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OF STOCHASTIC EVOLUTION EQUATIONS
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Summary. A theorem on continuous depend: of solutions to stochasti lution equa-
tions on coefficients is established, covering the classical averaging procedure for stochastic
parabolic equations with rapidly oscillating both the drift and the diffusion term.
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1. INTRODUCTION AND MAIN RESULTS

This paper is devoted to integral continuity type results on continuous depen-
dence of solutions of stochastic evolution equations on coefficients, in which, roughly
speaking, the convergence of coefficients is defined via pointwise convergence of their
indefinite integrals. Such theorems are known to be fairly general and, in particular,
they provide justification for the averaging procedures for equations with rapidly
oscillating coefficients. As a motivation let us consider a stochastic differential equa-
tion

(11) dze = ac(t, 7)) dt + be(t, @) dw(t),  z(0) =0

in R?, w(t) being a standard Wiener process in R? defined on a probability space
(2, #,P), and a., b being, roughly speaking, lipschitzian in the space variable
uniformly in € > 0. It was proved in [12] and [4] that if

t

"
" _ ’ d
(1.2) 51_1’1& A ae(s,T) ds—/0 ao(s,z)ds, z€R t20,
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and

t
a-3) L, /0 llbe(s,2) — bo(s, @) ds =0,z € R, ¢30,
then z.(t) — zo(t) in L?(£2). Obviously, the assumption (1.3) excludes rapidly os-
cillating diffusion coefficients, but, as shown in the quoted papers, is essentially indis-
pensable for the L?-convergence. On the other hand, as shown by R. Z. Khas’minskif,
under (1.2) and

13 t
(1.4) lim / be(s,z)b(s,z)ds = / bo(s, z)by (s, ) ds, zeR? t 20,
£~0+ Jo 0

the finite-dimensional distributions of the process z. tend to those of g in law (see
[5], [6]; cf. [11] for additional information).

The results on L2-convergence were extended to semilinear stochastic evolution
equationsin [10], [7], [8]. In the present paper we establish a result on the convergence
in law under hypotheses similar to (1.2) and (1.4), thus covering, in particular, the
case of stochastic parabolic equations with both the drift and the diffusion coefficient
rapidly oscillating.

To state our results let us introduce some notation. Let U, H be real separable
Hilbert spaces with norms ||, |-|u, respectively, let (-, -) denote the inner product in
H. (If there is no danger of confusion we will omit the subscript H.) Let L(U, H) be
the space of all bounded linear mappings from U to H, whose norm will be denoted
by |- |rw,n). If A € L(H) then A* denotes the adjoint operator. Further, |A| 4
stands for the nuclear norm of A € L(H), provided 4 is a nuclear operator, that is

|Aly = sup { Z |{Aes, £:)]; {e:}, {fi} orthonormal bases of H}.

The space of all H-valued continuous functions on [0,T] will be denoted by
C({0, T}, H). As usual, if (ia)aer is a net of Borel probabilities on a separable
metric space M, I" a right directed ordered set, we say that pu, — p weakly in M

provided
[ taua—s [ sau
M acl Jpm

for any bounded continuous function f: M — R. If &,: (2, Fp,Pn) — M are M-
valued random variables, then £, — & weakly in M means that £,(Pr) — &(Po)
weakly in M, where the probability measures &,(Pr) are defined by

€n(Pn)(C) = Pn{$n € C}
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for any Borel set C C M.

‘We will consider stochastic evolution equations

15) { Az (t) = (Aze(t) + ac(t, 7e(t))) dt + b (t, 7 (8)) dwe (¢),

z:(0) = 7

for € € [0,0), assuming
(A1) A: Dom(A) — H is an infinitesimal generator of an analytic Cp-semigroup
(e”t) on H.
(A2) The mappings a.: Ry x H — H, b.: Ry x H — L(U, H) are measurable
and there exists a constant L such that

lae(t, z) |1 + |be(t, @) |L(v,my < L1+ |zn)

forallt >0,z € H, and ¢ € [0,€0).
(A3) The mappings ac, b are Lipschitz continuous uniformly in &, i.e.

lac(t, z) — a:(t,¥)|m + e (t, 2) — b (8, ¥)| (v, m) < Llz — ylm

forallt >0, z,y € H, and € € [0,€0).
(A4) w,(t) are U-valued Wiener processes with nuclear covariance operators W,
such that

sup trW, < oo,
£€[0,60)

we being defined on a filtered probability space (125, #¢, (&f)iz0,P.) and
(F¢)-adapted.
(A5) 5. are H-valued #§-measurable random variables, ¢ € [0,c0).

