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Summary. We define digraphs minimal, critical, and maximal by three types of radii. 
Some of these classes are completely characterized, while for the others it is shown that 
they are large in terms of induced subgraphs. 
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subgraph 

AMS classification: 05C12, 05C35 

1. INTRODUCTION 

All digraphs considered in this paper are finite, without loops or multiple arcs. 

Let D be a digraph. Then V(D) denotes the node set of D and E(D) the arc set 

of D. If u,v e V(D) then do(u,v) denotes the length of a shortest path from u to 

v in D. If there is no path from u to v, we set do(u, v) = co. We note that oo > k 

for all natural k. 

In what follows we recall definitions of probably the most usual radii in digraphs. 

Let D be a digraph and u e V(D). Then: 

out-eccentricity of the node u is e j ( u ) = max (do(u,v)); 

in-eccentricity of the node u is eD(u) = max (do(v,u)); 

eccentricity of the node u is ep(u) = max (eD(u), eD(u)). 

The out-radius r+(D) (in-radius r~(D), radius r(D)) is the minimum value of 

eD(u) (eD(u), eo(u)), u e V(D). We note that an upper bound for the number of 

arcs in digraphs with a prescribed number of nodes and a finite out-radius is given 

in [4]. 

Now we recall the definitions of minimality, criticity, and maximality: 
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Defini t ion 1.1. Let D be a d i g r a p r i (graph), and let / be an invariant of D. 

Then D is called: 

minimal by f, if f(D - e) # f(D) for every arc e of D; 

critical by / , if f(D - u) ^ f(D) for every node u of D; 

maximal by f, if f(D + e) / f(D) for every arc e of the complement of D. 

For the sake of brevity, instead of writing out-radius, in-radius, and radius we use 

the symbols r+, r~, and r, respectively. We remark that the exact value of the out-

radius, in-radius, and radius in the digraph D is always denoted by r+(D), r~(D), 

and r(D), respectively. 

The graphs minimal, critical, and maximal by connectivity, edge-connectivity, 

being block, arboricity, and chromatic number can be found in books [1] and [3]. 

A survey on graphs minimal, critical, and maximal by diameter and radius can be 

found in [2]. Here we recall the results on graphs minimal, critical, and maximal by 

radius. 

Only for this paragraph, let r denote the usual radius in graphs. The classes of 

graphs minimal by r, critical by r, and maximal by r have been studied already. 

Trees are the only graphs minimal by r, see [5]. The graphs maximal by r with 

radius 2 are characterized in [7]. In [5] and [6] it is shown that each graph may be an 

induced subgraph of a graph that is critical by r, maximal by r, and has a prescribed 

radius t, 3 <. t < oo. Here the research is continued for digraphs. We examine the 

digraphs minimal, critical, and maximal by out-radius, in-radius, and radius. 

Deleting an arc e from a digraph D we cannot decrease distances between any 

two nodes. Hence, r+(D - e) ^ r+(D), r~(D - e) > r~(D), and r(D - e) >- r(D). 

Analogously, adding a new arc e to D we have r+(D + e) ^ r+(D), r~(D + e) <. 

r~(D), and r(D + e) <. r(D). Thus, in the definition of digraphs minimal by r+ (r~, 

r), the symbol ^ can be replaced by >, and in the definition of digraphs maximal 

by r+ (r~, r), the symbol ^ can be replaced by < . 

The following assertion enables us to restrict our considerations to radii r+ and r 

only. 

P r o p o s i t i o n 1.2. Let D be a digraph and let D' arise from D by reversing the 

orientation of all arcs. Then r+(D) = r~(D'). 

P r o o f . We have e t ( u ) = max (do(u,v)) = max (do'(v,u)) = e~,,(u). 
U veV(D)K V " vgV(D') u 

Thus, r+(D)= min et(u) = min e~,(u) = r~(D'). D 
ueV(D) UK uev(D') u 

In this paper we characterize some classes of minimal, critical, and maximal di­

graphs, while for the others we show that they are large in terms of induced sub­

graphs. Further results on minimal and critical digraphs will be presented in [8]. 
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Since a single node is the only digraph with out-radius (radius) zero and it is 

minimal, critical, and maximal by r+ and r, too, we restrict our considerations to 

digraphs with out-radius (radius) greater than zero. 

The outline of this paper is as follows. In Section 2 we show that almost no 

digraph can be a subgraph of a digraph minimal by r. In Section 3 we show that 

each digraph may be an induced subgraph of a digraph that is critical by r with 
radius two. Moreover, in Sections 3 and 4 we describe all digraphs critical by r, 

critical by r+ , maximal by r, and maximal by r+ , for radii 1, 2, and oo, except the 

digraphs critical by r with radius 2 on odd number of nodes. Finally, in Section 5 

we show that each digraph may be an induced subgraph of a digraph that is critical 

by r+ , critical by r , and maximal by r+ (maximal by r ) , and has a prescribed value 

t of out-radius or radius, 3 ^ t < oo. 

