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EXAMPLES FROM THE CALCULUS OF VARIATIONS 

II. A DEGENERATE PROBLEM 

JAN CHRASTINA, Brno 

(Received February 5, 1998) 

Abstract. Continuing the previous Part I, the degenerate first order variational integrals 
depending on two functions of one independent variable are investigated. 

Keywords: Poincare-Cartan form, degenerate variational integral, realization problem 

MSC 1991: 49-01, 49K17, 58A10, 49N45 

Degenerate variational integrals have been (with the only exception of the para-
metrical case) entirely neglected in all monographs and we should like to discover 
the reasons here. To this aim, the simplest possible degenerate density 

(1) a^f(x,wlwlwlwl)dx, ffif% = (ffi? 

in the underlying space M(2) equipped with the contact diffiety 0(2) will be ana
lyzed. (In elementary terms, we shall deal with the first order degenerate integrals 
depending on two variable functions WQ, WQ of one independent variable x. Recall 
that the subscripts denote the order of derivatives.) We shall see that in spite of some 
quite explicit results, too many rather discomposing events may occur and a complete 
discussion of them is hardly possible at the present time. In this sense, the difficul
ties that appear might bring some new stimuli into the development of a somewhat 
uniform calculus of variations. Concerning the notation and terminology, we refer to 
Part I. 
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DETERMINED EXTREMALS 

1. First order problems, see I 3. We recall the space M(m) with diffiety U(m). 
Let us consider a density a = f(x,w0,... ,w0

n,w\,... ,w{n) dx. Owing to I (81), 
there are initial forms 7r* = u>0 (i = l,...,m) and one can find the (well-known) 
classical £?<tf form a = f dx + J2 f{u)%

0. Then 

(2) da = 2Je'^o A da; + 2Ja%iw0 f\u>3
0+ VJ fiWi Au>0 . 

with g% coefficients e1' = fl
0 - Xf{ and aij = \(Q - fH). Recall that f0{ = 

d2fjdw0dw{ and f{{ = d2f/dw\dw{ in accordance with the notation I 3 for the 
contact diffieties. One can observe that the forms 

(3) EeJ< E / " w o V eMx + V J a ^ - E / i M 

generate the submodule Adj da C <&(M(ro)) defined (in full generality) in I (4). 
In this article, we will be interested in the degenerate case when det(f{{) = 0 and 

m = 2. So we shall deal with density (1). Since the particular / linear in variables 
w\, w\ seems to be quite easy to investigate, we shall moreover suppose f\\ ^ 0 
from now on. 

2. The generic degenerate problem. One can verify the formula 

(4) dă = eш0 Л dx + ш0 Лţ 

with abbreviations 

e = e2~Ъe\ 

шs=ш\+ bш'l, 

ţ = eïåx + aш2

0 - f\\ш. 

where 0 = / $ - / 0

2 1(= 2a12), 6 = ffilfH (= ffl/ffi if f\\ # 0). It follows that 
Adj da is generated by forms edx, eu0, u>0, £. The SJ£ conditions e1 = e2 = 0 
are clearly equivalent to e1 = e = 0 where e is of the first order at most (easy 
verification). 

Let us deal with the function e in more detail. 
Employing du>l = dx A u>i+1, dws = da; A o;s+i + db A u)2, one can obtain the 

congruence 

(5) 0 = d2a = (de + au>x + el db) AojJA dx ~ f\\ db A u>l A WI (mod w0) 



hence 

d& A Wo A w% = 0 (mod da;, w0), de A ui0 A dx = 0 (mod db,wi) 

which yields 

(6) d6 = 0, de =* 0 (moddx,cj0,Wo>wi)-

Let us assume de # 0 for a moment. Then, in the domain where e ^ 0, obviously 

(7) Adj d a = {dat,wo,Wo>a'i} = {da;, dwj, duig, du>J 4-fcdw2} 

and therefore d6, de 6 Adj do, consequently d(toJ -f bw\) e Adj da . Note that 

congruences (6) are equivalent to the identities 

(8) b\ = bb\, e\ = be\ 

which will be of frequent use. They are valid in the total space (even at points where 

e = 0). 

