Mathematic Bohemia

Włodzimierz M. Mikulski

Natural transformations of the covelocities functor into some natural bundles

Mathematica Bohemica, Vol. 118 (1993), No. 3, 277-280

Persistent URL: http://dml.cz/dmlcz/125923

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

NATURAL TRANSFORMATIONS OF THE COVELOCITIES FUNCTORS INTO SOME NATURAL BUNDLES

W. M. Mikulski, Kraków

(Received April 23, 1992)

Summary. In this paper are determined all natural transformations of the natural bundle of ($\boldsymbol{g}, \boldsymbol{r}$-covelocities over \boldsymbol{n}-manifolds into such a linear natural bundle over n-manifolds which is dual to the restriction of a linear bundle functor, if $\boldsymbol{n} \geqslant \boldsymbol{q}$.

Keywords: Natural bundle, covelocities functors
AMS classification: 58A20, 53A55

1. Throughout the paper manifolds are assumed to be paracompact, finite dimensional, without boundary, second countable and of class C^{∞}. Maps will be assumed to be C^{∞}, unless the smoothness should be proved.

A class of well-known functors in differential geometry can be constructed as follows. Given integers $q, r \geqslant 1$ and an n-manifold M, we put $T_{q}^{r *} M=J^{r}\left(M, R^{q}\right)_{0}$, the set of all r-jets of M into R^{q} with target 0 . One can see that $T_{q}^{r *} M$ with the source projection is a vector bundle over M. We call $T_{q}^{r *} M$ the (q, r)-covelocities bundle of M. Every embedding $f: M \rightarrow N$ between n-manifolds induces a vector bundle homomorphism $T_{q}^{r *} f: T_{q}^{r *} M \rightarrow T_{q}^{r *} N, T_{q}^{r^{*}} f\left(j_{x}^{r} \gamma\right)=j_{j(x)}^{r}\left(\gamma \circ f^{-1}\right)$. One easily verifies that the rule $M \rightarrow T_{q}^{r *} M, f \rightarrow T_{q}^{r *} f$, is a linear bundle in dimension n in the sense of A. Nijenhuis, [5].

Let \mathscr{M}_{n} or \mathscr{M} be the category of all n-manifolds or all manifolds and embeddings or maps, respectively. Let $\nu \beta$ be the category of all vector bundles and vector bundle homomorphisms. A linear natural bundle $E: \mathscr{N}_{n} \rightarrow \nu \beta$ will be called admissible iff there exists a linear bundle functor $F: \mathcal{M} \rightarrow \nu \beta$ in the sense of I. Kolár and J. Slovák, [3], such that $E=\left(F \mid \mathscr{M}_{n}\right)^{*}$, i.e.
(1) $E M=(F M)^{*}$, the dual vector bundle of $F M$, for every $M \in \mathscr{A}_{n}$, and
(2) $E f=\left(F f^{-1}\right)^{*}: E M \rightarrow E N$ for every embedding $f: M \rightarrow N$.

In particular, $T_{g}^{r *}: \mathscr{M}_{n} \rightarrow \nu \beta$ is admissible, for $T_{q}^{r *}$ is isomorphic to $\left(T_{q}^{r} \mid \mathscr{M}_{n}\right)^{*}$, where $T_{q}^{r}: \mathscr{M} \rightarrow \nu \beta$ is the linear (q, r)-velocities bundle functor described in [2]. Of course, the tensor product (or the fiber product, the symmetric tensor product, the antisymmetric tensor product etc.) of a finite number of admissible natural bundles is admissible.
2. Let $E: \mathscr{M}_{n} \rightarrow \nu \beta$ be an admissible natural bundle. Let $F: \mathscr{M} \rightarrow \nu \beta$ be a linear bundle functor such that $E=\left(F \mid \mathscr{M}_{n}\right)^{*}$. Let $r, q \geqslant 1$ be integers such that $n \geqslant q$. We denote by $\operatorname{Adm}(E, r, q)$ the vector subspace

$$
\left\{\omega \in\left(F_{0} \mathbf{R}^{q}\right)^{*}: \text { for all } f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}\left(j_{0}^{r} f=j_{0}^{r} p \Longrightarrow \omega \circ F_{0} p=\omega \circ F_{0} f\right)\right\}
$$

where $p: \mathbf{R}^{\boldsymbol{n}}=\mathbf{R}^{q} \times \mathbf{R}^{n-q} \rightarrow \mathbf{R}^{q}$ is the projection. By $\operatorname{Trans}\left(T_{q}^{r *}, E\right)$ we denote the vector space of all natural transformations of $T_{q}^{* *}$ into E.