Let D be a digraph. Then D denotes the complement of D. By idD(u) we denote 

the input degree and by odr;(u) the output degree of a node u 6 V(D). If u e V(D), 

we denote 

N+(u) = {ve V(D): dD(u,v)=i) for i = 0 , 1 , 2 , . . . ; 

Ntr(u) = {ve V(D): dD(v,u) = i} for i = 0,l,2,.... 

Definitions and notation not included here can be found in Buckley-Harary [2] or 

in any other elementary book on Graph Theory. 

2. MINIMAL DIGRAPHS 

This section is devoted to minimal digraphs. Note that there are no digraphs 

minimal by r+ (r) with out-radius (radius) infinity, by Definition 1.1. 

In [8] Kys gives the following characterization of digraphs minimal by r+ : 

T h e o r e m 2 .1 . A digraph D is minimal by r+ if and only if D is a directed 

rooted out-tree (i.e. acyclic digraph with idD(:r) = 1 for all x e V(D) except the 

root u for which id£>(«) = 0). 

Hence, the digraphs minimal by r+ are very simple. In what follows we consider 

only the digraphs minimal by r. 

Propos i t ion 2 .2 . A digraph minimal byr with radius one consists of a collection 

of oriented two-cycles that share a node. 

P r o o f . Let D be a digraph minimal by r and r(D) = 1. Then there is a node 

u e V(D) such that eD(u) = 1. Thus, ux,xu e E(D) for all x 6 V(D), x^u. Since 

D is minimal by r, D contains no more arcs. D 
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Let D be a digraph minimal by r. As mentioned above we have r(D) < oo, 

and hence, D is strongly connected. On the other hand, if D is minimal by strong 

connectivity (i.e. D is strongly connected, but D — e is not strongly connected for 

every e e E(D)), D is minimal by r. 

Let D consist of a collection of oriented cycles, having some common nodes, 

that have a tree structure. (See the digraphs in Proposition 2.2.) Then for each 

u,v e V(D) there is a unique u-v path in D, and hence, D is minimal by strong 

connectivity. However, there are other digraphs minimal by strong connectivity (see 

Fig. 2.1). Moreover, there are digraphs minimal by r that are not minimal by strong 

connectivity (see Fig. 2.2 and Fig. 2.3). 

Fig. 2.1 Fig. 2.2 Fig. 2.3 

Up to now we have not been able to characterize the digraphs minimal by r with 

radius greater than 1. However, we have the following proposition: 

Propos i t ion 2 .3 . A digraph minimal by r does not contain the complete sym­

metric digraph on three nodes as a subgraph. 

P r o o f . Let D be a digraph minimal by r. As mentioned above, D is strongly 

connected. Let u e V(D) such that eo(u) = r(D). Then there are oriented paths 

from u to each node of D, and also paths from each node of D to u. Thus, there is 

a directed out-tree T+ , in-tree T~, rooted at u, which is a spanning tree of D. We 

can assume that r+(T+) = e+(u) and r~(T~) = e~(u). 

Suppose that there is an arc e in D such that e £ E(T+) and e $ E(T~). Then 
e(£>-e)(u) = e c ( u ) a n ( l e m _ e ) ( u ) = eZ>(u)> which contradicts r(D - e) > r(D). 

Hence, each arc of D belongs to either T+ or T~. 

Let x, y, and z be three distinct nodes of D. Since each forest on three nodes 

contains at most two arcs, there are at most four arcs between the nodes x, y, and 

z in D. D 

Since almost all digraphs contain the complete symmetric digraph on three nodes 

as a subgraph (see e.g. [9]), we have the following corollary of Proposition 2.3: 

Corollary 2 .4 . Almost no digraph can be a subgraph of a digraph minimal by r. 
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3. CRITICAL DIGRAPHS 

This section is devoted to digraphs critical by out :radius (radius). 

Let G be an unoriented graph critical by radius. Let the digraph D arise from G 

by replacing the edges of G by pairs of opposite arcs Then, clearly, D is critical by 

r, and also by r+ and by r~. However, there are digraphs critical by r+ (r) which 

do not correspond to unoriented graphs. 

In the first section of this paper we have shown that r+(D — e) >. r+(D) and 

r(D-e) >- r(D) for each e <E E(D), and also that r+(D + e) <_ r+(D) and r(D + e) <. 

r(D) for each e e E(D). Now we give analogous conditions for r+(D — u) and 

r(D - u), where u e V(D). 

Propos i t ion 3 . 1 . Let D be a digraph and u e V(D). Then 

r(D -u)>- r(D) - 1 ifr(D) < co; 

r+(D -u)>- r+(D) - 1 if>+(£>) < oo and idD(u) >- 1. 

