Mathematic Bohemia

Ján Jakubík
Disjoint sequences in Boolean algebras

Mathematica Bohemica, Vol. 123 (1998), No. 4, 411-418
Persistent URL: http://dml.cz/dmlcz/125963

Terms of use:

© Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DISJOINT SEQUENCES IN BOOLEAN ALGEBRAS

Ján Jakubík, Košice
(Received June 13, 1997)

Abstract

We deal with the system Conv B of all sequential convergences on a Boolean algebra B. We prove that if α is a sequential convergence on B which is generated by a set of disjoint sequences and if β is any element of $\operatorname{Conv} B$, then the join $\alpha \vee \beta$ exists in the partially ordered set Conv B. Further we show that each interval of Conv B is a Brouwerian lattice.

Keywords: Boolean algebra, sequential convergence, disjoint sequence
MSC 1991: 06E99, 11B99

1. Introduction

Some types of sequential convergences on Boolean algebras were investigated by Löwig [3], Novák and Novotný [4] and Papangelou [5].

This note is a continuation of [1]. Throughout the paper we assume that B is a Boolean algebra which has more than one element. Conv B is the system of all sequential convergences on B which are compatible with the structure of B. For the sake of completeness, the definition of Conv B as given in [1] is recalled in Section 2.

The system Conv B is partially ordered by the set-theoretical inclusion. It is a \wedge-semilattice with the least element (the discrete convergence on B). In general, Conv B fails to be a lattice; i.e.. for α and β in Conv B, the join $\alpha \vee \beta$ need not exist in the partially ordered set Conv B.
A sufficient condition for Conv B to be a lattice was found in [2].
We denote by $D(B)$ the system of all sequences $\left(x_{n}\right)$ in B such that
(i) $x_{n(1)} \wedge x_{n(2)}=0$ whenever $n(1)$ and $n(2)$ are distinct positive integers;
(ii) $x_{n}>0$ for each positive integer n.

The sequences belonging to $D(B)$ will be called disjoint.
We prove that for each subset A of $D(B)$ there exists a sequential convergence $\alpha \in \operatorname{Conv} B$ which is generated by A and that for any $\beta \in \operatorname{Conv} B$ the join $\alpha \vee \beta$ exists in the partially ordered set Conv B.

Further we show that each interval of Conv B is a complete lattice satisfying the identity

$$
\left(\bigvee_{i \in I} \alpha_{i}\right) \wedge \beta=\bigvee_{i \in I}\left(\alpha_{i} \wedge \beta\right)
$$

This implies that each interval of Conv B is a Brouwerian lattice.

2. Preliminaries

We denote by S the system of all sequences in B. Let $\alpha \subseteq S \times B$. If $\left(\left(x_{n}\right), x\right) \in \alpha$, then we denote this fact by writing $x_{n} \rightarrow_{\alpha} x$. For $a \in B$, const a denotes the sequence $\left(x_{n}\right)$ such that $x_{n}=a$ for each $n \in \mathbb{N}$.

We recall the definitions of Conv B and Conv $_{0} B$ from [1].
2.1. Definition. A subset of $S \times B$ is said to be a convergence on B if the following conditions are satisfied:
(i) If $x_{n} \rightarrow_{\alpha} x$ and $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then $y_{n} \rightarrow_{\alpha} x$.
(ii) If $\left(x_{n}\right) \in S, x \in B$ and if for each subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ there is a subsequence $\left(z_{n}\right)$ of $\left(y_{n}\right)$ such that $z_{n} \rightarrow_{\alpha} x$, then $x_{n} \rightarrow_{\alpha} x$.
(iii) If $a \in B$ and $\left(x_{n}\right)=$ const a, then $x_{n} \rightarrow_{\alpha} a$.
(iv) If $x_{n} \rightarrow_{\alpha} x$ and $x_{n} \rightarrow_{\alpha} y$, then $x=y$.
(v) If $x_{n} \rightarrow_{\alpha} x$ and $y_{n} \rightarrow_{\alpha} y$, then $x_{n} \vee y_{n} \rightarrow x \vee y, x_{n} \wedge y_{n} \rightarrow_{\alpha} x \wedge y$ and $x_{n}^{\prime} \rightarrow_{\alpha} x^{\prime}$.
(vi) If $x_{n} \leqslant y_{n} \leqslant z_{n}$ is valid for each $n \in \mathbb{N}$ and $x_{n} \rightarrow_{\alpha} x, z_{n} \rightarrow_{\alpha} x$, then $y_{n} \rightarrow_{\alpha} x$.