For any $\omega \in \operatorname{Adm}(E, r, q)$ and $M \in \mathscr{M}_{n}$ we define $T_{M}^{w}: T_{q}^{r *} M \rightarrow E M$ by $T_{M}^{\omega}\left(j_{x}^{r} \gamma\right)=\omega \circ F_{x} \gamma$, where $j_{x}^{r} \gamma \in T_{q}^{r *} M$ and $x \in M$.

Lemma 2.1. If $\omega \in \operatorname{Adm}(E, r, q)$, then $T^{w}=\left\{T_{M}^{w}\right\} \in \operatorname{Trans}\left(T_{q}{ }^{* *}, E\right)$.
Proof. First we prove that T_{M}^{ω} is well defined. Let $\gamma_{1}, \gamma_{2}: M \rightarrow R^{q}$ be such that $j_{x}^{r} \gamma_{1}=j_{x}^{r} \gamma_{2} \in T_{q}^{r *} M$. We consider two cases:
(1) $\operatorname{rank}\left(d_{x} \gamma_{1}\right)=q$. Then there exists an embedding $\varphi: \mathbf{R}^{\boldsymbol{n}} \rightarrow M$ such that $\operatorname{germ}_{0}\left(\gamma_{1} \circ \varphi\right)=\operatorname{germ}_{0}(p)$. Since $j_{0}^{r}\left(\gamma_{2} \circ \varphi\right)=j_{0}^{r}(p)$ and $\omega \in \operatorname{Adm}(E, r, q)$, then $T_{M}^{\omega}\left(j_{x}^{r} \gamma_{1}\right)=\omega \circ F_{0} p \circ F_{x} \varphi^{-1}=\omega \circ F_{0}\left(\gamma_{2} \circ \varphi\right) \circ F_{x} \varphi^{-1}=T_{\mathcal{M}}^{\omega}\left(j_{x}^{r} \gamma_{2}\right)$.
(2) $\operatorname{rank}\left(d_{x} \gamma_{1}\right)<q$. Let $h: M \rightarrow R^{q}$ be such that $h(x)=0$ and $\operatorname{rank}\left(d_{x} h\right)=q$. Then there exists a sequence $t_{m} \in R, m=1,2, \ldots$, such that $\operatorname{rank}\left(d_{x}\left(\gamma_{1}+t_{m} h\right)\right)=q$ for all \boldsymbol{m} and $\boldsymbol{t}_{\boldsymbol{m}} \rightarrow 0$ as $\boldsymbol{m} \rightarrow \infty$. By the regularity condition of \boldsymbol{F} (see [3])

$$
T_{\mathcal{M}}^{\omega}\left(j_{x}^{r}\left(\gamma_{i}+t_{m} h\right)\right)=\omega \circ F_{x}\left(\gamma_{i}+t_{m} h\right) \rightarrow T_{M}^{\omega}\left(j_{x}^{r} \gamma_{i}\right)
$$

as $m \rightarrow \infty$ for $i=1,2$. By virtue of the first case $T_{M}^{w}\left(j_{x}^{r}\left(\gamma_{1}+t_{m} h\right)\right)=T_{M}^{w}\left(j_{x}^{r}\left(\gamma_{2}+\right.\right.$ $t_{m} h$) for all m. Therefore $T_{\mathbb{N}}^{w}\left(j_{x}^{r} \gamma_{1}\right)=T_{M}^{w}\left(j_{x}^{r} \gamma_{2}\right)$.

Hence T_{M}^{ω} is well-defined. For every embedding $f: M \rightarrow N$ we have

$$
\begin{equation*}
T_{N}^{\omega} \circ T_{q}{ }^{* *} f=E f \circ T_{M}^{\omega} \tag{2.1}
\end{equation*}
$$

as $T_{\mathcal{N}}^{w} \circ T_{q}^{r *} f\left(j_{x}^{r} \gamma\right)=T_{N}^{w}\left(j_{f(x)}^{r}\left(\gamma \circ f^{-1}\right)\right)=\omega \circ F_{x} \gamma \circ F_{f(x)} f^{-1}=E f \circ T_{M}^{w}\left(j_{x}^{r} \gamma\right)$ for every $j_{x}^{r} \gamma \in T_{q}^{\top *} M$.