P r o o f . Let r(D) < oo. Suppose that there is u e V(D) such that r(D-u) < 

r ( D ) - 2 . Then there is z £ V(D-u) such that e+D_u)(z) ^ r(D)-2 and e^D_u)(z) < 

r(D) — 2. Since r(D) < co, D is strongly connected. Thus, ido(u) ^ 1 and odrj(u) >• 

1. Hence, e+D(z) <, r(D) - 1 and eD(z) <_ r(D) - 1. Thus, r(D) <. r(D) - 1, a 

contradiction. 

By an analogous argument the second part of the lemma can be proved using 

idD (u) > 1. • 

The digraphs critical by r+ (r) with out-radius (radius) infinity are characterized 

in Proposition 3.3 (Proposition 3.6). Hence, the following assertion characterizes the 

remaining digraphs that do not satisfy Proposition 3.1. 

Propos i t ion 3.2. Let D be a digraph with r+(D) < oo, and Jet v0 € V(D) 

be such that idr;(t>o) = 0. Then D is critical by r+ if and only if V(D) = 

{vo,Vi, . . . ,v . .+(D )} a n d i V + M = {*><}> 1 ^i<.r+(D). 

P r o o f . Clearly, D is critical by r+ if D satisfies the conditions in the assertion. 

Now suppose that r+(D) < oo, \AD(v0) = 0, and D is critical by r+ . Since 

dD(x,v0) = oo for every x ' V(D), x / v0, we have eD(v0) = r+(D) < oo. Hence, 

there are nodes i>i,i>2, •. • ,Vr+(D) such that v{ e N+ and v,_1v, 6 E(D), 1 ^ i ^ 

r+(D). 

Suppose that |V(L>)| > r+(D) + 1. Let j = max{i : \N+(v0)\ >- 2}, and let 

z e Nf(vo), z + VJ. Since ITV^+^uo)! < -• w e h a v e eD-zM = e+(v0). Hence, 

N+(v0) = {vi}, l<^i<.r+(D). • 
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The following class of digraphs critical by r+ demonstrates Proposition 3.1 for the 

out-radius. Let Dn consist of two oriented cycles of length n that are joined by a 

pair of opposite arcs. Then Dn is critical by r+ and {r+(Dn - v) : v £ V(Dn)} = 

{ n - l , n + l , n + 2 , . . . , 2 n - 2 , o o } . 

From now on we consider only the digraphs with radii oo, 1, and 2. We remark 

that the unique graph critical by radius with radius oo consists of two isolated nodes. 

Further, the unique graph critical by radius with radius 1 consists of two nodes joined 

by an edge. Finally, a graph G with radius 2 is critical by radius if and only if either 

G is a path on four nodes or G is a complete multipartite graph i^2,2,...,2 (except 

K2), see [5]. 

First we characterize the digraphs critical by r+. 

Proposi t ion 3 .3 . Let D be a digraph critical by r+ . Then 

D consists of two isolated nodes, ifr+(D) = oo; 

D consists of two nodes joined by one or two arcs, ifr+(D) = 1. 

P r o o f . Suppose that r+(D) = oo. Then obviously, D contains at least two 

nodes. Let u £ V(D). Since D is critical by r+ , there is a node, say u', such that 
eD-u(u') < °°- Thus, for each x £ V(D) — {u,u '} we have do(u',x) < oo. Since 

r+(D) = oo, we have idp(u) = 0. Analogously, idzj(x) = 0 for each x £ V(D), and 

hence D is a discrete digraph. Since D is critical by r+ , it contains just two nodes. 

Suppose that r+(D) = 1. Then there is u e V(D) such that ux £ E(D) for every 

x £ V(D), x^u. Since D is critical by r+ , we have \N+(u)\ = 1. • 

Now we describe the digraphs critical by r+ with out-radius 2. 

T h e o r e m 3.4. Let D be a digraph such that r+(D) = 2 and \V(D)\ >- 5. Then 

D is critical by r+ if and only if the complement of D consists of a collection of 

oriented cycles. 

P r o o f . Just for this proof we write that a node a is friend-but(b) if ax £ E(D) 

for every x £ V(D), x^b, and ab £ E(D). 

Suppose that D is critical by r+ , r+(D) = 2, and |V(.D)| ^ 5. First we prove that 

r+(D - x) = 1 for every x £ V(D). 

Let c be a node such that e ^ c ) = 2 and z £ N2(c). Since D is critical by r+ and 
e (o -z ) ( c ) ^ 2> w e h a v e r+(D- z) = 1. Thus, there is a node u that is friend-but(z). 