In principle, e need not depend on variables w\, w\. This is the case if and only 

if e\ = (e2 — 6e1)1 = 0 which (expressed in terms of coefficient / ) is a rather clumsy 

result. However, a more explicit identity e\ = f\\Xb - b^e1 — a easily follows from 

(5) by looking at the summands wi Aw0 A, dx and yields a simplified but equivalent 

formula 

e\ = f\l(bx + w\b\ + w\bl) - b\(f0 - f\x - w\f\l ~ wlfll) - a. 

It follows that e\ is identically vanishing only for exceptional densities (to be still 

specified below). 

Let us assume e\ ^ 0 for a moment. Recall that the 'g'-curves satisfy the equations 

e1 = 0 and e = 0, hence Xe = 0. It follows that also the function f\\Xe/e\ + e1 

briefly denoted by 

e=f-f(ex+w\e\ + wje2
0) + ft ~ f\x - w\f\l - w{f\t 

of the order at most one (use (82)) vanishes on all ^-curves. 

Let us deal with the function e in more detail. 

To this aim, using developments of the kind 

(9) dg = Xgdx + glw0 + (gl - bgl)u?0 + g\w! + (g\ - bg\)u\ + •••, 
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formula (4) can be rewritten as 

(10) d& = eu% A dx + UJ0 A (edx + Aw2, - ^ d e ) 
V ex J 

where A = a + f\\{e^ — 6e0)/eJ. On the subspace where e = 0 is satisfied, clearly 

0 = d2a = dw0 A (edx + Awl) - u0 A {de /\ dx + dA A UJI + Adx h u)\). 

By inserting dui0 = wi A dx + d& A w'2, and the developments (9) for the functions 
g = e, g = A, g = b, one can obtain the identities 

(11) e\ - be\ =A, A\- bA\ = 0 (when e = 0). 

In general A ^ 0 and then (111,82) imply de A de ^ 0(modda;,wo,w0). It follows 
that the system e = e = 0 is equivalent to the primary SJ£ equations el = e2 = 0 
and can be uniquely brought into the shape 

(12) w\=g1{x,wl,wl), w\=g2{x,wl,wl) 

with derivatives separated on the left. We have assumed e\ ^ 0, A 5̂  0 in this generic 
case. 

3. The extremality in the generic case, see also I 5 (iv) and I 6. Since 
the £J£ subspace e: E C M (2) is defined by the equations Xk{w\ — gl) = 0 with 
the vector field I (8) where m = 2, the functions x, wj, w2, may be used for the 
coordinates on E. Let us consider a 'g'-curve P(t) e E(0 sj t sC 1). Let moreover 

(13) Q{t) = {x{t),wl{t),wl{t),w\{t),w\{t),...) € M(2), 0 sC t sC 1, 

be a near j?/-curve (hence Q*to\ = 0) with the same end points Q{0) = P{Q),Q{1) = 
P{1). Denoting by 

R{t) = {x{t),wl{t),w2{t),r\{t),r\{t),...) e E, 0 < t sj 1, 

its projection into E (hence r* = Xs"1 glevaluated onQ{t)), then 

(14) JQ
a-La=(JQ

a-JR
&)+(JR

a~JP
a) 

(since Jpa = Jpa, cf. also I (25)) with the summands 

(15) / a- / &= / SAx, I a- I &= Au0 Aw2, 
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where 

(16) S = /(... M,wj) - /(. . . ,r\,4) - £ /<( . . .,r\,r{) (w\ - rj) 

(. . . = X,WQ, WQ and the variable t is omitted) is the common Weierstrass function, 

moreover the Green formula and (10) evaluated at e = e = 0 were employed in (152). 