The solutions of (1.5) will be understood in the mild sense, i.e. as the solutions of
the integral equations

t t
2el8) = ey, + /D A= s,z (s)) ds + [ A0, 20(5)) e (5.
0

By Theorem 7.4 in [2] or Theorem 1.4 of [9] there exists a unique mild solution
ze = z(-,me) of (1.5) and z. € C([0,T}], H) almost surely.

Theorem 1.1. Let the assumptions (A1)—(AS) be fulfilled. Let T > 0 be
arbitrary but fixed and suppose that

17 t
(1.6) EE)%I+/ eAt=9g, (5,z)ds :/ eMt=9go(s,2)ds in H
o o
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forany z € H, t € [0,T); and

.7 51—15]-1—

1

/ eAlt-9y, (s5,z)et =) ds| =0
0 N
forallz € H, t € [0,T), where
Ue(t,z) = be(t, z)W, b (¢, x) — bo(t, z)Wobs (2, z).

Ifn. — no weakly in H ase — 0+ then z(-,ne) — zo(,70) weakly in C([0,T), H)
ase = 04.

Due to the analyticity of the semigroup (e*) the rather complicated assumptions

(1.6), (1.7) may be replaced by more restrictive but verifiable hypotheses.

Proposition 1.2, Assume (Al) and (A2). If

t t
(1.8) lim ac(s,z)ds = / ao(s,z)ds inH
o o

=0+

for any t € [0,T], = € H then (1.6) is satisfied. Analogously, if
t t
(19) lim ]/ be(s, x)Webi(s,z)ds —/ bo(s, z)Wobj(s,z)ds| =0
e=0+{ fo 0 Ve

for all t € [0,T), x € H then (1.7) is fulfilled.

It will be shown in Example 2.9 that the assumptions (1.6), (1.7) are weaker than
(1.8), (1.9).

As we have already mentioned, Theorem 1.1 contains the classical averaging pro-
cedure as a particular case, as can be shown in a standard way (see e.g. [10], Theorem
4). Because of its importance we state this corollary as a separate theorem. Let us
consider equations

(110) { dz.(t) = e(Az(t) + a(t, z(t))) dt + eY/2b(t, z () dw(t),

ze(0) = 7ne
for € € (0,&0), where

(B2) the mappings a: Ry x H — H, b: Ry x H — L(U, H) are measurable and
there exists a constant L such that

la(t,z)|a + |b(t, 2)| L v,y < L1 + |2|n),
la(t,z) —a(t,y)lx + b(t,2) = b(t,Y)|L(w,m) < Llz —yln
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forallz,ye H,t > 0;
(B3) w(t) is a U-valued (#:)-adapted Wiener process with a nuclear covariance
operator W, defined on a filtered probability space (£2, #, ()20, P);
(B4) n.: 2 — H, £ € [0,&0), are Fo-measurable random variables.
Theorem 1.3. Assume (Al), (B2), (B3) and (B4). Suppose further that there
exist Lipschitz continuous functions a: H — H and b: H — L(U, H) such that
1 /7T
lim ~ a(s, z)ds = a(z) inH
T Jo

T—o0

for any x € H, and

T - -
fim ‘l / b(s, 2)Wb* (s,2) ds = H@)W*(z)| =0
T—oo | T [} Ve

forall z € H. Set
- t
Ze(t,ne) = zs(;ﬂle): t>20, e€(0,&),

2 (-, 7) being the mild solutions to (1.10). Let zo(:,70) be the mild solution of the
problem

) { dao(t) = (Azo(t) +a(zo(8) dt + blzo(t) du(),

1.‘0(0) =1"o-

Ifne — 1o weakly in H ase — 0+ then Z(-,n.) — %o(",n0) weakly in C([0,T), H)
as € — 0+ for any fixed T > 0.

