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ON ALMOST QUASICONTINUOUS FUNCTIONS 

JAN Bonsk,* KoSice 

(Received June 3, 1991) 

Summary. A function / : X —• Y is said to be almost quasicontinuous at x € X if 
x € Clint CI/"1 (V) for each neighbourhood V of f(x). Some properties of these functions 
are investigated. 

Keywords: Almost quasicontinuity, /5-continuity, Separate almost quasicontinuity 

A MS classification: 54C10 

Let X and Y be topological spaces. For a subset A of a topological space denote 
CIA and IntA the closure and the interior of Ay respectively. The letters N, Q and 
R stand for the set of natural, rational and real numbers, respectively. 

A set A is called semi-open [8] (quasi-open [11]), if A C Clint A, pre-open [10] 
(nearly open [18]), if A G IntCl_4, 0-open [1] (semi-preopen [2]), if A C Clint CI.4, 
somewhat nearly open [18], if IntCl A £ 0. 

Let / : X —• Y be a function and x € X. A function / is called quasicontinuous at 
x [9], if x € Clint f~l(V)y almost continuous at x [5] (nearly continuous at x [18]), 
if x e IntCI f'l(V), almost quasicontinuous at x [3], [15], if * € ClIntCl/-"1(Vr), 
for each neighbourhood V of f(x). 

A function / : X —> Y is quasicontinuous (almost continuous, almost quasicon
tinuous), if it is such at every point. A function / is called semi-continuous [8] 
(pre-continuous [10], ^-continuous [1]), if f~l(V) is semi-open (pre-open, /?-open) 
for each open set V in Y. A function / is somewhat continuous [6] (somewhat 
nearly continuous [18]), if lntf~l(V) ^ 0 (f~l(V) is somewhat nearly open) for 
each open V in Y such that f~l(V) £ 0. Evidently, / is pre-continuous iff / is 
almost continuous and / is semi-continuous iff / is quasicontinuous [14]. 

* Supported by Grant GA-SAV 367 

241 



The notion of almost quasicontinuity is a simultaneous generalization of almost 
continuity and of quasicontinuity. Properties of almost quasicontinuous functions are 
studied in [1], [3], [15], [16]. In this paper we shall show further properties of these 
functions. We also give answers to three Piotrowski's questions. 

Immediately we see that / is almost quasicontinuous if and only if it is /?-
continuous. This is also true "pointwise". 

Theorem 1. Let f;X—*Y and x G X. Then the following conditions are 
equivalent: 

(1) / is almost quasicontinuous at x, 

(2) for each neighbourhood V of f(x) and each neighbourhood U ofx, f~l(V)C\U 

is not a nowhere dense set, 

(3) for each neighbourhood V of f(x) there is a 0-open set U such that x G U 

and f(U) C V. 

P r o o f . We shall prove (2) =-> (3). Other implications are obvious. 
Let V be a neighbourhood of f(x). Then for each neighbourhood U of x there 

is a nonempty open set Gu C U such that Gu C C\f~l(V)> Denote Hu = Gu H 
f~l(V) ^ 0. Let H = \J{Hu: U is a neighbourhood of x}. Then x G H and 
f(H) C V. Let z G CI Gu and let T be an open neighbourhood of z. Then TC\Gu 
is a nonempty open set. Let u G T O Get. Then u G C\f~l(V) and hence 0 ^ 
(TnGu)nf~l(V) a HuHT. This yields z G C\HV and CI Gu C CI He/. Since 
evidently ClHtEC CI Gu, we have CI Gu = CI He;. Hence for each neighbourhood 
U of x we have He, C Gv C IntClGr/ = Int CI He; C IntClH. 

Let y G H. If y 9-- x, then there is a neighbourhood U of x such that y G He/. Then 
y G CI Int CI H. If y = x and U is a neighbourhood of x, then 0 ^ He, C UC\ Int CI H 

and hence £ G Clint CI H. Therefore H is a /?-open set. D 

Evidently, every almost quasicontinuous function is somewhat nearly continu-
ous.The converse is not true; however, we have 

Proposition 1. A function / : X —-> Y is almost quasicontinuous if and only if 

there is a base Si of the space X such that f\s is somewhat nearly continuous for 

each Be&. 

P r o o f . Necessity follows from the obvious fact that the restriction of an almost 
quasicontinuous function to an open subspace is almost quasicontinuous. 