One can observe that 

(17) da = AU)Q A WQ = A( diuj — g1 dx) A (duig — g2 dx) = du A dt> 

in virtue of (10) with e = e = 0 substituted, where u,v are appropriate first integrals 

of the system (12). 

Let us briefly look at the result. Concerning (15i), the graph of the function 

/ = / ( . . . , w\, w\) with . . . = x, w\, »o kept fixed represents a surface in the space of 

the variables f,w\,vij, and the sense of 8 is well-known: it is the oriented vertical 

distance between the surface and its tangent planes. A certain difficulty lies in the 

fact that we have a developable surface (cf. (la)) therefore S = 0 is vanishing along 

the generating lines. Otherwise the strong inequalities S > 0 or S < 0 can be 

clearly ensured in favourable cases and then the constant sign of (15i) is guaranteed. 

Concerning the summand (152), it measures "the number of ^'-curves" going through 

the loop which consists of the arc R(t) and the reversely oriented arc P(t); see (17) 

and especially (17.i). One can therefore see that the value of this summand can be 

made quite arbitrary by an appropriate choice of the curve Q(t); see also I 2 (even 

with e = 1) for an analogous situation. 

Altogether taken, the behaviour of each summand (15) is clear, alas, the sign of 

the total sum (142) seems to be ambigous and neither the negative nor the positive 

conjecture concerning the extremality can be stated at this place. We will return to 

this remarkable problem in Part III. 

4. Non-gene r i c dens i t ies (1) such that either e\ = 0, or e\ ̂  0 but A = 0 can 

occur, see the next Section for the realization. 

In more detail, assuming e\ = 0 but e = 6(X,WQ,WQ) ?= 0 then the (possible) 'in

curves explicitly given by e = 0 must also satisfy the equation e1 = 0. It seems that 

they are very exceptional and rather mysterious. On the contrary, the case when 

e = 0 is identically vanishing will be discussed in more detail below: then the SJf 

system is underdetermined and consists of the single second order equation e1 = 0 

for two unknown functions WQ , W'Q . 

Assuming e\ ^ 0 but A = 0, it is necessary to distinguish the subcases when 

either e ̂  0 or e = 0 on the subspace of M (2) given by the equation e = 0. Both 

subcases may actually occur. The first seems to be rather unpleasant and we are not 



able to state any reasonable result, however, the second leads to an underdetermined 

S££ system consisting of the single first order equation e = 0 which can be easily 

investigated. 

5. T h e rea l i za t ion p r o b l e m s . If we wish to find examples of various kind of 

degenerate densities, it is not appropriate to start from the primary formula (1) since 

it gives rather complicated requirements for the coefficient / . Instead, it is better to 

deal with the relevant &"€ form a and use the results of Section 2. 

We shall suppose de / 0 this time. Then d a can be expressed by means of 

four adjoint functions a,Wo,Wo and a certain z = Z{X,WQ,W'Q,W\,W\) where dz is 

proportional to either of forms 

£ = wi = dw\ + bdw\ (mod da;, dtoj, du>o) 

as follows from (7), (It would be possible to choose either of the functions b,e,w\ + 

bw\ for this z. More precisely, d a can be expressed in this manner in the subdomain 

where e # 0, the behaviour at e = 0 easily follows by the continuity argument.) So 

we may assume the formula 

(18) a = Pdx + Qdwl + Rdwl + Sdz- dW, 

where P,...,W are functions of X,WQ,WQ,Z. Then a comparison with (1) implies 

S = dW/dz, so we may suppose S = W = 0 in (18) by a mere change of notation. 

Let us find conditions for the remaining coefficients P,Q,R ensuring that the right 

hand side of (18) indeed is a &"€ form. By virtue of condition I (12) with i = 1,2 

and Wi = LO'Q, it is necessary to ensure d a = 0(modf!Af!,wJ,u)Q). This is a possible 

approach but instead we shall follow an alternative and quite simple method. 