2. PROOFs
To start with, let us recall a few well-known results.

Proposition 2.1. Let p,, n > 0, be centered Gaussian measures on a separable
Hilbert space Y with covariance operators I',. Then pn, — pg weakly in Y if and
only if |I'y — 5|y — 0, n = 0.

For the proof, see e.g. [1]. We will need the following criterion for weak convergence
of measures. Let (M, d) be a separable metric space, denote by BL(M) the space of
all bounded Lipschitz functions on M, that is

|f(z) - (W)
—d— < oo}.

BL(M) = {f: M — R; Iflsz = sup 1@ + sup 5

= yEM
z#y
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Let fn, 4 be Borel probabilities on M, then p, — u weakly in M if and only if

tim [ fdun= [ fau
n—oo M M

for any f € BL(M), see e.g. (3], Theorem 11.3.3. Moreover, by the same theorem,
the metrics 3, defined for probability measures on M by

sy =supf| [ 1dGu=w]i Ifas <1},
M
metrizes the weak convergence.
The next proposition looks almost obvious, nonetheless, it will be, very useful in
the sequel.
Let U, V, H be real separable Hilbert spaces, let w be a U-valued (%;)-adapted
Wiener process with a nuclear covariance operator W, defined on a filtered proba-

bility space (2,9, (%):>0,P), let 0 < s < t.

.+ Proposition 2.2, Let a: H — V be a Lipschitz continuous mapping, let ¢:
[s,t] x H — L(U, V) be a measurable mapping such that

lo(r,z)|Lw,yvy € M(1+ |2{x), lo(r,z) —o(r¥)|w,yv) < Miz —yln
for a constant M and any r € [s,t], z,y € H. Let g € BL(V), define
t
v =Eo(at)+ [ otrau)), v
s

Let u: 2 — H be a %,-measurable random variable with Elu|} < co. Then

@y E[g(a(u) + / ta(r,u)dw(r))

%} = (u) P-almost surely.

Proof. To simplify notation, we will treat the case a = 0; it can be seen easily
that this leads to no loss of generality.

Take an arbitrary v > 0, let {z;; i € N} be a dense subset of H and define a Borel
partition {A(:), ¢ € N} of H by

AN ={€€H;[E-al<vy}, AG+1)={E€H;|E~znl<rI\|JAU)

i<i
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We may assume that z; € A(j) for any j € N. Define

Uy(w) = ZXA(i)(H(w))Zi, wE N,

i=1
e t
00 = Laao©s( [ ommann),  cem,
i=1 N
where x 4(;) stands for the indicator function of the set A(j). Obviously,
Eu - u,l} <7

and

g(/: o(r,uy) dw(r)) = ix,q(.v)(u)g(/: o(r, z) dw(r)) P-a.s..

i=1
Therefore
gs]

E [g (/‘t o(r,uy) dw(r))

4] = gxm) welo( [ o, 20) au(r))
= gxun wes( [ o2 au()

= Py (u).

Furthermore,

elo(/ o(ryuy) aur)) -a [ “o(ru) aulr))
2

/t[ﬂ('f, u,) — o(r,u)] dw(r)
° v

2

<llolfs.E
¢ 2
< Ny W) [ Elatr) = 0w} 07

t
< lolfso M2 w7 [ = usffy ar
< Ngli% M2 (W)t = 5)7%,

hence

E[g (/:o(r, uw)dw(r)) l%] 120 E[g (/:g(ry ) dw(r))

%] in L?(£2).
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Analogously, take £ € H, then there exists jo € N such that £ € A(jo), 50

2

1s(6) ~ (O = \Eg( / “atr,a) au(r)) - g (/ ") dw(r))
< gl M2 (W) (e - 572,

This yields
() BZhy(¢)  forall¢e H

and (2.1) follows. ) . [m}

We are prepared to return to the equation (1.5). From now on, the hypotheses of
Theorem 1.1 are assumed to be fulfilled.

