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1. INTRODUCTION 

The paper gives an overview of results for radially minimal, critical, maximal and 
stable graphs and digraphs. First we will speak about graphs and then digraphs. 
We consider nonempty and finite graphs and digraphs here. 

Let G be a graph. Then we denote by: V(G) the vertex set of G; E(G) the edge 
set of G; d(u, v) the distance in G between the vertices u, v; e(u) = max{d(«, v): v € 
V(G)} the eccentricity of u; r(G) = min{e(w): u € V(G)} the radius of G. 

General notions and notation are according to [2] while the specific notions are 
defined here. 

Clearly, the following three inequalities hold: r(G - e) >• r(G) for every edge e of 
G; r(G — u) ^ r(G) for every vertex u of G; r(G + e) < r(G) for every edge e of the 
complement of G; 

The second inequality is illustrated in Fig. 1, where r(G) = 3; 2 = r(G - b) < r(G) 
and oo = r(G — a) > r(G). Moreover, the paper [10] notes that r(G) — 1 < r(G — u) 
for every vertex u of G. 

Now we give an overview of radially extremal graphs. 
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Fig. 1 

2. RADIALLY EXTREMAL GRAPHS 

We say that a graph G is minimal (by r), if r(G — e) > r(G) for every e e E(G); 
critical (by r), if r(G — u) ^ r(G) for every u £ V(G); maximal (by r), if r(G + e) < 
r(G) for every edge e of the complement of G (see [2]). 

Extremal (minimal, critical, maximal) graphs are defined and studied using dif
ferent parameters as connectivity, chromatic number, diameter, . . . , see e.g. [3], [2]. 
In the sequel we will study radially extremal graphs only. Basic facts about these 
graphs are in [2, Ch. 5, 95-116]. 

Minimal graphs form a simple class of graphs: 

Theorem 1. (see [10].) A nontrivial graph G is minimal if and only ifG is a tree. 

Critical graphs and maximal graphs are more complicated. 

2.1. Critical graphs. Critical graphs were defined and studied in [10]. Examples 
of such graphs are the graph in Fig. 1 or the path P4 of length 3 (and radius 2) or 
the graph in Fig. 2 of radius 2. 

Fig. 2 

We say that a vertex u of G is peripheral, if there exists a central vertex w such 
that e(w) = r(G) = d(w,u). Using this notion we give the following lemma. 

Lemma 2. (See [10].) Let G he a critical graph and u € V(G). Then r(G - u) < 
r(G) if and only ifu is peripheral. 
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Critical graphs of radius two can be described completely. 

Theorem 3. (See [10]-) A graph G of radius 2 is critical if and only if G is either 
a path of length 3 or a complete n-partite graph iv2,2,.,.,2> where n>-2. 

The class of critical graphs can be partitioned into three sets: decreasing graphs 
for which r(G — u) = r(G) — 1 for every u € V(G); increasing graphs for which 
r(G — u) > r(G) for every u 6 V(G); changing graphs containing all the other 
critical graphs. 

The following theorem reduces the study of critical graphs to decreasing graphs. 

Theorem 4. (See [11].) Every connected critical graph G is either decreasing 
or consists of a decreasing subgraph H and endpaths so that one endpath of length 
r(G) — r(H) is joined to each vertex of H. 

The following characterization is given for decreasing graphs. 

Theorem 5. (See [10].) The following statements are equivalent: 

1. G is a decreasing graph; 

2. for every u 6 V(G) there exists exactly one u 6 V(G) — {u} such that 

e(u) = e(u); 

3. there exists a decomposition ofV(G) into pairs {u,u} such that 

d(u,u) = r(G)> max \d(x,u),d(x,u)}. 
x ' v x6V(G)-{u,u}1 v ; ' v JJ 

The following theorem has a constructive proof for the existence of decreasing and 
maximal graphs of radius r >- 3. 

Theorem 6. (See [10].) Let G be a graph with p >- 3 vertices. Let r >• 3 and 
k >- 2p + 2 be given integers. Then there exists a k-regular, decreasing and maximal 
graph Q of radius r which has G as an induced subgraph. 

Directly from Theorem 6 a problem follows. 
P r o b l e m 1. Let G be a graph and r ^ 3 a given integer. What is the minimum 

number of vertices needed to add to G in order to receive an overgraph H of radius 
r containing G as an induced subgraph such that H is either a decreasing graph or 
a maximal graph. 

Fajtlowicz [8] defines the following class of radially critical graphs: 
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A graph is a-critical if it has radius r ^ 2 and every proper induced connected 
subgraph has radius strictly smaller than r. 

