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Summary. In this paper are determined all natural transformations of the natural bundle 
°f (q> r)-covelocities over n-manifolds into such a linear natural bundle over n-manifolds 
which is dual to the restriction of a linear bundle functor, if n ^ q. 
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1. Throughout the paper manifolds are assumed to be paracompact, finite dimen
sional, without boundary, second countable and of class C°°. Maps will be assumed 
to be C°°, unless the smoothness should be proved. 

A class of well-known functors in differential geometry can be constructed as fol
lows. Given integers q,r^\ and an n-manifold M, we put T^*M = Jr(M,W)o, the 
set of all r-jets of M into R* with target 0. One can see that 7J*Af with the source 
projection is a vector bundle over M. We call T£*M the (q, r)-covelocities bundle of 
M. Every embedding f:M—*N between n-manifolds induces a vector bundle ho-
momorphism T^*f: T^*M •-> T^*N, T^*f(jly) = jj(a.)(7 o / ~ * ) . One easily verifies 
that the rule M —• T£*M, f —* T£*f, is a linear bundle in dimension n in the sense 
of A. Nijenhuis, [5]. 

Let dtn or ^ be the category of all n-manifolds or all manifolds and embeddings 
or maps, respectively. Let v/3 be the category of all vector bundles and vector bundle 
homomorphisms. A linear natural bundle E: *dln —• v$ will be called admissible iff 
there exists a linear bundle functor F: Ji —• up in the sense of I. Kola? and J. Slovak, 
[3], such that E = (F\^tn)*, i.e. 

(1) EM = (FM)*, the dual vector bundle of FM, for every M € *#«, and 
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(2) Ef s (F/- 1)* : EM — EN for every embedding f:M-+N. 
In particular, 7J*: Jin -+ ^ is admissible, for 7J** is isomorphic to (TJ*|^n)*, 

where 7J: ^ —• v/3 is the linear (g, r)-velocities bundle functor described in [2]. Of 
course, the tensor product (or the fiber product, the symmetric tensor product, the 
antisymmetric tensor product etc.) of a finite number of admissible natural bundles 
is admissible. 

2. Let E: ^Mn —• v/3 be an admissible natural bundle. Let F: *rf —• v/3 be a 
linear bundle functor such that E = (F|^n)*. Let r, q ^ 1 be integers such that 
n ^ g. We denote by Adm(E} r, q) the vector subspace 

{a; G (F0Wy : for all / : Rn -+ R« ( j j / = jjp => W oF 0 p = uioF0/)}, 

where p: Rn = R* x Rn~« -+ R* is the projection. By Trans(7£*,£) we denote the 
vector space of all natural transformations of 7J* into E. 

For any u; G Adm(£,r,g) and M G ^ n we define 7%: 7£*M -> EM by 
7 J # ( £ T ) = w o F9y, where £ 7 € 7J*M and x G Af. 

Lemma 2.1. Ifu G Adm(£, r, g), then T» = {7^} G TYans(7J*, E). 

Proof . First we prove that Tfa is well defined. Let 71, 72: M —• Hq be such 
that JJJ71 = jJ72 G T£*M. We consider two cases: 

(1) rank(dr7i) = q. Then there exists an embedding <p: Rn —• M such that 
gerrn0(7i o p) = germ0(p). Since J5(72 09) = jg(p) and w G Adm(£,r,g), then 
-H&OlTO^woFopoF^-1 = W O F 0 ( 7 2 O V ? ) O J F ^ - 1 =7^0172). 

(2) rank(dr7i) < g. Let h: M -* R« be such that A(x) = 0 and rank(tf*/i) = g. 
Then there exists a sequence tm G R, m = 1, 2, ..., such that rank (<f*(7i +<m^)) = 9 
for all ro and /m —• 0 as m -* 00. By the regularity condition of F (see [3]) 

T^Uhi + tmh)) = u o F#(7< + «m*) — *&(£-») 

asm-4 00 for t =1 ,2 . By virtue of the first case T^{jl{ji+tmh)) = 7^(iJ(72 + 
lmA)) for all m. Therefore 7 ^ ( £ 7 i ) = ^ ( £ 7 2 ) . 

Hence 7]ft is well-defined. For every embedding / : M —> N we have 

(2.1) 7 # o 7 7 / = 2?/o7£ 

« I ^ o T ^ / 0 l 7 ) * ^ ( > V ) < - > r o ' " 1 ) ) = w o ^ ° W 1 =,B/o71&(ij7)for 
every ij7G 7^*M. 