Lemma 2.3. For every T > 0 and p € [2,00) there exists a constant K such
that for any € € [0,e0) we have

Elze )y <K@ +nelly),  0<t<T,

provided the right-hand side is finite.

Since the estimate in (A2) is uniform in ¢, Lemma 2.3 follows virtually from (2],
Theorem 7.4, or [9], Theorem 1.4, as tracing the proofs of these theorems one can
observe easily that the constant K can be obtained independent of € € [0,0).

Given N € N, let us define

z if |z| < N,
gV(@)=4{ Nz

otherwise,
|2l

and set 7)€N = gN (ne). By assumption, ne — 70 weakly in H, so the continuity of
gV yields that n¥ — 1§’ weakly in H for any N € N.
Let us fix T > 0 and an arbitrary sequence e, € (0,£0), €, \y 0. For brevity we
set
e, =0n, be, =bn, We, =w,, P =P,

and so forth. Further, set
B =T, (47e,)s TN = zs"('»ﬁx)s 13’ =zo(,m0).

We denote the integral with respect to the measure P, simply by E with omitted
subscript as it leads to no ambiguity.
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Proposition 2.4. For any N € N and v > 0 there exists o > 0 such that

N N 2
- <
sup B max |z(0) -z ()] <.
|s—t|<e

Proof. Let us denote by K; generic constants independent of n > 0. Choose

p>2and A€ (0,5 - 1). By Remark following Theorem 1.1 in [9] we have

2

E sup
0, t<T
(2.2) s

< K¢

/ ‘ eAt="p, (r, 28 (7)) dwa(r) — / seA(s")bn(r, z¥ (r)) dw, (r)
0 1]

for any ¢ > 0. Indeed,

£ sp 40N nlra (1)) dun(r) = f§ Dbtz (1) dua(r) ?

0< s t<T ¢
lt=s|<¢

[ A= N
¢ {/o e bu(r, 28 (1)) dwn(r)
p)2/r
¢
INESY Aft~r) N
=51 [ A28 1) dun (1)

P) 2/p

T N . N »/2 R
< (oW [ etlbatralonwatina o)) dr)

< {E sup
0, t<T
|t—s|<¢

- [ X2 ) dwnm}

0

< (E sup
0<s,t<T

lt—s|<¢

- [ A ) dwnm}
0

2/
< K, tr(W,.)(/T E(1+ ]z () dr) ’
0

and (2.2) follows by (A4) and Lemma 2.3. By an analogous procedure we obtain

2

E sup
0<s,t<T
23) le—sl<¢

< K3¢?.

t 5
/ eAt-Ng, (r,zl (r)) dr — / AN a, (r, 2N (1)) dr
0 0




First, we prove that there exists g1 > 0 such that

(2.4) sup E sup |zl (t) - 17,1,V|2 < Koy
n20  0<1<201

(with a constant K, independent of g1, of course). In fact, by the definition of a
mild solution

1

N (@) -} = [eA — 10l +/ eA=9)g, (s, 2N (s)) ds
0
it
+/0 eAt=9p, (5, 2N (s)) dwy(s)
=L+ o+ Js

By (2.2) and (2.3) we have

(2:5) sup E sup {|R® +|Js]*} < Ks¢P
220 0<t<C

for any ¢ > 0. Since the random variables Y weakly converge, they are tight by the
Prokhorov theorem, hence there exists a compact set C C H such that

sup Po{n ¢ C} <.
n>0

As is well known, e*'z — =z as t \, 0 uniformly in = € C, hence we can find
01 € (0,71/?*) such that

sup suplet'z — x| < /7.
0<i<201 2€C

Then

E sup [|eAtn) ‘nmz

At N N|2
0<t<201

< v+ Exqoy sup |e“'my, — N,
Xnygc} s:&,[ i —n
<y + KeExggoynd P < v+ KeN?Po{n) ¢ C} < Krv.