Since dr>(c, z) < co, there is a node v such that vz £ E(D). Then v £ N+(u) and 

2 £ N+(u). Clearly, e+
D_x)(u) < 2 for every x £ N+(u) such that x + v. Thus, 

r+(D — x) = 1 for every x £ V(D) such that x / u and x / v. 

Suppose that r+(D - v) > 2. Since \V(D)\ >- 5, we have | N + ( u ) | ^ 3. Thus, 

there are two distinct nodes in N+(u), say Wi and w2, such that u)i ^ v and w2 ^ v. 



As shown above, we have r+(D - w{) = 1, 1 < i <. 2. Thus, there is a node 

w[ that is friend-but(uii), 1 < i ^ 2. Since Wl £ w2, we have w[ # w'2. Since 

uwi 6 E(D), we have toj =/t u , 1 < » < 2. Since e^D_v)(z) < 2 if . « e E(D), we 

have w{ ^ z, 1 ^ i ^ 2. Thus, tv{ e N+(u), 1 ^ i < 2. Since _>j is friend-but(u),), 

we have w[z 6 E(£>), 1 ^ i ^ 2. Since w[ ^ w'2, we have e+
D_v)(u) = 2, and hence 

r+(D - v) = 1, a contradiction. Thus, r+(£> - x) = 1 for all £ e V(I>), a: ^ u. 

Since r+(D — v) = 1, there is a node, say y, that is friend-but(ti). Since z ^ v, we 

have u^y. But using an analogous argument as above, we obtain that e+D_u)(«/) ^ 

2, and hence r + ( D - u) = 1. Thus, r+(D - a;) = 1 for every x e V(D). 

Now we describe the structure of D. 

Since r+(D) = 2, we have odD(a;) > 1 for every x e V(D). Since r+(D-z) = l 

for every z e V(-D), for each i e V(D) there exists x' e V(D) that is friend-butfz). 

Since the xs are mutually distinct (the V(D)), also the x's are mutually distinct. 

Thus, the set of a;'s is just V(D). Hence, odD(:r) = 1 for every x £ V(D). 

Suppose that there is y e V(D) such that idD(y) = 0. Since r+(D — y) = 1, 

there is a node y' that is friend-but(j/). Thus, y'y _ E(D), a contradiction. Since 

od D (x) = 1 for every x e V(D), we have \E(D)\ = \V(D)\, and hence idD(a:) = 1 

for all x _ V(D). Thus, id D (z) = od D (z ) = 1 for every x E V(D), and D consists 

of a collection of oriented cycles. 

Clearly, if id D (z ) = o d D ( i ) = 1 for every x e V(D) and \V(D)\ =s 3, then D is 

critical by r+ and r+(D) = 2. D 

Fig. 3.1 

There are just three digraphs D whose complement consists of a collection of 

oriented cycles and 3 ^ |V(£>)| < 5. One can verify that there are just seven digraphs 

critical by r+ with out-radius 2 that do not satisfy the conditions in Theorem 3.4, 

namely the digraphs in Fig. 3.1. Thus, we have the following corollary: 

Corollary 3.5. Let D be a digraph critical by r+ with out-radius two. Then 

either \V(D)\ ^ 3 and the complement of D consists of a collection of oriented cycles, 

or D is one of the seven digraphs pictured in Fig. 3.1. 

47 



Now we characterize the digraphs critical by r with radii oo, 1 (Proposition 3.6), 

and the digraphs critical by r with radius 2 on an even number of nodes (Theo­

rem 3.7). 

Propos i t ion 3.6. Let D be a digraph critical by r. Then 

D consists of two nodes and at most one arc, ifr(D) = oo; 

D consists of two opposite arcs, ifr(D) = 1. 

P r o o f . Suppose that r(D) = oo. Then D is not strongly connected. Thus, 

D has at least two strongly connected components. Since r(D — u) < oo for every 

u e V(D), D has just two strongly connected components, each consisting of a single 

node. 

Suppose that r(D) = 1. Then there is u e V(D) such that ux,xu e E(D) for all 

x £ V(D), xjtu. Since D is critical by r, we have \V(D)\ = 2 . • 

The digraphs critical by r with radius 2 are rather complicated. However, the 

following theorem characterizes those of them that have an even number of nodes. 

T h e o r e m 3.7. Let D be a digraph on an even number of nodes such that 

r(D) = 2 and \V(D)\ Js 6. Then D is critical by r if and only if the complement of 

D consists of a collection of independent arcs and oriented two-cycles. 

P r o o f . Clearly, D is critical by r if D consists of a couple of independent arcs 

and two-cycles. 

Just for this proof we write that a node a is friend-but(b) if ax,xa 6 E(D) for 

every x e V(D), x ^ b, and ab or ba are not in E(D). (We remark that the definition 

in the proof of Theorem 3.4 is slightly different.) 