It remains to show that TJ£ is of class C°°. By (2.1) it is sufficient to verify that 
7*»\(T**)ofln is of class C°°. By the well-known Boman theorem, [1], it is sufficient 
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to show that T%„ o r is of class C°° for any r: R -> CTJ"*)oRn of class C°°. Consider 
r: R — (Tp)0Rn. Let 7: R x Rn — R« be of class C°° such that r(t) = j^(y(t,.)) 
for all ( €R . Let v € E0R

n. Then 

R 3 t - Tg. (r(t))(v) = w(F0(y(t,.))(»)) € R 

(and then 7]^ o r) is of class C°° because of the regularity condition for F. Q 

3. Let E} F, r, q be as in Item 2. The main result is 

Theorem 3.1. The function 

I: Adm(F, r, q) — Trans(7;*, F), /(w) = r* 

is a iinear isomorphism. The inverse isomorphism is given by S(T) = T«* (J5P) o Foi, 
where p: Rn -+ R* is as in /tern 2 and i: R* -> Rn is given by i(t) = (*,0). 

Proof. First we prove that 5 is well-defined, i.e. S(T) € Adm(F, r, q) for every 
T G Trans(7£*, F). Let / : Rn - • R* be such that Hf = i5p. There exists a sequence 
tm € R, m = 1, 2, ..., such that rank (do(i of + tm id*«)) = n for all m and tm —* 0 
a s m ^ o o . Then T*nO»oF 0 ( to / + *mid«0 = E(iof + tmidm»)-1 oTmn(fQp) = 
Tu»(Jh(po(iof + tmidmn))){oTallm, 

Tu»(jroP) o F0(i of + tm id**) - S(T) o Fo/, and 

T*4fo(p°(i° f + *mid**))) ^T*n(f0f) 

as m -+ 00. Then 5(T) o F0f = Tmn(fif) = Tnn(J5p) = 5(T) o F0p. Hence 5 is 
well-defined. Moreover, we have proved that 

(3.1) T R * 0 » = 5(r)oF0p = T||..(i5p)oF0toF0p 

for any T € 1Vans(7J*, E). 
It is obvious that 5 is linear. We have 5 o I(w) = T%n(JoP) o Foi = u; for any 

u> G F0R
n, i.e. 5 o / = id. It remains to prove that / o 5 = id. Consider T € 

Trans(7J*, E). Let u> = S(T). Then / o S(T) = T". We have to show that 7^ = T. 
We see that Tĵ O'Sp) o F0i = w o F0po F0i = 5(T) = T«»(J5p) o F0t. Then by (3.1) 
it follows that 

Tm«(jroP) = Tmn(jr
0p) o F0i o Fop = 7 y * 0 » <> Foi° F0p = Iff-OoP). 

Let fey £T£*M. If rank(d*7) = 0, then there exists an embedding <p: Rn —• M 
such that germo(7 © 9) = gerwio(p), and then ^ ( £ 7 ) = E<p~l o Tm*(Jo(y o ?>)) = 
E<p~x o Tun(jr

Qp) = E<p~l o7Jf,.(i5p) = 7]J0#7)- Then TM = 7% on dense subset 
in T;*M. Therefore TM = 7ft. d 
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4. Let £?, F , r, q be as in Item 2. We see that Adm(.E, r, g) = (F0R*)*, if E is of 
order ^ r. Then we have the following corollary of Theorem 3.1. 

Corollary 4.1. d im(Trans(IJ* ,£)) = dim(F0R*), if ord(JB) $ r. 

As an application of Corollary 4.1 we describe Trans(7^*,®*Ti*), where s, k are 
natural and * < r. 

By Corollary 4.1 dim(Trans(7^*,®*7Y*)) = ( c a r d ^ ) ) * , where A = {a £ (NU 
{0}) f : 1 ^ | a | ^ «}. On the other hand for every ( a 1 , . . . , a * ) £ Ak we have 
I**1.-.*-*) € TYans^*,®*7?•) given by 

-4aS ,ttfcto) = ii(70,)®...®ii(7°fc), 

where £ 7 € 7J*Af, M € ^ r» . It is easy to verify that T<"1>~ >"*>, ( a 1 , . . . , a*) € -4*, 
are linearly independent, and then they form a basis in Trans(7^*,<8)*r/*), provided 
n > g. (In [4], J. Kurek proved this fact for k = 1.) 
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