This estimate together with (2.5) yields (2.4).

The semigroup (e**) is analytic by (A1), hence the L(H)-valued function ¢ ~ e”
is uniformly continuous on [g1,T] (cf. e.g. [2], Theorem A.7). So we can find 02 €
(0,4'/2*) such that

At _ As
9 gxgjfa'e g <V

Js—tl<ez
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Take s,t € [02,T], t > s, then
V() — 2 (s) = (e — &™)yl

t s
+ {/ eAt-"g, (r, 2 (r)) dr — / e, (r, 2N (r)) dr}
o 0
+ { / t A, (r, 2 (r)) dwa(r)
0
- /S eAC b, (r, 2 (1)) dwn(r)}

)

=01 +Q2+Qs.

Obviously,

sup E sup {|Q2|2 + [QSF} < Kso < Ksvy
n>0  |t—s|<es

by (2.2) and (2.3). Finally,

E sup |(eM - eA’)nS"]Z < N2y
lt—s|<e2

by (2.6), so we have obtained

2

2.7 sup E sup |al(t) ~ 2} (s)|° < Ko.
220 g1<s,t<T
|s—ti<ez

Combining the estimates (2.7) and (2.4) we complete the proof of Proposition 2.4.
m}

Corollary 2.5. For any N € N and v > 0 there exists a partition {0 = t5 <
... <ty = T} of the interval [0, T] such that

N N 2
- t: < .
(2.8) s;pu E (i_ Dmax1 . g“zlgazx 1]$" ) — =z ( 1)I ) <7

To proceed further we need a suitable discretization in time of the process zl.
Let = {0=tp<...<ty= T} be a partition of the interval [0, T']. Define

tip1 At

k—1
20 =etn) + / eMt-9q, (5,27 (1)) ds

i=0 JtiAL
9 ’
@9) kol oAt

+ Z/ eAt=)p, (5,27 (t:)) dwn(s)
i=0 VAt
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for any ; € {0,T) and n > 0, where, as usual, a A b = min(a,b). (Note that the
process I,’Z depends on N as well.) We have the following estimate:

- Lema 2.6. For every N € N and y > 0 there exists a partition IT = {0 = tg <
.. <ty = T} of the interval [0,T)] such that .

Sup max E|Y (t:) — 2 (21)| <.
n20 i=0,....k

Progf. Takey >0 and find a partition IT = {0 = to < ... < t;, = T} such that
(2.8) holds. By (2.9) we obtain

Elzr (tj41) — = (8542)

ti41
Altj41—s)|2
<2T/0 oAt =I2

]S Nt 9 an(or 57 (0) — an(o a2 ()]

=0

ti41 2
+2tr(Wn)/ ]e"(‘f““"[L m

ds

=0

sz/ E|zZ (t:) -z | ds

i=0

< 2K102/ - Efer] (t:) — Iﬁ’(ti)r ds
i=0 V¥

J tig1
+2sz/ V) -2 ds . L

2
]S e (s, 271 (1) — s, msmi ds

< 2K 10Ty + 2K10 Z / Ejel () — o (t:)[ ds.
i=0
Define
falt) = E|lzl (k) — 2V @)Y, ti<t<ti, i=0,.. k-1
The above estimate implies
1) < 2T+ 2K [ ole) s,
and Ko is independent of n, so Lemma 2.6 follows by the Gronwall inequality. O
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The crucial step in the proof of Theorem 1.1 is to establish that the finite dimen-

sional distributions of the process zZ converge weakly as n — co.

Proposition 2.7. Let N € N and a partition T = {0 =1ty < ... <ty =T} be
given. Let v,, n > 0, be Borel probabilities on H*t1 defined by

v = (2 (to)s- - oh (k) (Pa)s

that is
va(Q) = Pufw; (@] (to), ...,z (t)) € Q}

for any Borel set Q in H*+1, Then v, — vo weakly in H*t1 asn — co.

