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Summary. An elementary short proof of the one-dimensional Rademacher theorem on 
differentiability of Lipschitz functions is given. 
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1. INTRODUCTION 

The one-dimensional Lebesgue density theorem was proved in [5] without any 
covering theorem. 

The aim of the present note is to show that also the one-dimensional Rademacher 
theorem can be easily proved by this (slightly modified) method without any covering 
theorem. For a very short proof we need only three obvious well-known lemmas and 
the classical Dini's theorem on Dini derivates which has a quite elementary proof. 

Thus the present note completes in a sense the paper [2] which shows that the 
n-dimansional Rademacher theorem can be easily deduced from the one-dimensional 
Rademacher theorem and the Fubini theorem. Remind that the Rademacher the­
orem [3] asserts that each Lipschitz function on Rn is Frechet differentiate almost 
everywhere. 

Finally, recall that the one-dimensional Rademacher theorem is an immediate 
consequence of the Lebesgue theorem on the differentability of monotone functions 
since the function g(x) = f(x)+Kx is obviously monotone whenever / is A'-Lipschitz. 
Another argument uses the fact that every Lipschitz function is locally absolutely 
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continuous. Both these proofs use relatively deep theorems which are usually proved 
by the Vitali covering theorem or by similar means. 

2. PRELIMINARIES 

In the sequel / is always a real function defined on a bounded interval (a, 6). 

The one-sided Dini derivates of / at x 6 (a, 6) will be denoted by the symbols 

Dxf(x) := £>+/(*), D2f(x) := D+f(x), D*f(x) := D~f(x) and D4f(x) := D.f(x). 

A function / is said to be K-Lipschitz on a set M C R if \f(x) - f(y)\ ^ K\x - y\ 

for each xyy € M. The symbol u stands for the Lebesgue measure on R. 

We shall need three well-known lemmas. The following two are quite obvious. 

Leinma 1. 

4 

{x £ (a,b):f'(x) does not exists} = ( J {x: D{f(x) < Djf(x)}. 

Lemma 2. Let x G (a, 6) and i £ {1,2,3,4}. Then: 

(i) Ifg'(x) = c e R, then A ( / + g)(x) =- D{f(x) + c. 
(ii) Ifg is nondecreasing on (a, 6), then Di(f + g)(x) ^ Dif(x). 

Lemma 3. Let f be a Lipschitz function and i E {1,2,3,4}. Then the function 
Dif(x) is Lebesgue measurable. 

P r o o f . We can suppose i = 1. If we define f(x) = 0 for x £ (a,6), then 

Dif(x) = Iim sup{ (f(x + h) - f(x))/h: 0 < h < 1/n, h is rational}. Since each 

function gn(x) := (f(x+h) — f(x))/h is obviously measurable, we obtain that D\f(x) 

is measurable as well. 

The only non-trivial fact we shall need is the classical Dini's theorem (cf. Theorem 

88 of [1] or [4, p. 204]). It can be formulated in the following way. D 

L e m m a 4. Let g be a continuous function on [c,d\, t £R and i 6 {1,2,3,4}. 

If Dtg(x) ^ t (or Dig(x) ^ t) for each x G (c,rf), then g(d) - g(c) ^ t(d - c) 

(ff(d) - g(c) ^ t(d - c), respectively). 
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3. PROOF 

Theorem. Let f be a K-Lipschitz function on (a, b). Then f is differentiate 
almost everywhere. 

P r o o f . Suppose on the contrary that this is not the case. By Lemma 1 
and Lemma 3 there exist i,j G {1,2,3,4} such that /*{x: D t / (x) < Dj(x)} > 0. 
Consequently, there exist rational numbers r < s such that /iL > 0, where L := 
{x: Dif(x) < r < s < Djf(x)}. Find a < a < /? < 6 such that pM > 0, where 
M := L n (a, /?). Further, find e > 0 such that 

(1) s > r + 4K£: 

and an open set M C G C (<*>/?) s u c n that V>M/nG > 1 — e. It is easy to see that 
there exists a component (c,d) of G such that p(M n(c, d))/(d—c) > 1 — e. Choose 
a closed s e t F c M H (c, </) such that fiF/(d - c) > 1 - e. Now put H := (c, d) - F 
and /i(x) = /*{(c,x) n H), u(x) = / (x) + 2/<7i(x), v(x) = /(x) - 2Kh(x) for x G 
(c, d). Since obviously /i is nondecreasing and continuous, h'(x) = 1 for x G H and 
{D, / (x ) ,Dj / (x ) , r , s} C [— K,K] for each x G (c, rf), Lemma 2 easily implies that 
DJU(X) ^ B and D,v(x) ^ r for each x ^ (c, d). Since h(d) — /i(c) = fi((c, d)C\H) < 
e(d — c), Lemma 4 implies 

s (d -c ) ^ u(d)-u(c) = ( / (d)- / (c) ) - f2K ( / i (d)- / i (c) ) ^ (f(d)-f(c))+2Ke(d-c) 

and 

r(rf-c) > W(d)-»(c) = (f(d)-f(c))-2K(h(d)-h(c)) > (f(d)-f(c))-2Ke(d-c). 

These inequalities imply s — r ^ 4K£, which contradicts (1). • 
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S o u h r n 

ELEMENTÁRNÍ DŮKAZ JEDNOROZMĚRNÉ RADEMACHEROVY VĚTY 

LUDĚK ZAJÍČEK, PRAHA 

V článku je podán jednoduchý elementární důkaz jednorozměrné Rademacherovy věty 
o derivování lipschitzovských funkcí. 
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