Sufficiency. Let x G X, let U be an open neighbourhood of f(x) and let V 
be an open neighbourhood of x. Let B G Si be such that x G B C U. Then 
(f\B)~l(V) ^ ' * ^ d hence 0 ^ lntC\(f\B)-l(V) C lntC\f'l(V)h IntClH. From 
this we get lntC\f~l(V) D B £ 0 and hence x G Clint CI/" 1 (K). D 
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Proposition 1 shows that a relation between almost quasicontinuity and somewhat 
nearly continuity is similar to that between quasicontinuity and somewhat continuity 
(see [12]). Next proposition shows a similar relation between almost quasicontinuity 
and almost continuity and between quasicontinuity and continuity (see [11]). 

Proposition 2. Let X be a first countable Hausdorff space and let Y be a first 

countable space. Let x G X. Then f: X -+Y is almost quasicontinuous at x if and 

only if there is a semi-open set A containing x such that f\A is almost continuous 

at x. 

P r o o f . Necessity. If {x} is an open set, then we choose A = {x}. Let {x} 

be not open, let (Vn) be a nonincreasing base of neighbourhoods of f(x) and (Un) 

a nonincreasing base of neighbourhoods of x. Then there is a nonempty open set 
G\ C U\ such that G\ C Cl/~1(Vi) . Evidently Gi ^ {x}. Since X is Hausdorff, 
there is n2 > 1 such that G\ — CI Un2 ^ 0. Further there is an open nonempty 
set Gi C Un2 such that Gi C C l / * " 1 ^ ) . In this way, we construct an increasing 
sequence (nk) of natural numbers (where n\ = 1) and a sequence (Gk) of nonempty 
open sets such that Gk C Unk1 Gk C Clf~l(Vk) and Gk - Clf/„fc+1 £ 0. Denote 

oo 

A = (J (Gfc — Clt/nfc+1) U {x}. Then A is a semi-open set containing x. Since for 

each i € N we have A C\ Uni C CI / - 1 ( K ) , / U ls almost continuous at x. 

Sufficiency. Let U and V be open neighbourhoods of x and /(ar), respectively. 
Then there is an open neighbourhood H of x such that Af\H C.Cl(/|</|)~1(Vr) C 
Clf~l(V). Since x € Clint A, G = IntAnHDU is a nonempty open set and 
GcUC\C\f~l(V). D 

R e m a r k 1. It is shown in [15] that almost quasicontinuous functions are closed 
with respect to uniform convergence. This is not true for pointwise convergence. In 
fact, every function / : R —* R is a sum of two almost quasicontinuous functions 
and a limit of a sequence of almost quasicontinuous functions. By [4; p. 5] we can 
write / = g + A, where g and h are Darboux functions such that g~l(c) and h~l(c) 

are dense sets for each c G R. Similarly, we can write / = lim / n , where fn are 
n—>oo 

Darboux functions such that fnl(c) are dense sets for each c G R. Evidently, g, h, 
fn are almost quasicontinuous functions. 

R e m a r k 2. There is a Darboux function, which is not almost quasicontinuous. 
By [4; P* 13} there is a Darboux function / which is zero on the complement of the 
Cantor set, but not identically zero. This function is not almost quasicontinuous. 

A subset A of X is called /J-closed [1] (semi-preclosed [2]), if X — A is /?-open, i.e. 

if Int Clint A C A. We say that a function / : X -» Y has a /?-closed graph if the 
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graph of / , i.e. the set G(f) = {(x,y) G X x Y: y = f(x)} is a /3-closed subset of 
the product X xY. 

Propos i t i on 3 . Let Y be a Hausdorff space and let f: X—• Y be an almost 
quasicontinuous function. Then f has a /3-cIosed graph. 

P r o o f . Let (x,y) G X x Y — G(f). Then there are disjoint open sets Axy and 
Bxy in Y such that f(x) G Axy and y G -B^. The almost quasicontinuity of / gives 
that f~l(Axy) is a /?-open set in X. It is easy to see that f~l(Axy) x Bxy is a /?-open 
set in X x Y and by [2] the set T = U{/~ 1(^tV) x flxy: (x,y) G X x y - G(f)} is 
/?-open in X x Y. We see that X x Y - G(/ ) = T and hence G(f) is /?-closed. D 

Obviously, the converse assertion is not true. Denote by Bf the set of all almost 
quasicontinuity points of / . We characterize this set. 

Lemma I . (See also [15].) Let Y be a second countable space. Let f: X -+Y. 

Then X — Bf is a set of the first category. 

Lemma 2. Let Y be a first countable Hausdorff space which has at least one 

accumulation point. Let A C X be a set such that X — A is a set of the first 

category. Then there is a function f: X -+Y such that Bf = A. 

oo 

P r o o f . We can write X — A = \J An, where An are nowhere dense pairwise 
n=l 

disjoint sets. Let y0 be an accumulation point of Y and let {yn: n G N} be a one-to-
one sequence converging to yo such that yn ^ yo for each n G N. Define a function 
f:X-+Y as 

*/ x • [in* for*G-4n, 

[yo, fo rxG-4 . 