Inserting z = Z{X,WQ,WQ,W\,W\) into formula (18) with S = W = 0, one can 

obtain the expression 

(19) " a = f dx + qui + rwl {f=p + qw\ + rw{) 

in terms of primary variables and contact forms. The change of the type of letter 

denotes here the results of substitution, e.g., 

p = P{x, W\,WQ, z{x,w\,w\,w\)) 

and analogously with q and r. Clearly (19) is a 2?%' form if and only if q = f\ and r = 

/ j . One can verify that these conditions are equivalent to the identity 

(20) P' + Q'w\ + R'wj = 0 ('= d/dz). 
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So we have a rather explicit view of all densities (1): the functions P,Q,R can 

be arbitrarily chosen, and (20) may be regarded as the implicit definition of the 

function z (assuming P " + Q"w\ + R"wf =£ 0, hence not all P", Q", R" vanishing, 

for certainty). Since we are interested in densities (1) with fH = q\ ^ 0, the 

condition Q' # 0 should be satisfied. 

6. C o n t i n u a t i o n : t h e gener ic i ty . Using the explicit representation (192) of 

the coefficient / of the density (1), one can then directly find the formulae 

(21) e1 = Po1 + Rlw\ -Qx- Q2
0wl - Q'Xz, 

(22) e2 = P 2 + Q2
0w\ - R x - E^w\ - R'Xz, 

(23) e = P 2 - Rx + b(Qx - PQ1) + c (P 0 - Q2
0), b = R'/Q', c = P'/Q', 

(24) e = ^j(Ex + Elw\ + E2wl) + P0
X - Qx + (R0 - Q2)w2, 

(25) A = al-Q2Q + ^(Q'El-R'El). 

More precisely, z = z(x,w0,w0,w\,w2) should be moreover inserted into the right 

hand sides of (21-25) to obtain full accordance of variables. In particular, the func

tion E = E(X,WQ,W0,Z) may be exactly identified with the right hand side of (23), 

and then e = E(x, w0,w0,z(x,.., ,w\)) follows by the substitution. Recall that we 

have assumed e\ ̂  0 (hence E' ^ 0) in (24, 25). 

Owing to these results, the existence of various kinds of densities satisfying A = 0 

(either identically, or along the subspace where E = 0) immediately follows. The 

reasoning can be a little simplified by an appropriate choice of the function z. 

For instance, let us choose z = Q, hence Q' = 1,QX = Q° = Q° = 0. Then the 

condition A = 0 reads R0E' = E'0-R'El and admits a lot of solutions. For this case, 

one can moreover observe an interesting fact: assuming e\ = 0 (hence E' = 0) then 

E0 = R'EQ which means e0 = be0 (use R' = b) and consequently (Xe)\ = b(Xe)\. 

This is like (82) and it follows that the function 

(26) I ^ ^ A ^ e + e1 

eo 

(a substitute for e which does not exist) of the order at most one vanishes on all 

'la-curves. 

Recall that e\ ^ 0 but e = 0 identically vanishing (possibly only along the subspace 

where e = 0) implies A = 0. In this a little peculiar but favourable case, using (14) 

with the last summand vanishing, the extremal properties become quite clear. 
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UNDERDETERMINED EXTREMALS 

7. The realization once more. We shall suppose e = 0 identically vanishing 
from now on. Then Adj da = {LJ0,£} = {du,dv} for appropriate adjoint functions 
u,v. Moreover, 

(27) da = LU0 A f = d« A dv, & = u dv - dW 

in the space of independent variables x,w0-,w0,w\,iv'\. Since (272) may be regarded 
as a particular case of (18), the results of the preceding Section 5 remain true. In 
particular, (23) gives the relevant condition 

(28) Q = Q'{Pl-Rx) + R'{Qx-Pt)+P'{Rl-Ql) ' 

for the coefficients ensuring e = 0. Choosing z = Q, one can find a lot of solutions 
but we shall mention a more effective method below. On this occasion, let us note 
that (28) can be expressed in a very concise manner: denoting &' — P' dx + Q' dtoj + 
R' dw0, clearly a' A da = Q'E dx A dw0 A duig, hence (28) means that a' A do = 0. 

