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Summary. A classification of natural transformations transforming functions (or vector 
fields) to functions on such natural bundles which are restrictions of bundle functors is 
given. 
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1. Bundle functors. All manifolds in this paper are assumed to be paracom-
pact, without boundary, second countable, finite dimensional and of class C6 0 . Maps 
between manifolds will be assumed to be C°°. Let Mf be the category of all mani­
folds and all maps, FM the category of all fibered manifolds and their morphisms, 
and let B: FM —» Mf be the base functor. Given a functor G: Mf —* FM satisfy­
ing B o G = idMj we denote by PM- GM —» M its value on a manifold M and by 
Gf: GM -> GN its value in / : M — N. 

Definition 1.1 ([3]). A bundle functor is a functor G: Mf —> FM satisfying 

B o G = idMj and the following localization condition: if i: U —» M is the inclusion 

of an open subset, then Gi: GU —> (PM)~ (^0 ls a diffeomorphism. 

The Weil functors of A-velocities and the linear functors of higher order tangent 

bundles are bundle functors ([4], [2]). 

Let M, N, P be manifolds. A parametrized family of maps fp: M —• N, p 6 P is 

said to be smoothly parametrized if the resulting map / : M x P -» N is of class C°°. 
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Proposition 1.1 ([3]). Every bundle functor G: Mf—>FM satisfies the follow-

ing regularity condition: if f: M x P —* N is a smoothly parametrized family, then 

the family Gf: GM x P —• GN, (Gf)p = G(fp) is also smoothly parametrized. 

Let G: Mf —+ FM be a bundle functor. If we replace M f by the category M fm of 
all m-dimensiohal manifolds and their embeddings, we obtain the concept of natural 
bundles ([5]). Hence the restriction Gm of G to M / m is a natural bundle. 

2. Natural transformations transforming functions and vector fields to 
functions on natural bundles. Let E be a natural bundle on M / m . Given a 
manifold P we denote by C°°(P) and X(P) the vector spaces of all maps P —> R 
and all vector fields on P, respectively. Similarly as in [1], we introduce the following 
definitions. 

Definition 2.1. A system T =- {T(M)} of functions 

T(M): C°°(M) - • C°°(£M), M (E obj(A//m) 

is called a natural transformation transforming functions to functions on E if the 
following naturality conditon is satisfied: for any M, N £ obj(M/m) , any / 6 C°°(N) 

and any embedding (p: M -* N we have T(M)(f o cp) = T(N)(f) o E<p. 

Definition 2.2. A system T = {T(M)} of functions 

T(M): X(M) - C°°{EM), M G obj(M/m) 

is called a natural transformation transforming vector fields to functions on E if 
the following naturality condition is satisfied: for any M}N E obj(M/m ) , any X € 
X(M), any Y € X(N) and any embedding<p: M —> N the assumption d<p(X) = Yo<p 
implies T(M)(K) = (T(N)(Y)) o E<p. 

Denote by Trans/(E) (Trans„(E)) the set of all natural transformations trans­
forming functions (vector fields) to functions on E. For any Ti,T2 € Trans/{£) and 
A € R define T\+T2j XT\ E Trans/ (E) to be the systems of functions 

(T\+T2)(M):C^(M)^C00(EM)1 (T\ + T2)(M)(f) = T\(M)(f) + T2(M)(f) 

and 
(A7\)(M)< C°°{M) -+ C°°(EM), (AT,)(M)(/) = A(T,(M)(/)) , 

M € ob j (M/ m ) . Thea Trans/(E) is a vector space. Similarly, Trans^E) is also a 

vector space. 
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3. Main results. Let G: Mf —» FM be a bundle functor and m a natural 

number. Let Gm be the restriction of G to M / m . We fix a one-point manifold 

Q G obj(Mfo). Given h G G°°(GR) define Th G Transy(Gm) by 

Th(M): C°°(M) --> G°°(GM), Th(M)(f) = AoG/ , M G obj(M/ m ) . 

Similarly, for any /i € C°°(GQ) define 7* G Trans^Gm) by 

Th(M):X(M)^C°°(GM), Th(M)(X) = A o G f l f , M G obj(M/m ) , 

where g ^ : M —+ Q is a constant map. The main results in this paper are the 

following theorems. 

Theorem 3 .1 . The function 

G*: G°°(GR) -> Trans/(Gm), G*(h) = 7* 

is a linear isomorphism. The inverse isomorphism is given by 

I*: TranS /(Gm) - C°°(GR), 1*(T) = T(Rm)(p) o Gj, 

where p: Rm -+ R is the projection onto the first factor and j : R —> Rm is defined 

byj(x) = (x,0,...,0). 