We shall show that Bf = A. Let x G A and let V be a neighbourhood of f(x) = y0. 

Then there is a finite set K C N such that f~x(V) = X - (J At. Therefore f-x(V) 
i€K 

is dense in X and x G Bf. 

Let x G -4n for some n G N. Let S and T be disjoint neighbourhoods of yo and yn, 

respectively. Then there is a finite set K C N such that yi G S for each i g N - K 

Therefore Tnf(X) C (J {fc} *"-<* / ~ l C 0 C U ^ - This yields * £ £ / . D 
•€iC tgiC 

The condition y is Hausdorff cannot be replaced by Y is T\ as the following 

example shows. 

E x a m p l e 1. Let X = Q with the usual topology. Let Y = N and let a set 

S CY be closed if 5 is a finite set or S = N. Then K is a first countable [T\ -space 
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without isolated points and X - 0 -* a set of the first category. Let / : X —> Y be an 
arbitrary function. We shall show that Bf ^ 0. We have two possibilities. 

a) There is y £ Y such that f~x (y) is not nowhere dense. Then there is a nonempty 
open set G such that G C C l / " 1 ^ Let x G GC\f"x(y), let V be a neighbourhood 
of f(x) and let (7 be a neighbourhood of x. Then / ^ ( V J f l l / is dense in GdU and 
hence x £ Bf. 

b) For each y &Y the set f~l(y) is nowhere dense. Then for each nonempty open 
set V in Y the set /~*(y — V) is nowhere dense and hence Gnf~l(V) is nowhere 
dense for no nonempty open set G in X. Therefore Bf = X. 

Theorem 2. Let X be a topological space and let Y be a second countable 

Hausdorff space which has at least one accumulation point. Let A C X be a set. 

Then X — A is of the first category if and only if there is a function f:X—*Y such 

thatA-Bf. 

Similarly as almost quasicontinuity we may define "almost cliquishness". 

Definition 1. Let (Y,d) be a metric space. We say that a function f:X—*Y 

is almost cliquish at x £ X, if for each e > 0 and for each neighbourhood U of x 

there is a nonempty open set G C U and a set H such that H is dense in G and 
d(f(y)if(z)) < £ for each y>z G H. Denote by Zf the set of all almost cliquishness 
points of / . If Zf = X, we say that / is almost cliquish. 

Easy we see that Zf is a closed set and Bf C Zf. Hence by Lemma 1 we have 

Proposition 3. Let X be a Baire space and let (Y, d) be a separable metric space. 

Then every function f: X -+Y is almost cliquish. 

We recall that a family &/ of nonempty open sets in X is a pseudo-base [17] if 
every nonempty open subset of X contains some member of A. (The space 0N 

has a countable pseudo-base, but it is not second countable [17]). For a function 
/ : X x y —• Z the symbols / r , / y denote its x-section or ^section, respectively, 
i.e. fx is the function defined on Y such that f9(y) = f(x>y) for each x G X and 
analogically fy. 

We shall show that there is a function / : R2 —* R, which is separately almost 
quasicontinuous but not almost quasicontinuous. However, the following statement 
is true 

T h e o r e m 3 . Let X be a Baire space, let Y possess locally a countable pseudo-

base and let Z be an arbitrary topological space. Let f: X xY —• Z be such that 

P is quasicontinuous for each y G Y and f9 is almost quasicontinuous with the 

exception of a set of the first category. Then f is almost quasicontinuous. 
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Proof . Suppose that / is not almost quasicontinuous. Then there is a point 
(a, b) 6 X x Y and open neighbourhoods G, U and V of /(a, 6), a and 6, respectively, 
such that 

(•) IntCl / - 1 (G)n( l /x \ / ) = 0. 

Without loss of generality we may assume that {Vn: n G N} is a countable pseudo-
base in V. The quasicontinuity of /* at a gives 

A = hfi(f*)-l(G)nU±l 

Let T = {x € A: fx is almost quasicontinuous} and 
T„ = {* € T: Vn C IntCH/.r^G)}. 

00 

We shall show that T = (J Tn. If x G T, then a, G -4 and hence fb(x) G G. 
n=l 

Therefore b G (/«)"1(G) O V and the almost quasicontinuity of fx at 6 gives 6 G 
CllntClCf*)-1^) and this yields lntd(f9)'

l(G)nV # 0. Hence there is n G N 
such that Vn C Int Cl(fx)~

x (G) and x G Tn. 
We shall prove that Tn is nowhere dense in A for each n G N. Let n G N and 

let 5 C A be an open set. Then, in regard of (•), there is a nonempty open set 
K CSxVn such that K nf~l(G) = 0. We may assume that K = # i x K2y where 
K\C S and /C2 C Kn are nonempty open sets. 