We are passing to a better alternative method. Employing (27), the requirement 
da = 0(mod fl Aft,u0,uJ0) ensuring that we deal with a, !&"£ form yields the condi
tions 

(29) u\Xv-v\Xu = ujXv-vfXu = 0 

for the sought functions u,v. Then the top order terms of (29) imply u\v\ = v\u\, 
so we may assume v = V{x,w0,w0,u). With this assumption, (29) reduces to the 
single requirement 

(30) Vx + w\Vo
1+w2

1Vo
2 = 0. 

Choosing V = V{x,w0,w0,u) quite arbitrary, then (30) may be regarded as the 
implicit equation determining u, and (272) with this function v = V and a (little 
specialized) W = W{x,w\,w0,u) gives the sought density a = f dx where 

(31) f = uVx-Wx+ w^uV,1 - Wl) + w'i{uV0
2 - W2). 

the function W must be chosen such that udVjdu = dW/du, hence 

(32) W = uVudu = uV - Vdu 
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in quite explicit terms. 
Altogether, formulae (30-32) provide all densities (1) with e = 0 identically van

ishing (at the same time we have resolved the equation a' A da = 0). Note that the 
result can be directly verified: both e1 and e2 are proportional to Xu, hence the £££ 
system is equivalent to the single equation u =const. 

*8. The parametrical subcase. Choosing in particular V = V{WQ,WQ,U) inde
pendent of the variable x, then (30) clearly determines a function u homogeneous of 
zeroth order in variables w\,w\, and (31, 32) determine a function / homogeneous 
of the first order in w\,w\. (More explicitly: the well-known identities 

f{wl
0,wl,Xw\,Xw\) = Xf{w1

0,w'l,w\,w\), 

(33) ' w\fl+w\fx=f, 

™\m+™\m=<fii+*>im=« 

are satisfied.) So we have the familiar parametrical integrals. It may be interesting 
to mention the relevant iPt? form: 

a = f\ dw\ + fl dw%, 

da = {dw\+bdw\) A {adw2, - f\\{dw\ + bdw\)) 

by easy calculation. It follows that e1 = aw\ — fl\;{u>2+bw\) and e = 0 by comparison 
with (4,53). 

The results can be carried over to more general integrals (1) with the function 
/ = F{g,h,Xg,Xh), where g -• g{x,wl,wl),h = h{x,w\,wl) and F is homogeneous 
of the first order in the variables Xg, Xh. 

9. On the Jacobi least action principle. Let us mention a Riemannian mani
fold with the first fundamental form g. Then (in rough terms) the geodesies are 
%'-curves for the parametric (hence degenerate) variational integral J {g) dx, and 
at the same time, geodesies are %''-curves for the nondegenerate (kinetic energy) vari
ational integral J g dx. The parametrization is uncertain in the first approach, unlike 
the second where the resulting parameter is proportional to the length. The gener
alization in mechanics of conservative systems is also well-known as the Maupertuis 
principle. We shall however carry this result over to many other variational integrals 
(1) with e = 0 identically vanishing (which includes the parametrical case and much 
more). 