The system of all convergences on B is denoted by Conv B.
For each $\alpha \in \operatorname{Conv} B$ we put

$$
\alpha_{0}=\left\{\left(x_{n}\right) \in S: x_{n} \rightarrow_{\alpha} 0\right\}
$$

Further we define

$$
\operatorname{Conv}_{0} B=\left\{\alpha_{0}: \alpha \in \operatorname{Conv} B\right\}
$$

Both the systems Conv B and $\operatorname{Conv}_{0} B$ are partially ordered by the set-theoretical inclusion; the suprema and infima (if they exist) in Conv B or in $\operatorname{Conv}_{0} B$ are denoted by the symbol \vee or \wedge, respectively.

Next, we denote by d the system of all $\left(\left(x_{n}\right), x\right) \in S \times B$ such that the set $\left\{n \in \mathbb{N}: x_{n} \neq x\right\}$ is finite. Then d is the least element of Conv B.

For each $\alpha \in \operatorname{Conv} B$ we put $f(\alpha)=\alpha_{0}$.
2.2. Lemma. The mapping f is an isomorphism of the partially ordered set Conv B onto the partially ordered set $\mathrm{Conv}_{0} B$.

Proof. We have $f(\operatorname{Conv} B)=\operatorname{Conv}_{0} B$. In view of 1.4 in [1], f is a monomorphism.

Let $\alpha, \beta \in \operatorname{Conv} B, \alpha \leqslant \beta$. Further let $\left(x_{n}\right) \in \alpha_{0}$. Hence $\left(\left(x_{n}\right), 0\right) \in \alpha$, thus $\left(\left(x_{n}\right), 0\right) \in \beta$ and then $\left(x_{n}\right) \in \beta_{0}$. Thus $\alpha_{0} \leqslant \beta_{0}$.

Now let $\alpha, \beta \in \operatorname{Conv} B, \alpha_{0} \leqslant \beta_{0}$. Assume that $\left(\left(x_{n}\right), x\right) \in \alpha$. In view of 1.3 in [1] we have

$$
x_{n} \wedge x^{\prime} \rightarrow_{\alpha} 0, \quad x_{n}^{\prime} \wedge x \rightarrow_{\alpha} 0
$$

Thus from the relation $\alpha_{0} \leqslant \beta_{0}$ we obtain

$$
x_{n} \wedge x^{\prime} \rightarrow_{\beta} 0, \quad x_{n}^{\prime} \wedge x \rightarrow_{\beta} 0
$$

Then by applying 1.3 in [1] again we get $x_{n} \rightarrow_{\beta} x$. Hence $\alpha \leqslant \beta$.
As a consequence we obtain that d_{0} is the least element of Conv B.
2.3. Lemma. (Cf. [1].) (i) $\operatorname{Conv}_{0} B$ is a \wedge-semilattice and each interval of Conv $_{0} B$ is a complete lattice.
(ii) If $\emptyset \neq\left\{\alpha_{i}^{0}\right\}_{i \in I} \subseteq \operatorname{Conv}_{0} B$, then

$$
\bigwedge_{i \in I} \alpha_{i}^{0}=\bigcap_{i \in I} \alpha_{i}^{0}
$$

(iii) There exists a Boolean algebra B_{1} such that Conv $_{0} B_{1}$ fails to be a lattice.

From 2.2 and 2.3 we infer
2.4. Proposition. Conv B is a \wedge-semilattice and each interval of Conv B is a complete lattice. There exists a Boolean algebra B_{1} such that Conv B_{1} is not a lattice.

