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TOPOLOGICALLY MAXIMAL CONVERGENCES, ACCESSIBILITY, 

AND COVERING MAPS 
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Abstract. Topologically maximal pretopologies, paratopologies and pseudotopologies 
are characterized in terms of various accessibility properties. Thanks to recent convergence-
theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopolog-
ical, paratopological and pseudotopological projections), the quotient characterizations of 
accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances 
of a single general theorem. Convergence-theoretic characterizations of sequence-covering 
and compact-covering maps are used to refine various results on the relationship between 
covering and quotient maps (by A. V. Arhangefskii, E. Michael, F. Siwiec and V. J. Man-
cuso) by deducing them from a single theorem. 
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1. INTRODUCTION 

Throughout this paper, the topologically quotient map means the classical quotient 

map. 

Each closure operation in the sense of E. Cech1 amounts to a pretopology. A pre

topology T is coarser than a pretopology f (T ^ £) whenever the closure correspond

ing to T is larger than that corresponding to £. Topologies are those pretopologies 

for which the closure is idempotent. With every pretopology T, we associate the 

topology TT of T, i.e., the finest among topologies that are coarser than T. A pre

topology T is called topologically maximal if no pretopology TT > T fulfils Tir = TT. 

A topological space is an accessibility space (G. T. Whyburn [19]) if for each x0 and 

:., such that ACc\A, cl0 = 0 and cl(A U B) = clAUclB. 
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every set H such that x0 £ c\(H\ {xo}), there is a closed set F with x0 G c l ( F \ {.x0}) 

and xo £ cl(F \ H \ {xo}). It is immediate that Frechet topologies with unicity of 

sequential limits are accessibility topologies. 

In [12], V. Kannan characterizes implicitly (i.e., without introducing the notion 

of maximality) topologies that are topologically maximal with respect to the class 

of pretopologies; one of these characterizations amounts to accessibility. 

T h e o r e m 1.1. ([12], Theorem 6.2.6) A topology is topologically maximal1 (within 

the class of pretopologies) if and only if it is an accessibility topology. 

Unaware of [12] and of the notion of accessibility, S. Dolecki and G. Greco gave 

in [5] a characterization of topologically maximal pretopologies that extends the 

above theorem to pretopologies. 

A map / from a pretopological space X to a pretopological space Y is continuous 

if for every subset A of Y, one has e l / - ( A ) C /~(cl A). If for a given pretopology 

on X, the pretopology on Y is the finest pretopology for which / is continuous, then 

we say that / is a pretopological quotient. In particular, if X and Y are topological 

spaces, then / is a pretopological quotient if and only if it is pseudo-open, i.e., 

quotient. 

Theorem 1.2. (D. C. Kent [13]) A topologically quotient map is pseudo-open 

if and only if it is pretopologically quotient. 

The maximality aspect of Theorem 1.1 enables one to easily deduce from Theo

rem 1.2 the following theorem of G. T. Whyburn ([20] under 2") and V. Kannan [12]. 

Theorem 1.3. A topology is an accessibility topology if and only if every topo

logically quotient map onto it is pseudo-open. 

This easy method of proving Theorem 1.3 hinges on the fact that if a topologically 

quotient map / : X -4 Y is not pseudo-open, then the finest pretopology on Y that 

makes the map continuous is not equal to the quotient topology-(Theorem 1.2), while 

its topology is equal to the quotient topology; therefore the latter is not topologically 

maximal. 

It turns out that this method admits natural extensions to general convergence 

spaces. By a convergence on X we understand a relation between filters ^ o n l and 

points x of X, denoted x e lim & (& converges to x, or x is a limit of &), such that 

& C W implies l i m ^ C Xvca'S, the principal filter of x converges to x (x £ lim(x)), 

and if f| lim J ^ C lim f\ &i for every finite collection of filters &\,..., ^n. In 
t=l„..,n i=l,...,n 

this paper we focus our attention on the following classes of convergences: topologies, 

pretopologies, paratopologies and pseudotopologies. 
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We provide a general unified characterization of topologically maximal pretopolo-

gies, paratopologies and pseudotopologies and generalize the results listed above. In 

particular, we recover Theorem 1.1 and deduce that a topology is a topologically 

maximal paratopology if and only if it is a strong accessibility topology (the latter 

notion is due to F. Siwiec [17]). 

In this context we apply convergence-theoretic methods used in [4] to unify nu

merous facts concerning Frechet. strongly Frechet and bi-sequential spaces, sequence-

covering maps and so on. 