It is clear that a-critical graphs are critical. If we take any connected graph G of 
radius greater than r, r ^ 3, then the proof of Theorem 6 gives us a critical graph 
Q of radius r. So a-critical graphs form a special class of critical graphs. 

Paper [8] defines certain graphs of radius r ^ 2, called r-ciliates, and then proves 
the following: 

Theorem 7. (See [8].) A graph G of radius r ^ 2 is a-critical if and only ifG is 
an r-ciliate. 

Segawa [28] proved the following estimation. 

Theorem 8. (See [28].) Let G be a connected graph and let a subset F C E{G) 
be such that G - F is connected. Then r{G - F) ^ {\F\ + l)r(G) - U-F1/2J. 

2.2. Maximal graphs. The first result concerning maximal graphs was the fol
lowing estimation proved by Vizing in 1967. 

Theorem 9. (See [31].) The maximum number of edges in a graph with p vertices 
and radius r is p{p - l ) / 2 , ifr = 1; [p(p-2)/2j, ifr - 2; (p2-4pr + 5p + 4r 2-6r) /2 , 
ifr ^ 3. 

These estimations are the best ones possible. 

Maximal graphs were studied by different authors, see e.g. Nishanov [23-26], 
Harary and Thomassen [17], Gliviak, Knor and Soltes [12-13], and Du, Shi and 
Zhao [5]. We note that papers [23-26] used the non-standard notions and notation 
defined e.g. in [32], 

The paper [23] does not give any bounds for the diameter of maximal graphs, but 
it gives some conditions for the maximal graphs with radius r and maximal diam
eter. Paper [17] studies maximal graphs with respect to various graph parameters, 
including the radius. This paper shows the following result. 

Theorem 10. (See [17].) Let G be a maximal graph of radius at least two. Then 
r{G) ^ d{G) s: 2r(G) - 2. 

The paper also describes maximal graphs of radius two. 

Theorem 11. (See [17].) A graph G with radius two is maximal if and only if 
the complement ofG, G, is disconnected and each component ofG is a star Jf1]S for 
s^ 1. 

218 



According to Theorem 6, given a graph G and a natural number r ^ 3, we can 

construct a maximal graph of radius r containing G as an induced subgraph. 

Maximal graphs of radius two were described later constructively in [5], They 

were studied also in [13], where it is shown that the central subgraph of any maximal 

graphs of radius two contains an edge and shows that those of them that have a star 

as the central subgraph are sequential joins of complete graphs. Paper [25] describes 

maximal graphs of radius two independently and in the same way as in Theorem 11. 

One class of graphs belonging to the intersection of the classes of maximal and 

critical graphs of radius r was studied in [24]. This paper also shows that the line 

graph of the cartesian product of circuits C2k- C2T, where fc ^ 2, s > 2, is a critical 

graph. 

Paper [26] proved that a graph G is a maximal graph of radius r ^ 2 with exactly 

one cycle if and only if certain five conditions hold simultaneously. As to maximal 

graphs having a cut-vertex the following two results were proved: 

T h e o r e m 12. (See [12].) Let G be a maxima] graph of radius r > 3 containing a 

cut-vertex y. Then the graph G — y has exactly two components, say A', B'. Let A 

and B be the subgraphs ofG induced on V(A') U {y} and V(B') U {y}, respectively 

Let the eccentricity satisfy eA(y) 3s eB(y). Then: 

1- eA(y) + eB(y)^2r-2, 

2. B is a diametrically maximal graph of diameter eB(y). 

T h e o r e m 13 . (See [12].) 

1. Each maximal graph of radius three contains at most two cut-vertices. 

2. Let k and r be given integers such that r > 4, k ^ 1. Tiien there exists an 

infinite number of maximal graphs of radius r, containing k cut-vertices. 

We can formulate two problems about cut-vertices and centers in maximal graphs. 

P r o b l e m 2 . To study maximal graphs with small number of cut-vertices. 

P r o b l e m 3 . Study the center C(G) of either a decreasing graph G or a maximal 

graph G. Estimate this center and describe some properties of the induced subgraph 

(C(G)) generated by C(G). 

Paper [7] gives asymptotically sharp upper bounds for the maximum diameter and 

radius of (i) a connected graph, (ii) a connected triangle-free graph, (iii) a connected 

C4~free graph with n vertices and with minimum degree S, where n tends to infinity. 

Now we give these results only for the radius and a connected graph or a connected 

triangle-free graph. 