3. On the set $D(B)$

We apply the notation as in the previous sections. A subset T of S is called regular if there exists $\alpha_{0} \in$ Conv $_{0} B$ such that $T \subseteq \alpha_{0}$.

Let T be a regular subset of S and let α_{0} be as above. Then in view of 2.3 there exists an element $\alpha^{0}(T)$ of $\mathrm{Conv}_{0} B$ such that $\alpha^{0}(T)$ is the least element of Convo B having T as a subset. We say that $\alpha^{0}(T)$ is the element of $\operatorname{Conv}_{0} B$ which is generated by T. We also say that T generates the convergence α, where $\alpha_{0}=\alpha^{0}(T)$.

If T is regular, then clearly each subset of T is regular.
For $\left(x_{n}\right),\left(y_{n}\right) \in S$ we put $\left(x_{n}\right) \leqslant\left(y_{n}\right)$ if $x_{n} \leqslant y_{n}$ for each $u \in \mathbb{N}$. Then S turns out to be a Boolean algebra. Let A be a nonempty subset of S. We denote by
A^{*}-the set of all $\left(x_{n}\right) \in S$ such that for each subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ there exists a subsequence $\left(z_{n}\right)$ of (y_{n}) which belongs to A;
$[A]$-the ideal of the Boolean algebra generated by the set A;
δA-the set of all subsequences of sequences belonging to A.
The following assertion is easy to verify.
3.1. Lemma. Let A be a nonempty subset of S. Then $[A]$ is the set of all sequences $\left(z_{n}\right) \in S$ such that there exist $k \in \mathbb{N}$ and $\left(w_{n}^{1}\right),\left(w_{n}^{2}\right), \ldots,\left(w_{n}^{k}\right) \in A$ having the property that the relation

$$
z_{n} \leqslant w_{n}^{1} \vee w_{n}^{2} \vee \ldots \vee w_{n}^{k}
$$

is valid for each $n \in \mathbb{N}$.
3.2. Lemma. (Cf. [1], 2.9.) Let $\emptyset \neq A \subseteq S$. Then the following conditions are equivalent:
(i) A is regular.
(ii) If $\left(y_{n}^{1}\right),\left(y_{n}^{2}\right), \ldots,\left(y_{n}^{k}\right)$ are elements of δA and if b is an element of B such that $b \leqslant y_{n}^{1} \vee y_{n}^{2} \vee \ldots \vee y_{n}^{k}$ is valid for each $n \in \mathbb{N}$, then $b=0$.

From the definition of $\mathrm{Conv}_{0} B$ and from [1], 2.5 we conclude
3.3. Lemma. Let $A \neq \emptyset$ be a regular subset of S. Then $[\delta A]^{*}$ is an element of Convo $_{0} B$ which is generated by the set A.
3.4. Lemma. (Cf. $[1], 5.2$.) Let $\left(x_{n}\right) \in D(B)$. Then the set $\left\{\left(x_{n}\right)\right\}$ is regular.
3.5. Lemma. Let $\left(x_{n}\right) \in D(B)$ and suppose that $\left(y_{n}^{1}\right),\left(y_{n}^{2}\right), \ldots,\left(y_{n}^{k}\right)$ are subsequences of $\left(x_{n}\right)$. Put $\left(z_{n}\right)=y_{n}^{1} \vee y_{n}^{2} \vee \ldots \vee y_{n}^{k}$ for each $n \in \mathbb{N}$. Then there exists a subsequence $\left(t_{n}\right)$ of $\left(z_{n}\right)$ such that $\left(t_{n}\right) \in D(B)$.