Let D be a digraph critical by r, such that \V(D)\ > 5 and r(D) = 2. First we 

describe the structure of D if D contains two nodes, say u and u', such that u' is 

friend-but (u). 

Since u' is friend-but(u) and D is strongly connected, we have eo(u') = 2. Since 

\V(D)\ ^ 5, we have \V(D) - {u,u'}\ ^ 3. Thus, there is a node v e V(D) such 

that d(D~v)(u',u) < 2 and </(£>_„)(u,u') ^ 2. Since D is critical by r, we have 

r(D — v) = 1 and there is v' € V(D) that is friend-but(v). 

Clearly, u, u' , and v are distinct nodes. Obviously, v' ^ u' and v' ^ v. Since u is 

friend-but(v) implies that uu',u'u e E(D), we have v' / u. Hence, u, u', v and v' 

are distinct nodes. 

Since |V(Z5)| ^ 5, there is one more node z e V(D) distinct from the u, u', v, v'. 

Since v'u,uv' e E(D), we have e(D_z)(u') = 2 > r(D-z). Hence, there is z' G V(D) 

distinct from all u, u' , v, v', z that is friend-but(z). 
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Thus, u' is friend-but(u), v' is friend-but(u), and z' is friend-but(_). Continuing 

these considerations we obtain that V(D) = {«i,«J; 1 ^ i <. k} for some k ^ 3, 

where u\ is friend-but(ui), 1 $C i <. k. 

However, e(_j_u'l)(u2) ^ 2, since _3u2,«2U3 e E(D). Thus, r(D — __) = 1, and 

there is a node _ that is friend-but(__). Since u_ is friend-but(ui), we have a; = u i . 

Analogously, «; is friend-but(uj), 1 ^ «' <, k. Thus, the complement of D consists of 

a collection of independent arcs and two-cycles as required. 

In what follows we suppose that D contains no pair of nodes _, _' such that x' is 

friend-but(x). Then r(D - x) + 1 for each _ € V(D). 

Let u be a node such that eD(u) = 2, and y e iV+(u). Since 2 >- e(D__)(u) 55 

r (£> - u) if dD(y,u) = 2, we have uu e S ( D ) . Thus, for every u e Ar_~(«) we have 

uu e E(D). 

Suppose that there is _ e At+(u) such that _u £ E(D) for every u e AT+(u), 

moreover, let _u ^ E(D) whenever possible. Then e7D_Ju) 4. 2 and etD_Ju) 4 2. 

Hence r(D—x) = 1, a contradiction. Thus, for each x e At+(«) there is y e N%(u) 

such that xy e £(£>). 

Suppose that |iV+(u)| > \Nf(u)\. Since for each x e AT+(u) there is y e AT2
+(u) 

such that xy e £(£>), there is w e At+(u) such that e(D_„)(u) = 2. Hence, r(D -

w) = 1, a contradiction. 

Suppose that |A^+(u)| < |JV2
+(U) | . Then there is w e N_~(u) such that e ( D_ r o )(«) = 

2, a contradiction. 

Thus | iV+(u)| = |/V_"(u)|, and hence D has an odd number of nodes. D 

Hence, the class of digraphs critical by r with radius 2 on an even number of nodes 

is pure in terms of induced subgraphs. However, for odd number of nodes we have 

the following theorem: 

T h e o r e m 3.8. Let D be a digraph. Then there are infinitely many digraphs 

critical by r with radius two on an odd number of nodes, containing D as an induced 

subgraph. 

P r o o f . Let V(D) = {«_ ,v 2 , . . . , . „} and let k >- n + 1 . Let V(Hk) = 

{u,Vi,V2,...,Vk,zi,Z2,...,Zk} and let E(Hk) consist of E(D), uvi, v{Zi, ZiU, 

1 4 i 4 k. In what follows we show that Hk satisfies the conditions in the 

theorem. 

Clearly, |V(1?_)| = 2fc+l, and Hk contains D as an induced subgraph. Since 

k> n,we have ejfv.) = e~~_(zi) = 4, 1 <. i <. k, and eH(u) = 2. 

Since id (H_.,.)(-i) = 0, we have r(H-vt) = 00, 1 sg i 4 k. Analogously, r(H-x) = 

00 if x e {u,zn+i,zn+2,...,zk}. Since (.(#__,)(t>i,u) ^ 3, e+
/ /_z i )(ui) ^ 3, and 
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e(H-zt)(
zi) > 4, 2 ^ i < fc, we have r(H — zi) > 3. Analogously, r(H - z,) ^ 3, 

1 < i 4 n. D 

4. MAXIMAL DIGRAPHS 

In this section we characterize the digraphs maximal by r+ (r) with out-radii 

(radii) oo, 1, and 2. 