Theorem 3.2 . Ifm ^ 2, then the function 

*G: C°°(GQ) — Trans„(Gm), *G(h) = Th 

is a linear isomorphism. The inverse isomorphism is given by 

*I(T)=T(Rm)(di)oGO, 

where d\ = d/dxi is the canonical vector field on Rm and O: Q —> {0} C Rm . 

4. Proof of Theorem 3.1. It is easy to see that G* is linear. For any h 6 
C°°(GR) we have 1* oG*(h) = hoGpoGj = hoG(po j) = h as po j = id*. Then 
I* o G* = id. It remains to show the following proposition. • 

Proposition 4 .1 . UT\,T2 € Trans/(Gm) are two natural transformations such 

that Ti(Rm)(p) = T2(Rm)(p) on Im(Gj), then T, = T2. 
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Using Proposition 4.1 one can prove that G* o /* = id as follows. Consider an 

arbitrary T G Trans/(Gm) . Denote G* o I*(T) = f . Then 

T(Rm)(p) o Gj = I*(T) o GpoGj = T(Rm)(p) o C j . 

Then by Proposition 4.1. we have T = T as well. 

Now we shall prove Proposition 4.1. From now on we consider two natural trans­

formations T\j T2 such that the assumption of the proposition is satisfied. 

Lemma 4.1. Ti(Rm)(p) = T2(Rm)(p). 

P r o o f of the lemma. If m = 1, then the assertion is obvious. Let m ^ 2. 

Consider an arbitrary y G Rm . Put y* = Gj o Gp(y). Let ft G Rm - • Rm, t G R 
be the smoothly parametrized family given by ft(x) = (xl,tx2,..., txm). Of course, 
p o / ( = p , / 0 = j o p and ft is a diffeomorphism provided t / 0. Hence Ti(Rm)(p) = 
Ti(Rm)(p) o Gft if t £ 0, and by Proposition 1.1, 67 ((y) -> y* as t — 0. Therefore 
T1(R-)(p)( ! /) = 7\(R r o)(p)(ir). Similarly, T2(R")(p)(y) = T2(R

m)(p)(y*). Since 
IT € /ro(Gj) we have Tx(R

m)(p)(y*) = T2(R")(p)(y*), and then Tx(R™)(p)(y) = 
T2(Rm)(p)(y) as well. 

We are now in position to prove Proposition 4.1. Let M G obj(M/m) be a mani­
fold, let x G M be a point and / G C°°(M) a map. The proof will be complete after 
proving that Tx(M)(f) = T2(M)(f) on the fibre over x. 

Assume that dxf -̂ 0. There exist an open neighbourhood W of x and a chart 
(p = (f\W, v?2 , . . . , <pm) defined on W. Of course, / o i = p o <p o i, where t: VV —• M 
is the inclusion. It follows from the naturality condition that 

Ta(M)(f) o of = Ta(W)(f o i) = Ta(R
m)(p) o G(p o«) 

for a = 1,2. Therefore Ti(Af)(/) = T2(M)(/) over x because of Lemma 4.1 and the 

localization condition. 
Now we do not assume that dxf ^ 0. There exist two open subsets (7, V C M 

and a map g G C°°(M) such that x G U f\ V, </|f/ = / ) [ / and <fy ^ 0 at each point 
from V. By the localization condition T\(M)(f) = Ti(M)(#) over U. By the first 
case Tx(M)(g) = T2(M)fo) over V. Thus ^ ( J l fK/ ) = T ^ M ) ^ ) = T2(M)(g) = 
T2(Af)(/) over x. Proposition 4.1 is proved. D 

5. Proof of Theorem 3.2. Using similar arguments to those in the proof of 
Theorem 3.1 we see that Theorem 3.2 will be proved by proving the following propo­
sition. 
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Propos i t ion 5.1. HT\,T2 G Trans* (G'm) are two natural transformations such 

that T\(Rm)(d\) = T2(Rw)(9i) on lm(GO) and m £ 2, then T\ = T2. 

From now on we consider two natural transformations Ti, T2 such that the as­

sumptions of Proposition 5.1 are satisfied. 

Lemma 5.1. Ti(Rw)(di) = T2(Rw)(0i). 