Proof. For each $i \in\{1,2, \ldots, k\}$ and each $n \in \mathbb{N}$ there is a positive integer $j(i, n)$ such that

$$
y_{n}^{i}=x_{j(i, n)}
$$

Thus for each $i \in\{1,2, \ldots, k\}$ we have

$$
\begin{equation*}
j(i, n) \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty . \tag{1}
\end{equation*}
$$

We define the sequence $\left(t_{n}\right)$ by induction as follows. We put $t_{1}=z_{1}$. Suppose that $n>1$ and that $t_{1}, t_{2}, \ldots, t_{n-1}$ are defined. Hence there are $\ell(1), \ell(2), \ldots, \ell(n-1) \in \mathbb{N}$ with

$$
t_{s}=z_{\ell(s)} \text { for } s=1,2, \ldots, n-1
$$

In view of (1) there exists the least positive integer p having the property that for each $s \in\{1,2, \ldots, n-1\}$ and each $i(1), i(2) \in\{1,2, \ldots, k\}$ the relation

$$
j(i(1), s)<j(i(2), p)
$$

is valid. Then we put $t_{n}=z_{p}$.
Hence $t_{n} \wedge t_{s}=0$ for $s=1,2, \ldots, n-1$. Thus $\left(z_{n}\right) \in D(B)$.
3.6. Lemma. Let $\emptyset \neq A_{1}$ be a regular subset of S and let $\left(x_{n}\right) \in D(B)$. Then the set $A_{1} \cup\left\{\left(x_{n}\right)\right\}$ is regular.

Proof. We denote by α_{0} the element of $\operatorname{Conv}_{0} B$ which is generated by the set A_{1}. Put $A=A_{1} \cup\left\{\left(x_{n}\right)\right\}$. By way of contradiction, suppose that A fails to be regular. Then in view of 3.2 there are $\left(y_{n}^{1}\right),\left(y_{n}^{2}\right), \ldots,\left(y_{n}^{m}\right) \in \delta A$ and $0<b \in B$ such that the relation

$$
0<b \leqslant y_{n}^{1} \vee y_{n}^{2} \vee \ldots \vee y_{n}^{m}
$$

is valid for each $n \in \mathbb{N}$. Put

$$
\begin{aligned}
& M_{1}=\left\{i \in\{1,2, \ldots, m\}:\left(y_{n}^{i}\right) \in A_{1}\right\}, \\
& M_{2}=\{1,2, \ldots, m\} \backslash M_{1} .
\end{aligned}
$$

Since the set A_{1} is regular, in view of 3.2 the relation $M_{2}=\emptyset$ cannot hold. Further, according to 3.4 and 3.2 , the set M_{1} cannot be empty. Denote

$$
z_{n}^{1}=\bigvee y_{n}^{i}\left(i \in M_{1}\right), \quad z_{n}^{2}=\bigvee y_{n}^{i} \quad\left(i \in M_{2}\right)
$$

Then $\left(z_{n}^{1}\right) \in \alpha_{0}$.

According to 3.5 there exists a mapping $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that φ is increasing and the sequence $\left(z_{\varphi(n)}^{2}\right)$ belongs to $D(B)$. We have

$$
0<b \leqslant z_{\varphi(n)}^{1} \vee z_{\varphi(n)}^{2} \quad \text { for each } n \in \mathbb{N} .
$$

Put

$$
b \wedge z_{\varphi(n)}^{1}=q_{n}^{1}, \quad b \wedge z_{\varphi(n)}^{2}=q_{n}^{2}
$$

Then

$$
b=q_{n}^{1} \vee q_{n}^{2}
$$

for each $n \in \mathbb{N}$. We have $\left(q_{n}^{1}\right) \in \alpha_{0}$ and $\left(q_{n}^{2}\right) \in D(B)$.
Since $b=q_{n+1}^{1} \vee q_{n+1}^{2}$ we get

$$
q_{n}^{2}=q_{n}^{2} \wedge b=q_{n}^{2} \wedge\left(q_{n+1}^{1} \vee q_{n+1}^{2}\right)=\left(q_{n}^{2} \wedge q_{n+1}^{1}\right) \vee\left(q_{n}^{2} \wedge q_{n+1}^{2}\right)=q_{n}^{2} \wedge q_{n+1}^{1}
$$

and clearly $\left(q_{n}^{2} \wedge q_{n+1}^{1}\right) \in \alpha_{0}$. Therefore $\left(q_{n}^{1} \vee q_{n}^{2}\right) \in \alpha_{0}$ yielding that const $b \in \alpha_{0}$, which is impossible.