Let x G K\ and y G /-V Then /(x,y) g G and thus y $ (fx)~l(G). This is true 
for each y G K2 and therefore /f2n(/jr)-1(G) = •• T h i s y i e l d s * 2 n a ( / , ) - l ( G ) = 0 
and therefore Vn is not a subset of\T\tC\(fx)~

x(G). This is true for each x G A'i and 
therefore K\ flTn = 0, i.e. Tn is nowhere dense in A. Then T is of the first category, 
a contradiction. D 

Example 2. There is a function / :R 2 ->R such that 

(i) functions /x , p are continuous with the exception of a set of the first category, 
(ii) functions fxi P are almost continuous, 

(Hi) the function / is not somewhat nearly continuous. 

Let {tn: n G N} be a dense set in R2 such that tn = (pn, qn), where pn and qn are 
irrational numbers for each n G N. Let {tin: n G N}, {vn: n G N} be one-to-one 
sequences of all rational numbers. Denote 

Pn = {(*,y) € R2: y = vn) and 
<?» = {(*,!/) GR2:ar = tin}4 

Since <i ff P\ UQt, there is an open set V\ = (ai,6i) x (ci,rfi) such that ai, b\, 
ci, di are irrational numbers, t\ G Vi and Vi n(P\UQ\) = 0. Suppose that we 
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have open sets Vi, ..., 14 such that Vj = (aj,bj) x (cj-,dj), where cy, 6/, CJ, dj are 

irrational numbers, tj G V} and Vj H ( \J Pi U |J Q t) = 0 for each j G {1,2, . . . , fc}. 

*+i *+i 
Since^fc+i^ Q P»U j Qt, there is an open set Vib+i = (ajb+i,6fc+i)x(cik+1,dik+1), 

* = 1 t = l 

where a/b+i,6jb+i,Cjk+i,dik+i are irrational numbers, such that tk+i G Vi+i and V^+iO 
rfc+l * + l 

U PІ u U ø.) = »• 
••-.1 <=i 7 

Denote T = \J Vn* Then T is an open dense set and hence R2 — T is a nonempty 
n =l 

nowhere dense set. Define a function / : R2 —> R as 

- = { : : f o r ( a r , y ) € Q x Q - r , 

otherwise. 

The function / satisfies (i), (ii) and (iii). 

In [18] there are three following questions: 

Let X be a Baire space, let Y be a second countable space and let Z be a metric 

space. Let / : X x Y —• Z be a function such that 

(a) / is separately somewhat continuous or 
(/?) / is separately almost continuous or 
(7) / is separately somewhat nearly continuous. 

Must / be jointly somewhat nearly continuous? 
The example 2 shows that the answer is negative in the cases (/?) and (7). Now 

we shall show that the answer is positive in the case (a). 

Theorem 4. Let X be a Baire space, let Y possess a countable pseudo-base and 

let Z be arbitrary topological space. Let f: X x Y —+ Z be such that fy is somewhat 
continuous for each y E Y and fx is somewhat continuous with the exception of a 

set of the first category. Then f is somewhat nearly continuous. 

P r o o f . Suppose that / is not somewhat nearly continuous. Then there is an 
open set G in Z such that f"l(G) £ 0 and IntClf~l(G) = 0. Let {Vn: n £ N} 
be a countable pseudo-base in Y. Let (a,6) E f~l(G). Since (fb)~l(G) / 0, the 
somewhat continuity of fb gives A = Int(/6)~*l(G) / 0. Denote 

T = {x € A: fx is somewhat continuous} and 
Tn = {xG T: Vn C I n t ^ H G ) } . 

We shall show that T = Q Tn. Let x G T. Then fb(x) 6 G and b € (fx)'l(G)-
n=l 

This yields IntCM" 1 ^) ^ 0 and hence there is n G N such that Vn C I n t ^ J - ^ G ) . 

Similarly as in Theorem 3 we can prove that Tn is nowhere dense in A. • 
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S ú h r n 

O SKORO KVÁZISPOJITÝCH FUNKCIÁCH 

JÁN BORSÍK 

Funkcia / : X -* Y je skoro kvázispojitá v x € K, ak x € C l l n t C l / " 1 ^ ) pre každé 
okolie V bodu / ( # ) . Vyšetrujú sa niektoré vlastnosti takýchto funkcii. 
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