P r o o f of the lemma. Consider an arbitrary y G GRm. Let j , p be as in Theorem 
3.1 and let Jb: R — Rw be given by ib(^) = (0,y,0, . . . ,0) . Let fugt: Rw — Rw , 
t G R be two smoothly parametrized families given by ft(x) = (x1, *x 2 , . . . , txm) and 
gt(x) = (x1 + x2 , <x 2 , . . . , txm). We see that ft, gt are diffeomorphisms preserving d\ 

provided t ^ 0. Using the naturality condition and Proposition 1.1 we derive that 

T\(Rm)(d\)(y) = Ti(Rw)(ai) o Gft(y) - Ti(Rw)(9i) o Gj o Gp(y) 

as t —• 0, and then 

T\(Rm)(d\)(y) = Ti(Rw)(c)i) o Gj o Gp(y). 

In particular, 

Ti(Rw)(9i) o Gk o Gp(y) = Ti(Rw)(#i) o GO o Gq*n>(y). 

Using the family gt instead of ft we obtain that 

Ti(Rw)(0,) o Gk o Gp(y) = Ti(Rw)(0i) o Gj o Gp(y). 

Hence 
T,(IT»)(ft )(y) = r i (R m ) (9 , ) o GO o <?» . (* ) , 

and similarly for T2 playing the role of Ti. Therefore from the assumption of the 

proposition we conclude T\(Rm)(d\)(y) = T2(R
m)(d\)(y) as well. 

We are now in position to prove Proposition 5.1. Let M G obj(M/m ) be a mani­
fold, x £ M a point and X G X(M) a vector field. The proof will be complete after 
proving that Ti(M)(.K) = T2(M)(X) on the fibre over x. 

Suppose that Xx ^ 0. There exists an open neighbourhood W of x and a chart <p 

defined on W such that d<p~l(d\) = X o <p~l, where #i G A^/my?) is the restriction 
of d\. Using the localization and naturality conditions and Lemma 5.1 we obtain 
that Ti(M)(X) = T2(M)(X) over x. 

Now we do not assume that Xx £ 0. There exist two open subsets U,V C M and 
a vector field Y G **(M) such that x G l / f l F , * | t / = Y\U a n d T / 0 at each point 
from V. By the localizatin condition T\(M)(Y) = Ti(M)(X) over I/. By the first 
case Ti (M)(y) = T2(M)(Y) over V. Hence Ti(M)(K) = Ti(M)(7) = T2(M)(Y) = 
T2(M)(.K) over x. Proposition 5.1 is proved. • 
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6. Applications. Let G: Mf —• FM be a bundle functor such that GR is 
diffeomorphic to R^, N = dirnGR. (For example, if G has a point property, i.e. 
G(point) = point, then GR is diffeomorphic to R", see [3].) Let H = ( I / 1 , . . . , HN): 

GR —+ RN be a diffeomorphism. By virtue of Theorem 3.1 one can define N natural 
transformations T \ . . . ,TN € Trans;(Gm) by Tl = G*(Hl). We have the following 
corollary of Theorem 3.1. 

Corollary 6.1. The function 

C0°(RN)3*->*o(T\...,TN)eTrznsf(Gm) 

is a linear isomorphism. 

P r o o f . The function is equal to G* o //*, where G* is the isomorphism defined 
in Theorem 3.1 and H*: C°°(RN) -+ G°°(GR) is the isomorphism given by H*(f) = 
foH. • 

In particular, when G = Tp,r is the bundle of pr-velocities ([1]) one can consider 
H = (Ha): Tp,rR — RN , the diffeomorphism given by Ha(f0j) = ^ D a 7 ( 0 ) , a € 
(NU{0})p , \a\ ^ r. Of course, G*(Ha) = Ca are the a-lifts of functions to Tp>r\ [1]. 
Therefore we have the following subcorollary. 

Corollary 6.2. The function 

G°°(R d i m T ' ' r*) 3 4> ~* 4> o (Ca: a e (N U {0})r, |a | ^ r) € Trans;(T^ r |Af/m) 

is a linear isomorphism. 

Now, we give an application of Theorem 3.2. Let G: Mf —• F M be a bundle 
functor and m ^ 2 a natural number. Let £ = { £ M } , >CM - A'(Af) —• ^ ( G M ) , Af G 
obj(Af fm) be a quasi-lifting of vector fields to Gm , [1]. Owing to the decomposition 
theorem, [1], C = Cv + c( )G( ), where Cv is the lifting of vertical type, G( ) is the 
complete lifting of vector fields to Gm and c( ) is the element of Transt;(Gm). C is 
a lifting of vector fields to Gm , [1], if and only if c( ) = c G R. Therefore we have 
the following corollary of Theorem 3.2. (This corollary generalizes the result of [1, 
p. 41].) 

Corollary 6.3. Any quasi-lifting of vector fields to Gm is a lifting if and only if 

G has a point property. 
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