By the obvious induction, from 3.6 we obtain
3.7. Lemma. Let $\emptyset \neq A_{1}$ be a regular subset of $S, m \in \mathbb{N},\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{m}\right)$ $\in D(B)$. Then the set $A_{1} \cup\left\{\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{m}\right)\right\}$ is regular.

Since the system of sequences which is dealt with in the condition (ii) of 3.2 is finite, from 3.7 we conclude
3.8. Proposition. Let $\emptyset \neq A_{1}$ be a regular subset of S. Then the set $A_{1} \cup D(B)$ is regular.

It is obvious that if $\emptyset \neq A_{2} \subseteq S$, then A_{2} is regular if and only if the set $\{$ const 0$\} \cup$ A_{2} is regular. Hence by putting $A_{1}=\{$ const 0$\}$, from 3.8 we obtain
3.9. Proposition. The set $D(B)$ is regular.

In view of 3.9 , there exists $\gamma \in \operatorname{Conv} B$ which is generated by the set $D(B)$.
Let $\alpha_{0} \in \operatorname{Conv}_{0} B$. According to 3.8 , the set $\alpha_{0} \cup D(B)$ is regular. Hence there exists $\beta_{0} \in \operatorname{Conv}_{0} B$ such that β_{0} is generated by the set $\alpha_{0} \cup D(B)$.

In view of 3.3, we have $\alpha_{0} \leqslant \beta_{0}$ and $\gamma_{0} \leqslant \beta_{0}$. Let $\beta_{1} \in \operatorname{Conv}_{0} B, \beta_{1} \geqslant \alpha_{0}, \beta_{1} \geqslant \gamma_{0}$. Thus $D(B) \subseteq \beta_{1}$ and hence $\alpha_{0} \cup D(B) \subseteq \beta_{1}$. By using 3.3 again we get $\beta_{0} \leqslant \beta_{1}$. Therefore $\beta_{0}=\alpha_{0} \vee \gamma_{0}$. We obtain
3.10. Proposition. Let $\alpha_{0} \in \operatorname{Conv}_{0} B$. Then the join $\alpha_{0} \vee \gamma_{0}$ exists in the partially ordered set Conv B.

In view of 2.2 we conclude
3.11. Corollary. Let $\alpha \in \operatorname{Conv} B$. Then the join $\alpha \vee \gamma$ exists in the partially ordered set Conv B.

If A_{0} is a nonempty subset of $D(B)$, then it is regular and thus there exists $\gamma_{1} \in \operatorname{Conv} B$ which is generated by A_{0}. Clearly $\gamma_{1} \leqslant \gamma$; from 3.11 and 2.4 we obtain
3.12. Corollary. Under the notation as above, for each $\alpha \in \operatorname{Conv} B$ there exists $\alpha \vee \gamma_{1}$ in Conv B.

4. A distributive identity

Suppose that μ_{1} and μ_{2} are elements of $\operatorname{Conv}_{0} B$ such that $\mu_{1} \leqslant \mu_{2}$. Consider the interval $\left[\mu_{1}, \mu_{2}\right.$] of the partially ordered set $\operatorname{Conv}_{0} B$. In view of 2.3 , this interval is a complete lattice.

Let $\emptyset \neq\left\{\alpha_{i}\right\}_{i \in I} \subseteq\left[\mu_{1}, \mu_{2}\right]$ and $\beta \in\left[\mu_{1}, \mu_{2}\right]$. Then the elements

$$
\nu_{1}=\left(\bigvee_{i \in I} \alpha_{i}\right) \wedge \beta, \quad \nu_{2}=\bigvee_{i \in I}\left(\alpha_{i} \wedge \beta\right)
$$

exist in $\left[\mu_{1}, \mu_{2}\right]$ and $\nu_{1} \geqslant \nu_{2}$. Put

$$
A_{1}=\bigcup_{i \in I} \alpha_{i}, \quad A_{2}=\bigcup_{i \in I}\left(\alpha_{i} \cap \beta\right)
$$

