optimal solution of (L,). Then it has been shown in [11] that (ii) 

holds iff X(A*/ty) < 1. 
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3. CONVERGENCE OF THE ALGORITHM 

Suppose that the above rules for bound estimation, and splitting and for deletion 
are applied in the algorithm. Then we can state the following convergent theorem. 

Theorem 1. The algorithm described in Section 2 either terminates at some step k, 
or it generates an infinite sequence zk having at last one cluster point which solves 
the problem (R). 

Proof. If the procedure terminates at some step k then by Lemma 2.3, xk is 
a solution if yk < oo, otherwise, i.e., if yk = co, F = 0. 

Suppose now that the procedure never terminates. Then, by Lemma 2.2, there 
exists a decreasing subsequence of cones CkJ tending to a ray L emanating from s°, 

i.e. f| CkJ = L. 
.7 = 1 

First, we claim that there exists at least one point x on L such that g(x) 2: 0. Indeed, 
in the contrary case we can take a point w e L so that there is a ball U around w 
satisfying U n S = 0 and g(u) < 0 for every ueU. Then, for all / large enough CkJ 

lies inside the cone generated by s° and U. This implies that CkJ was already deleted. 
Consequently, since g is convex and g(s°) < 0, there is an x e Lsuch that g(x) = 0. 

Next we show that xe S. Indeed, if x ^ S then since S is closed there is an open 
ball If around x satisfying W n S = 0. Using again the fact that g is convex, g(x) = 0, 
g(s°) < 0 a point w1 e W n [s°, 3c] can be chosen that satisfies g(w1) < 0. Let Wx 

be a ball centred at w1 so that Wx c If and g(x) < 0 for each x e Wt. Since f) CkJ = 
/ = i 

= L, each edge of CkJ meets W, provided j is large enough. Denote by ukJ'1 a point 
in the intersection of the ith edge of CkJ with Wu then CkJ n S <= Co {S°, ukJA,... 
..., ukJ'"}. From this and g(s°) < 0, g(ukJ-') < 0 for all i = 1, . . . , w it follows that 
either Cw n S <= HCk. or o(x) < 0 for every x laying on the edges of CkJ. Hence, 
by the rule of deletion CkJ was deleted. This contradiction shows that xe S, which 
together with g(x) = 0 implies xeF. 

In the same way can show that xe dS (the boundary of S). 
Now observe that since g is convex, g(s°) < 0, g(x) = 0, for all j large enough 

the index-set JCk] = {1, ..., n}. 
Let us denote by zkJ the point satisfying 

f(zkJ) = Mm {f(yJ):jeJCkj} 

(the points yJ are defined by (2.2)). It is clear that zkJ -> x as j -> oo. 

Using the definition of zkJ and the rule of selection of a cone for bisection we have 

f(zkJ) = n(CkJ)^ Mm {f(x):xeF}. 

This and zkJ -> x e F imply 
f(x) = Min {f(x) :xeF}. Q 
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Fig. 1 illustrates the algorithm with the following two dimensional example: 

Min - x2 

subject to 2Xi + x2 g 8 

3x t - x2 ^ 3 

*i ^ 0 , x2 ^ 0 , x2 ^ 6 

x2 - x2 ^ 0 

Fig. 1. 

The algorithm starts from the vertex s° = (l, 6) of 5, which is also a minimal 
point of the object function f(x) = - x2 subject to xe S. Two adjacent vertices 
of s° are s1 = (0, 6) and s2 = (2.2, 3.6). 

At the step 0 the collection <5?0 of cones consists of the sole cone C0 = 
= cone {s°, s1, s2}. Two points on the edges of C0 satisfying the equation g(x) = 
= x2 - x2 = 0 are y0 1 = ( - ^6,6), y02 = (2, 4). The lower bound of / on C0 

computed by (2.3) is ^(C0) = / (y 0 1 ) = — 6 and the best currently known feasible 
point is x1 = y0 2 = (2,4) which yields an upper bound y. = / ( x J ) = - 4 . The 
cone Co is split into two cones C01 = cone {s°, v1, s1} and C02 = cone {s°, v1, s2} 
with v1 = (s1 + s2)/2 = (1.1, 4.8). 

At the step 1, «f. = {C01, C02} with fi(C0l) = / ( y 0 1 ) = - 6 , ;<C02) = / ( y 0 2 ) = 
= - 4 and x2 = x1 = y02 = (2, 4), y2 = f(x2) = - 4 . 

Thus, C02 is deleted (since yt = (i(C02) = - 4 ) . The set of the remaining cones 
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is &x = {C01}. The cone C01 is split into two cones Cxl = cone {s°, v2, s1} and 

C12 = cone {s°, v2, v1} with v2 = (0-55, 5-4). 

At the step 2, ^ 2 = {C1U C12}. Since C u n S c rlc"n, the cone C u is deleted 

(Hclt denotes the open halfspace containing s° and defined by the hyperplane passing 

through y01 = ( - ^/6, 6) and y12 = (-1-6, 2-6). 

For the cone C12 we have n(Cl2) = f(y12) = -2-6. Since n(C12) = f(y12) > 

> y2 = —4, this cone is deleted too. 

Hence, @2 = 0 and therefore x2 = (2, 4) is an optimal solution with the mini­

mum value f(x2) = — 4. 

Remark. The about example shows that the lower bound computed by (2.3) 

in general cannot be improved. 
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