It remains to show that T_{M}^{ω} is of class C^{∞}. By (2.1) it is sufficient to verify that $T_{R_{n}}^{\omega} \mid\left(T_{\boldsymbol{q}}^{r^{*}}\right)_{0} R^{n}$ is of class C^{∞}. By the well-known Boman theorem, [1], it is sufficient
to show that $T_{R^{n}}^{\omega} \circ \tau$ is of class C^{∞} for any $\tau: R \rightarrow\left(T_{q}^{r *}\right)_{0} R^{n}$ of class C^{∞}. Consider $\tau: \mathbf{R} \rightarrow\left(T_{q}^{r *}\right)_{0} \mathbf{R}^{n}$. Let $\gamma: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$ be of class C^{∞} such that $\tau(t)=j_{0}^{r}(\gamma(t,)$. for all $t \in \mathbf{R}$. Let $v \in E_{0} \mathbf{R}^{n}$. Then

$$
\mathbf{R} \ni t \rightarrow T_{\mathbf{R}^{n}}^{\omega}(\tau(t))(v)=\omega\left(F_{0}(\gamma(t, .))(v)\right) \in \mathbf{R}
$$

(and then $T_{R_{n}}^{\omega} \circ \tau$) is of class C^{∞} because of the regularity condition for F.
3. Let E, F, r, q be as in Item 2. The main result is

Theorem 3.1. The function

$$
I: \operatorname{Adm}(E, r, q) \rightarrow \operatorname{Trans}\left(T_{q}^{r *}, E\right), \quad I(\omega)=T^{\omega}
$$

is a linear isomorphism. The inverse isomorphism is given by $S(T)=T_{R^{n}}\left(j_{0}^{r} p\right) \circ F_{0} i$, where $p: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{\boldsymbol{q}}$ is as in Item 2 and $i: \mathbf{R}^{\boldsymbol{q}} \rightarrow \mathbf{R}^{\boldsymbol{n}}$ is given by $\boldsymbol{i}(\boldsymbol{t})=(\boldsymbol{t}, 0)$.

Proof. First we prove that S is well-defined, i.e. $S(T) \in \operatorname{Adm}(E, r, q)$ for every $T \in \operatorname{Trans}\left(T_{q}^{r *}, E\right)$. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$ be such that $j_{0}^{r} f=j_{0}^{r} p$. There exists a sequence $t_{m} \in R, m=1,2, \ldots$, such that $\operatorname{rank}\left(d_{0}\left(i \circ f+t_{m}\right.\right.$ idmn $\left.)\right)=n$ for all m and $t_{m} \rightarrow 0$ as $m \rightarrow \infty$. Then $T_{\mathbf{R}^{n}}\left(j_{0}^{r} p\right) \circ F_{0}\left(i \circ f+t_{m} \mathrm{id}_{\mathbf{R}^{n}}\right)=E\left(i \circ f+t_{m} \mathrm{id}_{\mathbf{R}^{n}}\right)^{-1} \circ T_{\mathrm{R}^{n}}\left(j_{0}^{r} p\right)=$ $T_{R^{n}}\left(j_{0}^{r}\left(p \circ\left(i \circ f+t_{m} \mathrm{id}_{\mathrm{R}^{n}}\right)\right)\right)$ for all m,

$$
\begin{aligned}
& T_{\mathbf{R}^{n}}\left(j_{0}^{r} p\right) \circ F_{0}\left(i \circ f+t_{m} i d_{R^{n}}\right) \rightarrow S(T) \circ F_{0} f, \quad \text { and } \\
& T_{\mathbf{R}^{n}}\left(j_{0}^{r}\left(p \circ\left(i \circ f+t_{m} \mathrm{id}_{\mathbf{R}^{n}}\right)\right)\right) \rightarrow T_{\mathbf{R}^{n}}\left(j_{0}^{r} f\right)
\end{aligned}
$$

as $m \rightarrow \infty$. Then $S(T) \circ F_{0} f=T_{R^{n}}\left(j_{0}^{r} f\right)=T_{R^{n}}\left(j_{0}^{r} p\right)=S(T) \circ F_{0} p$. Hence S is well-defined. Moreover, we have proved that

$$
\begin{equation*}
T_{R^{n}}\left(j_{0}^{r} p\right)=S(T) \circ F_{0} p=T_{R^{n}}\left(j_{0}^{r} p\right) \circ F_{0} i \circ F_{0} p \tag{3.1}
\end{equation*}
$$

for any $T \in \operatorname{Trans}\left(T_{q}^{r *}, E\right)$.
It is obvious that S is linear. We have $S \circ I(\omega)=T_{R_{n}}^{\omega}\left(j_{0}^{r} p\right) \circ F_{0} i=\omega$ for any $\omega \in E_{0} R^{n}$, i.e. $S \circ I=$ id. It remains to prove that $I \circ S=$ id. Consider $T \in$ $\operatorname{Trans}\left(T_{q}^{r *}, E\right)$. Let $\omega=S(T)$. Then $I \circ S(T)=T^{\omega}$. We have to show that $T^{\omega}=T$. We see that $T_{\mathbf{R}^{n}}^{\omega}\left(j_{0}^{r} p\right) \circ F_{0} i=\omega \circ F_{0} p \circ F_{0} i=S(T)=T_{\mathbf{R}^{n}}\left(j_{0}^{r} p\right) \circ F_{0} i$. Then by (3.1) it follows that

$$
T_{R^{n}}\left(j_{0}^{r} p\right)=T_{R^{n}}\left(j_{0}^{r} p\right) \circ F_{0} i \circ F_{0} p=T_{R_{n}}^{\omega}\left(j_{0}^{r} p\right) \circ F_{0} i \circ F_{0} p=T_{R n}^{\omega}\left(j_{0}^{r} p\right)
$$