Since we shall deal with several variational integrals at the same time, let us made 
our notation more precise: for a given density (li), we will write el{f],e[f], and so 
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like (instead of previous simpler e',e) to point out the dependence on the coefficient 
/ . Then 

ei[F(f)] = F(f)i
0-XF(f){ 

= F'(f)FS-X(F'(f)fi) 
= F'(f)(fQ-Xfi)-fiXF'(f) 
= F'(f)e\f] - flXF'(f) 

for the "composed" density /3 = F(f) dx. Assuming degeneracy (I2), the new density 
ft need not be a degenerate one. In more detail 

F(f)nHf)n - (F(f)nf = (fllfl - mflfF"(f)F'(f)lfH ' 

after easy verification, hence /? is degenerate if either F" = 0 or fUf'l = fllfl is 
satisfied. One can find that the second condition implies that the primary density 
a is of a rather particular kind: then / = /(••• ,w\,w\) with ... = X,WQ,WQ kept 
fixed is a cylindrical surface with the axis parallel to the w\, w\ plane. 

Passing to our intention, let us take a degenerate but "non-cylindrical" density 
a = f dx with e[f] = 0 vanishing, and put /? = F(f) dx with nonlinear F. 

Then the "if-curves to the density a satisfy e1[/] = e2[f] = 0, however, the sin
gle equation e1[/] = 0 is enough. Moreover the ^-curves to the density /3 sat
isfy e1[F(f)] = e2[F(f)] = 0 but using (34), this system is equivalent to el[f] = 
XF'(f) = 0, hence equivalent to 

(35) e1[f]=0, F'(f) = const. 

The first equation means that we deal with 'if-curves to the primary density a, the 
second can be interpreted as a specification of the independent variable x. 

S u m m a r y : the ^-curves to the density F(f)dz axe just the ^-curves to the 
density f dx with the independent variable satisfying (362)-* 

10. The extremality for the case e = 0 does not make any difficulties. The &£? 
subspace e: E C M(2) is defined by equations 

Xkel = Xk(f0 - Xf\) = ... + (w\+2 + bw2
+2)fH = 0, 

hence the functions x, WQ, W\, W2 (S = 0,1,...) can be taken for the coordinates for E. 
Since the form da can be expressed by two variables, the Lagrange subspace 1: L C E 
is of codimension one and we shall assume X,WQ,W2 (S = 0,1,...) for coordinates on 



L. Closely simulating I 6, we consider an embedded ^-curve P(t) e L(0 ^ t ^ 1), 
an arbitrary jz/-curve (14) with the same end points, and its projection 

R(t) = (x(t),wl(t),wl(t),r\(t),w\(t),...) e L , 0 < t < 1, 

into L. Then the decomposition (14) can be employed with the second summand 
on the right vanishing (since da = OonL), and the first summand (15i) with 6° = 
f(w\) — f(e\) — fi(rl)(wl ~rl) where the variables X,WQ,W2 are omitted for brevity. 
The inequalities § ^ 0 or <S ^ 0 permit a quite reasonable geometric interpretation 
and resolve the problem analogously as in the nondegenerate case. 

C o m m e n t s . We cannot refer to any literature except for the parametrical sub
case of Section 8. Then the function / does not depend on variable x, the reasonings 
of Section 10 can be repeated with alternative coordinates w\, WQ on L, and the 
resulting achievement is the only one which is (rather thoroughly) discussed in all 
textbooks. Main contribution of this article consists in explicit realization of various 
kinds of degenerate problems and in transparent clarification of difficulties concern
ing the extremality. It should be noted that already the arrival at £J£ systems 
causes serious difficulties in the optimal control theory, see [3]. Many interesting 
results are referred in [1], alas, they are rather general and of quite different kind. 

References 

[1] Jose F. Carinena: Theory of singular Lagrangians. International centre for theoretical 
physics, Miramare-Trieste, 1989. 

[2] J. Chrastina: Examples from the calculus of variations I. Nondegenerate problems. 
Math.Bohem. 125 (2000), 55-76. 

[3] R. Gabasov, F. M. Kirillova: Singular Optimal Control. Moskva, 1973. (In Russian.) 

Author's address: Jan Chrastina, Masaryk University, Janackovo nam. 2a, 662 95 Brno, 
Czech Republic. 


		webmaster@dml.cz
	2020-07-01T13:58:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