2. C O N V E R G E N C E CLASSES DETERMINED WITH THE AID OF ADHERENCE 

OPERATION 

A convergence with unicity of limits is called Hausdorff. A convergence is a pseu-

dotopology (G. Choquet [3]) if x 6 l i m ^ whenever x e l i m ^ for every ultrafilter f/ 

finer than &. A convergence is a pretopology (G. Choquet [3]) if for every point x, its 

neighborhood filter Jf(x) = f] & converges to x. A pretopology is a topology if 
zSlim.? 

each neighborhood filter admits a base of open sets (a set O in a convergence space is 

open if for every x £ O and each filter & convergent to x, one has O e ^ ) . A conver

gence £ is finer than a convergence r (f ^ T) if lime & C limT & for every filter .9'. 

The classes of pseudotopologies, pretopologies and topologies are closed for 

suprema. Therefore to every convergence £ (on A'), we assign the finest pseu-

dotopology S£ (pretopology P(, topology T£) on X that is coarser than £. The 

maps S, P, T are isotone, contractive and idempotent on the class of convergences. 

We call such maps projections.2 

The adherence adh? associated with a convergence f is defined by 

adh{ J? = (J lime JT = \J lim? <#, 
je#& <#D? 

where J f # & means that H n F ^ 0 for every H 6 3V and each F e &. In 

particular, the closure cl^ A is the adherence of the principal filter of A. Here jf * = 

{G : G n H / 0 for each H e Jf} is the grill of JV. 

The projections 5 and P can be expressed in terms of adherence. Namely, 

(2.1) l i m j T J ? = P | a d h T J f , 

where 3 = 3 ( T ) is equal, respectively, to the family of all filters (in the case of J = S) 

or of principal filters (when J = P). 

'• We do not use the category term reflections, since we make an abstraction of morphisms. 
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A convergence r is a paratopology [4] if JT = r, where J is defined by (2.1) 

with 3 = 3( T ) , the family of countably based filters. It follows that the class of 

paratopologies is sup-closed; we denote the corresponding projection J by Pu. The 

topological projection T also admits a characterization of the type (2.1) with 3(T) 

the set of all principal filters of r-closed sets. 

3 . TOPOLOGICALLY MAXIMAL CONVERGENCES 

Let J be a projection. We say that £ is a J-convergence if f = J£. Of course, the 

class fix J (of J-convergences) is closed for suprema. Let J be a projection such that 

T ^ J , where T denotes the projection on the class of topologies. A J-convergence T 

is topological^ maximal at xo in fix J if XQ € limT & implies x0 e lim^ &, for every 

J-convergence £ such that £ ^ r and Xf = TV. Let now J be a projection of the 

form (2.1); this is in particular the case with the projections S, Pw, P on the classes 

of pseudotopologies, of paratopologies and of pretopologies. 

We denote by JV \ A the filter generated by {H \ A: H 6 J?} and abridge 

J? \ xo = J? \ {xo}. We assume that J? e 3 implies Jf \ A 6 3 provided JV \ A is 

nondegenerate. 

T h e o r e m 3 . 1 . Let the projection J be defined in (2.1) with the aid of the class 3-

A J-convergence r is topologicaily maximal at x0 in fix J if and only if for each Jt° 6 3 

with x0 € adhT(Jf \ x0), there exists a r-closed set F with x0 6 c lT (F \ {x0}) and 

such that 

( V . f / e j r ) x0(r
tc\T(F\H\{x0}). 

P r o o f . (=>) Let J f G 3 be such that x0 € adhT(Jif \ x0) and such that for 

every T-closed set F, 

(3.1) xo€cl,(F\~0) => (3/Je^r)x-oeclT(E\/J\a;o). 

If J#o = Jff \ xo, then J#o 6 3 by our assumption. We define the following 

convergence d: 

(3.2) h m ^ = ( ; i m ^ \ { ^ ' i f « ^ < 
( hmT J*, otherwise. 

It follows that xo $ adh,? Jfo and since x0 6 adhT Jf0, the convergence d is strictly 

finer than r at xo- We see that $ is a J-convergence. Indeed, as T is a J-convergence, 

it is enough to show that lim^ 9 = l i m ^ & at the points where iS might differ from T, 

i. e., at x0. Therefore, consider a filter & for which x0 e limT & \ lim,> ^". By (3.2), 

j#o # & and because J£o G 3 and x0 £ adh^ Jf0, we have x 0 ^ limj^ ^ by (2.1). 
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Let us show that Td = TV. If this were not the case, then there would be a 

set A such that cLj A C A but clT A \ A 5̂  0. As clT A \ cU A C {x0}, we infer 

that clT A = A U {z0} and x0 $ A. Because clT(A U {x0}) = A U {x0}, the set 

F = A U {xo} is T-closed and x0 £ c lT(F \ {x0}). By (3.1), there exists H £ JV such 

that x0 £ clT(A \ H) and thus there exists a filter 5P such that x0 £ limT ^ and 

A\H £ &, hence Hc £ & and thus # £ J5"*. Therefore J ^ # J does not hold 

so that by (3.2), x0 £ lim^ & C cl,? A, contrary to the assumption. We have proved 

that T is not topologically maximal at x0 in fix J. 