We remark that a graph G with radius oo is maximal by radius if and only if G 

consists of two complete graphs. Further, a graph G with radius 1 is maximal by 

radius if and only if G is a complete graph on at least two nodes. Finally, a graph 

G with radius 2 is maximal by radius if and only if the complement of G consists of 

a collection of (at least two) stars (i.e. the complete bipartite graphs A"i,s, s ^ 1), 

see [7]. 

In what follows we characterize the digraphs maximal by r+ . 

P r o p o s i t i o n 4 . 1 . Let D be a digraph and r+(D) = oo. Then D is maximal 

by r+ if and only ifV(D) can be partitioned into Ait 1 < i ^ 3, such that A\ ^ 0, 

A2 i=- 0, the digraph induced by At is complete, 1 ^ i ^ 3, and for all ai e A\, 

a2 e A2, a3 e ^3 we have a ia 3 , a 2 a3 e E(D) and there are no other arcs in D. 

P r o o f . Clearly, if D satisfies the conditions in Proposition 4.1, D is maximal 

by r+ with out-radius oo. 

Now suppose that D is maximal by r+ with out-radius oo. Denote by S\,S2,..., 

Sm the strongly connected components in D. Since r+(D) = oo, we have m > 2. 

Since D is maximal by r+ , each Si, 1 < i ^ m, is a complete symmetric digraph. 

Moreover, if x,x' e V(St), y,y' e V(Sj), and xy e E(D), we have x'y' e E(D). 

Let D' be obtained from D by contracting every 5,- to a single node s,-, and 

SiSj e E(D') if and only if there are x e V(S{) and y e V(Sj) such that zy e E(D), 

i*j-

Since r+(£>) = oo, we have r+(D') = oo. Since D' contains no oriented cycle, 

there are at least two nodes in D', say si and s2, such that i d c ( s i ) = id_><(s2) = 0. 

Suppose that \V(D')\ ^ 3. Since D is maximal by r+ , we have \V(D')\ = 3 and 

E(D') = { s i s 3 , s 2 s 3 } . D 

P r o p o s i t i o n 4 .2 . Let D be a digraph maximal by r+. Then 

D is a complete symmetric digraph on at ieast two nodes, ifr+(D) = 1; 

|V(D)| ^3 and o d ^ i ) = 1 for every node x ofD, ifr+(D) = 2. 
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P r o o f . Suppose that r+(D) = 1. Then D contains at least two nodes, and 

there is u G V(D) such that ux G E(D) for all x G V(D), x + u. Since D is maximal 

by r+, D is a complete symmetric digraph. 

Suppose that r+(D) = 2. Clearly, |V(D) | Js 3. Since D is maximal by r+ and 

r+(£)) = 2, for each i 6 V(D) there is a unique node y oi D such that XJ/ G E(D). 

Thus, o d ^ x ) = 1 for every i f F ( J D ) . • 

An acyclic digraph that arises from a complete bipartite graph K\t3, s ^ 1, by 

replacing the edges by arcs (arbitrarily directed), we call an oriented star. The 

following assertion characterizes the digraphs maximal by r with radii co, 1, and 2. 

P r o p o s i t i o n 4 . 3 . Let D be a digraph maximal by r. Then 

D consists of two complete symmetric digraphs Hi and H2, and the arcs xy, 

x ~ V(Hi) and y G V(H2), ifr(D) = oo; 

D is a complete symmetric digraph on at least two nodes, ifr(D) = 1; 

the complement of D consists of a collection of oriented stars, ifr(D) = 2. 

P r o o f . Suppose that r(D) = oo. Denote by Si,S2,... ,Sm the strongly con­

nected components in D. Since r(D) = oo, we have m ^ 2. Since D is maximal by 

r, each Si, 1 ^ i ^ m, is a complete symmetric digraph. Moreover, if x,x' G V(S{), 

y,y' £ V(Sj), and xy G E(D), we have x'y' G E(D). 

Let D' be obtained from D by contracting every Si to a single node s;, and 

SiSj e E(D') if and only if there are x G V(Si) and y G V(Sj) such that xy G E(D), 

i ^ j . Clearly, D' contains a node, say Si, such that ido'(si) = 0. Since D is 

maximal by r, D' consists of just two nodes si and s2 and the arc siS2-

Suppose that r(D) = 1. Then D contains at least two nodes, and there is u G V(D) 

such that ux,xu G E(D) for all x G V(D), x ^ u. Since D is maximal by r, D is a 

complete symmetric digraph. 