T h e o r e m 14. (See [7].) 
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1. Let G be a connected graph with n vertices and with minimum degree d ^ 2. 
Tien r(G) ^ f.fff + 5 and this bound is tight apart from the exact value of 
the aditive constant. 

2. Let G be a connected triangle-free graph with n vertices and with minimum 
degree 6^-2. Then r(G) < f̂2- + 12 and this bound is tight apart from the 
exact value of the aditive constant. 

The following theorem gives an upper bound the for radius of a 3-connected graph 
containing n vertices. 

Theorem 15. Let G be a 3-connected graph containing n vertices. Then 

1. (see [20]): r(G) < J + O(logn), 
2. (see [19]): r(G) ^ J + 8, 
3. (see [21]): r(G) < -±U>. 

For self-centered connected graphs (see [2]) the following result holds. 

Theorem 16. (See [1],) Let n > 2r > 2, except the case n = 2r = 4. Then there 
exists a self-centered connected graph with n vertices, k edges and radius r if and 
only if [(nr - 2r - l)/(r - 1)J s= k <_ (n2 - 4rn + 5n + 4r2 - 6r)/2. Ifn = 2r = 4, 
then k must equal 4. 

The following problem concerns some estimations of basic parameters of decreasing 
or maximal graphs. 

P r o b l e m 4. Estimate the number of edges, the maximum degree and the 
minimum degree of either a decreasing graph or a maximal graph. 

2.3. Radius stable graphs. Let / be any graph invariant, e.g. radius, diame
ter, . . . F. Harary [16] defines three changing invariants by / and three unchanging 
invariants by / . Three changing invariants by / are usually used in the same sense 
as graphs minimal by / , critical by / and maximal by /—defined here for radius— 
see [6], [18] and [15]. Three unchanging invariants are new and we will call them 
edge-stable (by / ) , vertex-stable (by /) and adding-stable (by / ) . Now we will define 
them for radius. 

A graph G is e-stable, if r(G — e) = r(G) for every edge e of G; v-stable, if 
r(G — v)— r(G) for every vertex v of G; a-stable, if r(G + e) = r(G) for every edge 
e of the complement of G. 

These three types of stable graphs may have some applications, but until now they 
have been studied only from the mathematical point of view. Paper [6] gives several 
basic facts about these graphs and one general result. 
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T h e o r e m 17. (See [6].) Every self-centered graph G with at least 3 vertices is 

e-stable. 

We do not know another paper about e-stable, v-stable and o-stable graphs and 

so we give the following problem. 

P r o b l e m 5 . To receive further mathematical results concerning e-stable, 

v-stable and a-stable graphs. 

3. B A S I C NOTIONS FROM DIGRAPHS 

We consider here nonempty and finite digraphs D without loops and multiple arcs. 

If D is a digraph, then V(D) will be the node set of D and E(D) the arc set of D. 

The (standard) distance d(u,v) between the nodes u and v in a digraph D is the 

length of the shortest (directed) u — v path in D if such a path exists; otherwise 

d(u,v) — oo. 

Paper [4] defines three other distances dmm, dmax, dSUm for a strong digraph D, but 

we give these notions in general: 

dmin('u,v) = min(d(u, v), d(v, u)), 

dmax(u,v) = msx(d(u,v),d(v,u)), 

dsum{u,v) = d(u,v) + d(v,u), 

where the symbol oo is greater than any number and the symbol oo + x — oo for any 

x. 

The detour distance d*(u,v) from u to v in a digraph D was defined in [30] as 

the length of a longest directed u — v path P* (called detour path) for which the 

subdigraph induced by the vertices of P* contains no shorter directed u — v path. If 

no directed u—v path exists in D, then the detour distance is infinite. 

Let k(u,v) be a distance defined in a digraph D (e.g. d,dmm,dm!ix,dsam and d*). 

Then we say tha t the eccentricity of a node u is ek(u) — max k(u,v). So we have 

defined the eccentricities ed,emm,emax,eSum and e* for the distances d, dmm, dmax , 

dsum and d*, respectively. (We note that these eccentricities can be infinite.) 

We define the radius rk(D) = min ejt(u). So we have defined the radii r(i(D), 
uev(D) 

f'mm (D), 'rmax(Z>), rsum(D) and r*(D). We note that instead of the symbols e,j and 

rd only e and r are usually used. 
Several papers, e.g. [27], denote the standard eccentricity e,j(u) as the out-eccen

tricity e+(u) = max d(u,v) and they also define the in-eccentricity e~(u) = 
vev(D) 

max d(v,u), and the eccentricity e°(u) — max(e+ (u) ,e _ (w)) , 
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Then one can define the out-radius r+(D) = min e+(w) = rd(D), the in-radius 
ueV(D) 

r~(D) — min e~(u), and the radius r°(D) = min e°(u). We note that it is 
uev(D) uev(D) 

enough to study r+(D) and r°(D), because if D is a digraph and D' results from D 
by reversing the orientation of all arcs, then r+(D) = r~(D'). 