Proof. The proof proceeds by induction. By assumptions of Theorem 1.1 we
have 2 (to) — x&(to) weakly in H. Assume that for some {, 0 < I < k — 1, the

convergence
(2.10) fn = un(Pn) — pio =uo(Po)  weakly in H'H!
has beeen established, where we set
Un = (wf(io),m.wf(tz))
Let us define
on: H'PT — H'F2
LIFRY
(€0y- -y &) — (§0v‘ L&, eftmTtng +/ GA(t’“_s)un(sy&)d5> ,
173
and
B,: HA LI(Q",HI+2),
tig1
(fos- &) — (o,.n,o, / eA(t'“_s)bn(Sy&)dum(s)) .
4
Obviously,

b1
zg(ttﬂ) — eA(tH.;—t!)zg(tl) + /, eA(t'“‘s)an(s,xg(t;))ds
v

g1
b [ e 28 0) b0,
t
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thus
(=X (t0), - ., 2 (t141)) = @n(un) + Bnlun).

Take g € BL(H'+2) arbitrary and set
hn(y) = Eglan(y) + Ba(y)), y€H'™.
Proposition 2.2 yields
Eg(e (10,22 (b)) = Ehnlun) = [ al€) i)
It follows
|Eg(zT(to), ..,z (tr1)) — Eg(zdl (to), . . ., afl (tin))]

< [ @ = 0@l @)+ | [ ho(@)dinte) - [ hofe) duote
= Mi(n) + Ma(n).

To proceed further, we check that h,, € BL(H'+!) and

(211) sup [|hallzz < oo.
n>0

Indeed,

1hn(€) — hn(Q)] € llgllBLEln(€) = 0n(C) + Bn(€) — Bn(Q)lmise
< Kullgllselé = ¢l

for any ¢,¢ € H+! by (A3). Therefore, Mz(n) — 0 as n — oo due to (2.10). Now,
note that

(2.12) lim ha(€) = ho(€)  for any £ € HL.

First,

an(€) ~ aofé) = (0,‘.‘,0,/“ Tl [an(s,&) = ao(s, €)] ds)

2290 in H'

by (1.8). Further, et
/ EA(t‘“_s)b,.(s,&) dw,(s)
i
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is a centered Gaussian random variable in H with a covariance operator

tig
[ e o oo, et =0 as,
b
50 Bn(§) — Bo(£) weakly in H'+2 by (1.9) and Proposition 2.1. Hence aa(£) +
Bn(€) — ap(€)+ Bo(€) weakly in H!'+? for any £ € H'*! and recalling the definition
of h, and of the weak convergence we see that (2.12) holds.

Take § > 0 arbitrary, there exists a compact set X C H'*? such that
(213) inf pn(K) > 16
since the measures {1} are weakly convergent. Due to the compactness of K, (2.12)
and (2.11) the functions h, converge to ko uniformly on K, hence

lix&/’;\hn(f}*ho(fﬂdun(f)ZO»

n—
Finally,
Lo 1nl©) = ha(€)] dun(€) < 25up sup [nfs
HIFI\K n20 Hi+1
by (2.13), so M1(n) — 0 as well and Proposition 2.7 follows. [m]

Corollary 2.8. Let N € N and a partition A= {0 =3¢ < ... < sg =T} of the
interval [0, T be given. Then

(& (50)s -2 (50)) (Pa) 2225 (2 (50, a8 (5,)) (Po)  weakly in HF1,

In other words, z&’s converge in law to z{’ in the sense of finite dimensional
distributions.