Suppose that r(D) = 2. Then for each x G V(D) there is a node y G V(25) 

such that xy G E(.D) or yx G E(D). Since Z> is maximal by r, xy G E(D) implies 

that yx <£ E(D). Moreover, either xz,zx <£ E(D) for all z G V(D) - {x,y}, or 

yz, zy $ E(D) for all z G V(D) - {x, y}. • 

5. EXISTENCE THEOREMS 

In this section we show that the classes of digraphs critical by r+ , r~, r, and 

also the classes of digraphs maximal by r+ , r~, and r, are large in terms of induced 

subgraphs. Namely, we prove the following two theorems: 
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Theorem 5 .1 . Let D be a digraph, and let t satisfy 3 <t < oo. Then there is 

an infinite number of digraphs H such that 

(1) D is an induced subgraph of H; 

(2) r+(H)=r-(H) = r(H)=t; 

(3) H is critical by r+ , r~ and r; 

(4) H is maximal by r+ and r~. 

Theorem 5.2. Let D be a digraph, and let t satisfy 3 ^ t < oo. Then there is 

an infinite number of digraphs maximal by r with radius t, which contain D as an 

induced subgraph. 

In this section, Kn and Cn denote a digraph that arises from a complete graph or 

cycle on n nodes by replacing the edges by pairs of opposite arcs. By x we denote the 

Cartesian product. Moreover, we use the following conditions: Let 5 be a digraph 

and u 6 V(S). We say that u satisfies (*) if and only if 

(*) V i e JVf (ti) 3u 6 N+(u), Xyty, such that xy i E(S), 

and u satisfies (*') if and only if 

(*') \/x e At!+(u) 3u £ iVf (u), x + y, such that yx $. E(S). 

For each t and m, 3 ^ t < oo and 1 ^ m < oo, we construct digraphs Ht,m and 

F t ,m from D: 

(1) Let a digraph D\ arise from D by adding one new node u\ for each u G V(D). 

(Hence, |V(Z?i)| = 2 • |V(U)|.) Moreover, if \dD(u) ^ 1 we add the arc uui 

to D\, and if odo(u) ^ 1 we add the arc u iu to D\. Clearly, each node 

u £ V(D) satisfies (*) and (*') in D\. 

(2) Let a digraph £>2 arise from D\ by adding m isolated nodes, and let a digraph 

D3 arise from D2 by adding one new node w and the arcs xw and wx, 

x e V(D2). Since m ^ 1, the node w satisfies (*) and (*') in D3. 

(3) Let D'3 be a copy of D3. Denote by u' the node of D'3 corresponding to the 

node u of D3. Let V(D4) = V(D3) U V(D'3), and let the arc set of D4 consist 

of E(D3), E(D'3), and moreover for every x,y e V(D3) let us have 

(**) yx',y'xeE(D4) ^=> xy f E(D3), 

except the case x = y, where x'x,xx' £ E(D4). It is easy to check that 

all nodes of D4 satisfy (*) and (*'). We note that a mapping <p such that 

<p(u) = u' and <p(u') = u for every u £ V(D3) is an automorphism of D4. 
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(4) Finally, let H3,m = D4, H4,m = D4xK2,an& Ht,m = D4 x C2(t-3) if * ^ 5. 

Note that 2(t - 3) > 4 if t Js 5. Clearly, all nodes of Ht,m satisfy (*) and (*'). 

(5) Let a digraph D5 arise from D4 by adding the arcs xy', x £ V(D3) and 

y' e V(D'3). 

(6) Finally, let F3,m = D5, F4,m = Dbx K2, and Ft,m = D5 x C2 ( (-3) if t ^ 5. 

In what follows we prove two lemmas about Ht,m. 

Lemma 5 .3 . Let u e V(Ht,m). Then there is v e V(Ht,m) such that 
dH,,m(u,v) = dH,,m(v,u) = t. Moreover, dHtm(u,x) < t and dH,,m(x,u) < t 

for every x € V(Ht,m), i / » . 

P r o o f . First suppose that t = 3. We can assume that u € V(D3). 

If x e V(£>3), we have dD,(u,x) <, 2, since uw, wx e E(D3). 

Let x = «' e V(-D3), ^' # u'. Suppose that uz' $ E(D4). Then zu <= E(D4) by 

(**). Thus, there is y 6 V(D4) such that uy £ £ ( D 4 ) and zy g iS(D4), by (*). Thus 

yz' e E(D4) by (**), and hence dDi(u,z') ^ 2. 

Analogously, using (*') instead of (*) we obtain that dDt(x,u) ^ 2, if x 5̂  u' . 

Clearly, uu ' ^ £(D>4). If uy € E(D4), we have yu' i E(D4) by (**). Thus, 

dDi(u,u') = 3. Analogously, dDi(u',u) = 3. 

Now suppose that t ^ 4. Since r+(ii;2) = r~(K2) = r(K2) = 1 and r+(C21) = 

r~(C2i) = r(C2l) = I, we have r+(Ht,m) = r " ( i7 f , m ) = r ( i / t , m ) = «. Note that both 

K2 and C2i satisfy the lemma (each node has a unique node at the greatest distance). 