Suppose that $\left(v_{n}\right) \in \nu_{1}$. Hence according to 2.3 we have

$$
\left(v_{n}\right) \in \beta \quad \text { and }\left(v_{n}\right) \in \bigvee_{i \in I} \alpha_{i}
$$

From the second relation and from Lemma 3.3 in [1] we obtain

$$
\left(v_{n}\right) \in\left[A_{1}\right]^{*}
$$

Hence for each subsequence $\left(t_{n}^{1}\right)$ of $\left(v_{n}\right)$ there is a subsequence $\left(t_{n}^{2}\right)$ of $\left(t_{n}^{1}\right)$ such that $\left(t_{n}^{2}\right) \in\left[A_{1}\right]$.

Let $\left(t_{n}^{1}\right)$ and $\left(t_{n}^{2}\right)$ have the mentioned properties. Therefore in view of 3.1 there are $\left(w_{n}^{1}\right),\left(w_{n}^{2}\right), \ldots,\left(w_{n}^{k}\right)$ in A such that the relation

$$
t_{n}^{2} \leqslant w_{n}^{1} \vee w_{n}^{2} \vee \ldots \vee w_{n}^{k}
$$

is valid for each $n \in \mathbb{N}$. Put

$$
q_{n}^{j}=t_{n}^{2} \wedge w_{n}^{j}
$$

for each $n \in \mathbb{N}$ and each $j \in\{1,2, \ldots, k\}$. Thus

$$
t_{n}^{2}=q_{n}^{1} \vee q_{n}^{2} \vee \ldots \vee q_{n}^{k} \quad \text { for each } n \in \mathbb{N}
$$

and $\left(q_{n}^{1}\right),\left(q_{n}^{2}\right), \ldots,\left(q_{n}^{k}\right) \in A_{1}$. At the same time we have $\left(q_{n}^{1}\right),\left(q_{n}^{2}\right), \ldots,\left(q_{n}^{k}\right) \in \beta$ Hence for each $j \in\{1,2, \ldots, k\}$ there is $i(j) \in I$ such that

$$
\left(q_{n}^{j}\right) \in \alpha_{i(j)} \cap \beta .
$$

In view of 3.1 , this yields that $\left(t_{n}^{2}\right)$ belongs to $\left[A_{2}\right]$. Therefore $\left(v_{n}\right) \in\left[A_{2}\right]^{*}$. Thus by applying Lemma 3.3 in [1] we get $\left(v_{n}\right) \in \nu_{2}$.

Summarizing, we have
4.1. Proposition. Let $\left[\mu_{1}, \mu_{2}\right]$ be an interval of $\operatorname{Conv}_{0} B, \beta \in\left[\mu_{1}, \mu_{2}\right], \emptyset \neq$ $\left\{\alpha_{i}\right\}_{i \in I} \subseteq\left[\mu_{1}, \mu_{2}\right]$. Then

$$
\begin{equation*}
\left(\bigvee_{i \in I} \alpha_{i}\right) \wedge \beta=\bigvee_{i \in I}\left(\alpha_{i} \wedge \beta\right) \tag{1}
\end{equation*}
$$

4.2. Corollary. Each interval of Conv$_{0} B$ is Brouwerian.

From 4.1 and 2.2 we obtain
4.3. Corollary. Each interval of Conv B satisfies the identity (1).

References

[1] J. Jakubik: Sequential convergences in Boolean algebras. Czechoslovak Math. J. 38 (1988), 520-530.
[2] J. Jakubik: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras. Czechoslovak Math. J. 40 (1990), 453-458.
[3] H. Löwig: Intrinsic topology and completion of Boolean rings. Ann. Math. 43 (1941), 1138-1196.
[4] J. Novák, M. Novotný: On the convergence in σ-algebras of point-sets. Czechoslovak Math. J. 3 (1953), 291-296.
[5] F. Papangelou: Order convergence and topological completion of commutative lat-tice-groups. Math. Ann. 155 (1964), 81-107.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@mail.saske.sk.