Proof. Takey > 0 arbitrary. According to Lemma 2.6, there exists a partition
II ={0 =t < ... <ty =T} refining the partition A and such that

2

E|z¥ (t:) — 37 ()] < .
sup mpax Blzn' () = e (] < g
In particular,
¥id 2
sup E|(zf (s0), ..., &N (s4)) = (&2 (s0), - 2N (5)) | prum

n20
(2.14) LA oz
=sup ED |af (s:) — & (1) < 7.
n20 5
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Let g € BL(Ha+1) be a bounded Lipschitz function, then
[Eg(z} (s0),..., 2% (5q)) — Eg(at (s0). .-, 7] (s))]
<E|g@l (so)s. -, 2N (54)) = g(zl (s0), ... 2l (s,))]
+[Eg(arl (s0), - 2 (50)) = Eg(ag (s0), - 7 (sq))
+Elg(afl (s0), -, 2dl (s)) = 9(a8 (s0), ..., 28 (50))|
= I (n) + I(n) + L;{0).

We have

2 1/2
Li(n) < lgllsL (Ei(z;’:’(so),..',x,':’(sq)) - (zf(so)....,zg(sq))|llq+,)
<llgllpLy
for any n > 0 by (2.14). Moreover, Proposition 2.7 yields
(57 (t0), .., 2T (t)) (Pn) 2= (a8l (to), ..., =l (tx)) (Po)  weakly in H*+1,

so also
lim I(n) =0
n—oo

as IT is a refinement of the partition A. Therefore, for any v > 0 and g € BL(H atly
we have

[Eg(a (s0), -,z (s9)) — Eg(ag (s0), .., 75 (s)] < 2lgllsr + 1)y

for all n sufficiently large, which proves the corollary. [m]

Proof of Theorem 1.1. Take an arbitrary ¥ > 0. Note that there exists
N € N such that

(2.15) sup P,.{w; sup |z (t) — 28 (t)] > 0} <7
n20 0<t<T

Indeed, we use again the Prokhorov theorem and the weak convergence of n’s to
find a ball K(0,N) = {z € H; |z| £ N} such that

sup Pa{n. ¢ K(0,N)} <7.

Then a standard local uniqueness argument (see e.g. [9], Lemma 4.2) and the conti-
nuity of sample paths yield

Pu({m € KON} { sup |zat) - 2¥ (0] > 0}) =0,

o<t<T
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hence (2.15) holds true. Using Corollary 2.5 we find a partition {0 =to < ... <ty =
T} of the interval [0, T] such that

2
(2.16) sup E(, max sup |z (2) _zf)’(ti)[) <A
n>0 =0k =1 ¢ty

Let f € BL(C([0,T),H)) be a bounded Lipschitz function. Denote by & the space
of all functions : [0,7] — H which are right continuous with left limits on [0, 7]
and continuous on (0,7) \ {t1,...,tk—1}; endow & with the sup-norm. There exists
a Lipschitz function f! € BL(&) such that f% = f on C([0,T],H) and ||f*llzr =
IfllsL (see e.g. [3], Theorem 6.1.1 and Proposition 11.2.2). Define

FHY =R,y = (yo, -0 uk) — F2E),

where § € & is defined by §(t) = i, t; < t < tiy1. Then f* € BL(H**!) and
If*se < IIfllL. Further, set n(t) = ol (t:), i <t < tig1, & =0,..., k= 1;
obviously, Z, is a stochastic process with paths in .

Consequently,

|Ef(za) — Ef(z0)| < E|f(zn) = f(=)| + E|f(z) — fH(Za)]
+ |Ef(En) — EfY(0)|
+E|f*(d0) — f(a)] + E|f(&]) — f(zo)]
= Zi(n) + Za(n) + Z3(n) + Z2(0) + Z1(0).

Setting V(n) = { sup |z.(t) — =¥ (t)| > 0} we get
0<t<T

Z1(n) = Exyy [£(@n) = f&2)] < 20£llLPa(V(n) < 20 fll 5Ly
for any n > 0 by (2.15). Furthermore,
Zy(n) = E|fA(z)) — f'(Za)] <Uf118LE sup [z (1) - Za(2)|
0Kt<T
<HAsLY
for all n > 0 by (2.16). Finally,
Za(n) = |Ef* (2 (o), -, zd (tx)) — Ef*(ad (to), ., 2] (tx))] 2222 0

by Corollary 2.8, so we have established that, given arbitrary v > 0 and f €
BL(C([0,T], H)), one has
[Ef(zn) ~ Ef(zo)| < (611 flla +1)7
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for all n sufficiently large. This means that
(217) e, (3 7en) — To(,m0)  weakly in C([0,T], H)

for any sequence €, N\, 0. Due to the metrizability of the weak convergence, (2.17)
is equivalent to the assertion of Theorem 1.1. The proof is complete. O