The distance dmin, the eccentricity emm, and the radius rmm were defined indepen
dently in [9], Moreover, the properties of distances d,dmm,dmax,dsum and d* were 
studied in several papers, e.g. [4], [29], [30]. 

4. RADIALLY EXTREMAL DIGRAPHS 

First of all we define minimal, critical and maximal digraphs and then give 
results achieved in literature. 

Let D be a digraph and f(D) any radius of D defined earlier, e.g. r(D) — rd(D) = 
r+(D),rmm(D),rm:xK(D),rsam(D),r*(D),r~(D) and r°(D). 

Deleting an arc e from D we cannot decrease any distance k between any two 
nodes of D. Hence f(D - e) >• f(D). Analogously, adding a new arc e to D we have 
f(D +e) < f(D). These inequalities enable us to say that a digraph D is: minimal 
by f, if f(D - e) > f(D) for every arc e of D; critical by f, if f(D - u) ± f(D) 
for every node u of D; maximal by f, if f(D + e) < f(D) for every arc e of the 
complement of D. 

Although there exist several radii of digraphs and then several classes of minimal, 
critical and maximal digraphs, we have found only three papers about these graphs: 
Fridman 1973, [9]; Ismailov 1971, [22] and Gliviak and Knor 1995, [14], 

Paper [9] describes two classes of non-connected digraphs D such that for every 
arc -e f E(D) we have: 

1. either r(D + e) < r(D) or D + e has less strong components than D; 

2. either rmm(D + e) < rmm(D) or D + e has less strong components than D. 

Moreover this paper proves the following estimation. 

Theorem 18. (See [9].) Let D be a digraph with p nodes, q arcs and a finite 
radius r >• 2. Then q ^p(p- r) + (r2 - r - 2)/2. 

Let D(n,k,r) be a digraph with n nodes, k strong components and a radius r. 
Paper [22] gives the exact lower bound for the number of arcs in such a digraph and 
describes all extremal digraphs. 

Now we give several results from [14]. P. Kys (oral communication, [14]) showed 
the following characterisation of digraphs minimal by r+ = rd = r. 
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Theorem 19. A digraph D is minimal by r if and oaly if D is a directed rooted 
out-tree (i.e. acyclic digraph with ido(x) = 1 for all x G V(D) except the root u for 
which ido(«) = 0). 

Critical digraphs by r or r° with radius r or r° equal to oo and 1 are described in 
[14]. Then three results concerning radius r = 2 or r° = 2 are proved. 

Theorem 20. (See [14].) Let D be a digraph such that r(D) = 2 and \V(D)\ is 5. 
Then D is critical by r if and only if the complement of D coasists of a collectioa of 
orieated cycles. 

Theorem 21. (See [14].) Let D be a digraph on an even number of nodes 
such that r°(D) = 2 and \V(D)\ ^ 6. Then D is critical by r° if and only if the 
complement of D consists of a collection of independent arcs and oriented two-cycles. 

Theorem 22. (See [14].) Let D be a digraph. Then there are infinitely many 
digraphs critical by r° with radius two on an odd number of nodes, containing D as 
an induced subgraph. 

Maximal digraphs D by r or r° with radius r(D) or r°(D) equal to oo, 1,2 are 
described in [14]. Then the following two general existence theorems for critical and 
maximal digraphs are proved. 

Theorem 23. (See [14].) Let D be a digraph, and let t satisfy 3 < t < oo. Then 
there exists an infinite number of digraphs H such that: 

1. D is an induced subgraph of H; 
2. r(H)=r~~(H)=r°(H)=t; 
3. H is critical by r,r~ and r°; 
4. H is maximal by r and r~~. 

Theorem 24. (See [14].) Let D be a digraph, and let t satisfy 3 ^ t < oo. Tiien 
there is an infinite number of digraphs maximal by r° with radius r° = t, which 
contain D as an induced subgraph. 

The following problem is analogous to Theorem 4. 
P r o b l e m 6. Is it possible to reduce the study of digraphs critical by r to any 

subclass of these graphs? 
At the end we give the following practical problem. 
P r o b l e m 7. What can be said about results concerning analogous problems 

for theory of nets (i.e. digraphs with given natural estimation of edges and a source 
and sink). 
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