Thus, also the Cartesian products D4 x K2 and D4 x C2i satisfy the lemma. D 

Lemma 5.4 . Let u e V(Ht,m), and let v e V(Ht,m) be the unique node such 

that dHtm(u,v) = dHtm(v,u) = t. Then dHtm(u,x) + dHtm(x,v) = dHtm(v,x) + 

dH,,m(x,v) = t for every x e V(Ht,m). 

P r o o f . First suppose that t = 3. We can assume that u e V(D3). Then 

v = u' e V(D 3 ) . If ux i E(D4) and X + u', we have OT' e E(D4) by (**). 

Suppose that ux e E(D4). If dDi(x,u') ^ 3, we have i = u b y Lemma 5.3. Thus, 

d D 4 (u ,x) + dD4(a;,u') = 3 for every x e V(D4). Analogously, dDl(u',x)+dDi(x,u) = 

3 for every x eV(D4). 

Now suppose that t ^ 4. Clearly, the Cartesian product of two digraphs, satisfying 

Lemma 5.4, satisfies the lemma, too. Since both K2 and C2i satisfy Lemma 5.4, Ht,m 

satisfies the lemma as well. D 

Now Theorem 5.1 can be proved. 

P r o o f of T h e o r e m 5.1. We show that Ht,m satisfies the conditions in 

Theorem 5.1. 
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(1) Constructing the digraph Ht,m we have never added an arc between two nodes 

of D. Hence, D is an induced subgraph of Ht,m. 

(2) By Lemma 5.3, r+(Ht,m) = r~(Ht,m) = r(Ht,m) = t. 

(3) Let u G Ht,m. By Lemma 5.3 (the first part), there is a unique node v 6 

V(Ht,m) such that dH,,m(u,v) = - / / , , - (« ,«) = t. Hence, we have e+
Htm-u)(v) = 

e7H _„)(«) = t— 1 by Lemma 5.3 (the second part). Thus, Ht,m is critical by r+ , 

r - , and r. 

(4) Let uz £ E(Ht,m). By Lemma 5.3 there is a unique node v e V(Ht,m) such 

that dHt,m(u,v) = t. Since d//,,m(_,z) + dntm(z,v) = < by Lemma 5.4, we have 
e(H, ,„+uz)(u) ^ * ~ -• Hence, i-"t,m is maximal by r+ . Analogously, e(~Hi „+,_,)(") ^ 

t — 1 if uz $. E(Ht,m). Hence, Ht,m is maximal by r~. 

Since \V(Ht,mi)\ / |V(H.>w,a)| if roi 5̂  m 2 , the theorem is proved. D 

The digraph Ft,m is not maximal by r in general, however, we have the following 

lemma: 

Lemma 5.5. The digraph D5 is maximal by r with radius 3. 

P r o o f . Let u e V(D3). Then dDl(u',u) = 3 by Lemma 5.3. Suppose that 

dDs(u',u) ^ 2. Then there is an arc xy' 6 E(D5)-E(D4) such that __,,.(_',„) + 

dDs(y',u) = 1, a contradiction. Hence, r (D 5 ) = 3. 

Let xy e E(D~l). Then ef D , + - v ) ( -0 < 2 and e ^ + « l f ) ( v ) ^ 2 by Lemma 5.4. 

Suppose that e7Ds+xy)(x) ^ 3. Then x £ V(2J3), and hence 5/ e V(D3) , too. Thus, 

etDs+xy)(y) ^ 2 by Lemma 5.4. Thus e(Ds+xy)(y) ^ 2, and hence _)5 is maximal 

by r. D 

Now Theorem 5.2 can be proved. 

P r o o f of T h e o r e m 5.2. Suppose that t = 3. Clearly, F3,m contains D as 

an induced subgraph. Moreover, F3,m is maximal by r with radius 3 by Lemma 5.5. 

Now suppose that t ^ 4. Then Ft,m is not necessarily maximal by r. However, 

from each digraph H with radius t' we can construct a digraph maximal by r with 

radius (', simply by adding arcs that do not decrease the radius. Let F'tm be a 

digraph maximal by r that is constructed from Ft,m by adding arcs that do not 

decrease the radius. 

Since r(D5) = 3 by Lemma 5.5, we have r(Ft,m) = t, and hence r(F[m) = t. 

Suppose that there is an arc xy e E(Flm)-E(Ft,m) such that x, y E V(D5). Since 

r(D&+xy) ^ 2 by Lemma 5.5, we have r(Ft,m+xy) ^ t-\ by Lemma 5.3. Hence, D 

is an induced subgraph of F / m . 

Since |V(F/ > m i ) | + |V(Ft'iT_2)| if mx ^ m 2 , the theorem is proved. D 
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