Proof of Proposition 1.2. Fix z € H and set
s
K = ocloa) = aolsa), Kelo) = [ hulu)du.
0
Note that by (A2) we have

L= sup sup lk.(s)| < oo, sup sup |K.(s)| < LT.
c€l0,c0) 5€[0,T) c€l0,e0) s€[0,T]

Take § > 0, then
13 t—8 t
/ ek, (s)ds = / A=k (s)ds +/ A9k (s)ds
o o 16
=0+ 1.

First, integrating by parts we obtain

t—&
I =eM K (t-6) +/ AeAI K (s) ds.
0

The semigroup (e#) is analytic, so the operators Ae”* are continuous and (1.8)
yields

5 AS =
sgl&e K. (t—48)=0
and
: A(t—s) _ _
EI;I&_ Ae K.(s) =0, seo,t-é].

Therefore, for any § > 0 fixed we get I} — 0 as ¢ = 0+ by the dominated
convergence theorem. Moreover,

L] < sup |e?t LS,
I2|\0§t£T| ]L(H)

so I can be made arbitrarily small (uniformly in &) by choosing d sufficiently small,
and the first statement of Proposition 1.2 follows. The second assertion can be proved
in a similar way. a
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The following example shows that the assumptions on the convergence of coeffi-
cients adopted in Theorem 1.1 are strictly weaker than those used in Proposition 1.2.

Example 2.9. Let A: Dom(A) — H be a selfadjoint operator such that
there exists an orthonormal basis {f»}52, consisting of eigenvectors of the operator

A, Afi = Aifi, where 0 > A\; — —o00. As is well known, A is an infinitesimal
generator of an analytic selfadjoint Co-semigroup (e4t) given by

-
M= e f, 20

n=1
Let us define a,: [0,T] x H — H by
an(s,z) = fn, sel0,T),z€H, n>1.

Then

t
\/ eA“_”)an(s,z) ds
0

H

oo At
b /0 e fy an(s,2)) fids
k=1

t
/ =9 ds
0

%(e’\"‘—l)fn

n

1 noeo g

< —
= al
On the other hand,

=t
H

/ot an(s,z)ds

for every n > 1.

Further, let us consider a Wiener process w in H of the form w(t) = 8(t) f1, where
B is a standard one-dimensional Brownian motion. The covariance operator of the
process w it W = f1 ® fi (ie., Wh = (h, fi)f for h € H). Obviously, W = wt/2
and W fi = d1xf1 for k > 1. Define operators bn(s,z) € L(H) by

oo

ba(s,2)h =boh = (h, fidfurna,  SE[O,T], z,heH, n2 1
k=1
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Noticing that bnfi = fa for n > 1 and using the positivity of the operator
eAlt=)p, WbeA"™ ) we obtain

t
/ At=p, Whyeli=s) g
0

t
=tr ( / A=), Wy eAlt—s) ds)
N 0

o0

t
-y <( [ Ao wriere ds) fun fk>
k= o

1

= [ 3 (A0, WAt i, fi) ds

0 k=1

t oo 2
=/ ST Wt 2breAt=9) £ [ ds

0 k=1
‘=
= /D S WAt i ds
tk;l
:/0 3 Jert-I5,w | ds
tk:l t 2
= [1ert [ ds = / leAt=9) 1, * ds
o 0
t 5
=j |eA"("")f,L|2ds< L 2% 0.
[}

2Phl

At the same time,

t
| / bW ds
0

=t|ba Wb, = ttr(b.Wb})
N

=
=t) [BWhHE =tifalP=t»0

=1

asn — 0.
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