Let $j_{x}^{r} \gamma \in T_{q}^{r *} M$. If $\operatorname{rank}\left(d_{x} \gamma\right)=q$, then there exists an embedding $\varphi: \mathbf{R}^{\boldsymbol{n}} \rightarrow M$ such that $\operatorname{germ}_{0}(\gamma \circ \varphi)=\operatorname{germ}_{0}(p)$, and then $T_{M}\left(j_{x}^{r} \gamma\right)=E \varphi^{-1} \circ T_{R n}\left(j_{0}^{r}(\gamma \circ \varphi)\right)=$ $E \varphi^{-1} \circ T_{R^{n}}\left(j_{0}^{r} p\right)=E \varphi^{-1} \circ T_{R^{n}}^{\omega}\left(j_{0}^{r} p\right)=T_{M}^{\omega}\left(j_{x}^{r} \gamma\right)$. Then $T_{M}=T_{M}^{\omega}$ on dense subset in $T_{q}{ }^{* *} M$. Therefore $T_{M}=T_{M}^{w}$.
4. Let E, F, r, q be as in Item 2. We see that $\operatorname{Adm}(E, r, q)=\left(F_{0} R^{q}\right)^{*}$, if E is of order $\leqslant r$. Then we have the following corollary of Theorem 3.1.

Corollary 4.1. $\operatorname{dim}\left(\operatorname{Trans}\left(T_{q}^{r *}, E\right)\right)=\operatorname{dim}\left(F_{0} R^{q}\right)$, if ord $(E) \leqslant r$.
As an application of Corollary 4.1 we describe $\operatorname{Trans}\left(T_{q}{ }_{q}^{*}, \otimes^{k} T_{1}^{* *}\right)$, where s, k are natural and $s \leqslant r$.

By Corollary $4.1 \mathrm{dim}\left(\operatorname{Trans}\left(T_{q}^{r *}, \otimes^{k} T_{1}^{k *}\right)\right)=(\operatorname{card}(A))^{k}$, where $A=\{\alpha \in(N \cup$ $\left.\{0\})^{q}: 1 \leqslant|\alpha| \leqslant s\right\}$. On the other hand for every $\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in A^{k}$ we have $T^{\left(\alpha^{1}, \ldots, \alpha^{k}\right)} \in \operatorname{Trans}\left(T_{q}^{* *}, \otimes^{k} T_{1}^{s *}\right)$ given by

$$
T_{M}^{\left(\alpha^{1}, \ldots, \alpha^{k}\right)}\left(j_{x}^{r} \gamma\right)=j_{x}^{s}\left(\gamma^{\alpha^{1}}\right) \otimes \ldots \otimes j_{x}^{s}\left(\gamma^{\alpha^{k}}\right)
$$

where $j_{x}^{r} \gamma \in T_{q}^{r *} M, M \in \mathscr{M}_{n}$. It is easy to verify that $T^{\left(\alpha^{1}, \ldots, \alpha^{k}\right)},\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in A^{k}$, are linearly independent, and then they form a basis in $\operatorname{Trans}\left(T_{q}^{r *}, \otimes^{k} T_{1}^{z *}\right)$, provided $n \geqslant q$. (In [4], J. Kurek proved this fact for $k=1$.)

References

[1] J. Boman: Differentiability of functions and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249-268.
[2] T. Klein: Connections on higher order tangent bundles, Cas. Pèst. Mat. 106 (1981), 414-421.
[3] I. Kolár and J. Slovák: On the geometric functors on manifolds, Proceedings of the Winter School on Geometry and Physics, Srní 1988, Suppl. Rendiconti Circolo Mat. Palermo, Serie II 21, 1989, pp. 223-233.
[4] J. Kurek: Natural transformations of higher order covelocities functor, Annales UMCS to appear.
[5] A. Nijenhuis: Natural bundles and their general properties, Differential Geometry in Honor of K. Yano, Kinokuniya, Tokio, 1972, pp. 317-343.

Author's address: Institute of Mathematics, Jagiellonian University, Reymonta 4, Kraków, Poland.