(<$=) If T is not topologically maximal at x0 in fix J , then there exists a J-con-

vergence £ such that £ >. T and T£ = T T and such that there are a filter & and x0 £ 

limT J? \ limf &. By (2.1), there exists 4 6 3 such that i 0 £ adhT ^ \ adh? J%. 

We define the convergence i? with the aid of (3.2). It has just been proved that -d is 

a J-convergence and £ ^ # > T at z 0 , thus Ttf = T T . 

Let us see that our ^ does not fulfil the condition of the theorem. Let F be 

an arbitrary T-closed set with x0 £ c lT(F \ {x0}). Then F \ {x0} is not T-closed, 

hence not tf-closed. Consequently, x0 £ cl^(F \ {x0}), that is, there is a filter <$ 

such that x0 £ l i m ^ ^ and F \ {x0} £ <$#. By (3.2), the first condition implies the 

existence of H £ J¥ with Hc £ <S which, together with the second condition, yields 

F\H\ {x0} £ <£# so that x0 £ cW(F \ H \ {x0}) Cc\T(F\H\ {x0}). • 

4. ACCESSIBILITIES AND TYPES OF QUOTIENT MAPS 

We have already evoked the definition of accessibility. A topology T is an acces

sibility topology at x0 if for every set H with x0 £ clT(F; \ {x0}), there exists a 

T-closed set F such that x0 £ c l T ( F \ { x 0 } ) and x0 <£ c\T{F\H\{x0}). Clearly, this 

definition makes sense also for pretopologies. Theorem 3.1 implies (for J = P the 

projection on the class of pretopologies with 3 the set of principal filters). 

C o r o l l a r y 4 . 1 . A pretopology is topologically maximal at x0 in fixP if and only 

if it is an accessibility pretopology at x0. 

This corollary amounts to [5, Theorem 6.1] and extends Theorem 1.1. In [17], 

F. Siwiec defines strong accessibility. A topology T is a strong accessibility topology 

at xo if for each decreasing sequence of sets [Hn)n such that x0 £ clT(/T„ \ {i0}) 

for each n, there exists a closed set F with x0 £ c lT(F \ {x0}) and such that x0 £ 

dT(F\Hn\{x0}) for each n. 

This property can be generalized to paratopologies: a paratopology T is a strong 

accessibility paratopology at x0 if for each countably based filter Jt? tor which x0 £ 

ac\h.T(Jif \ xo), there exists a T-closed set F with x0 £ c lT(F \ {x0}) and such that 

(4.1) ( V F € T ) x0(f.c\T(F\H\{x0}). 
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If J = Pa is the projection on the class of paratopologies (and 3 is the set of 

countably based filters), Theorem 3.1 implies 

Coro l l a ry 4 .2 . A paratopology is topologically maximal at ,T0 in fixP„ if and 

only if it is a strong accessibility paratopology at x0. 

By analogy, we say that a pseudotopology T is a hyper-accessibility pseudotopology 

at x0 if for each filter Jt with x0 e adhT(Jif \x0), there exists a T-closed set F such 

that x0 e cl,-(E\{3:o}) and (4.1) holds. Hyper-accessibility convergences form a very 

narrow class (see Proposition 5.9). 

Theorem 3.1 yields 

Coro l l a ry 4 .3 . A pseudotopology is topologically maximal at x0 in fixS if and 

only if it is a hyper-accessibility pseudotopology at x0. 

A mapping / : (X,£) -> (Y,T), abridged / : f -> r , is continuous if x G lim? J
5" 

implies f(x) 6 limT f(^) for each filter J^- on X. The above somewhat abusive 

abbreviation should not be confounded with a mapping from £-open to T-open sets. 

If / is surjective and if £ is a convergence on X, then / £ stands for the finest 

convergence on Y making / into a continuous mapping. Observe that / : (X, f) -> 

(Y,T) is continuous if and only if / £ ^ r . Of course, T( /£ ) is the finest topology 

on Y for which / is continuous. In other words, / is a topologically quotient map 

if and only if T ( / f ) = T. Analogously, as pointed out in [13, 4], / is pseudo-

open or hereditarily quotient if and only if P ( / £ ) = T, countably bi-quotient if and 

only if P w ( / 0 = T and bi-quotient if and only if S ( /£ ) = r . More generally, if J is 

a projection, then / : £ -> r is said to be a J-quotient if r = J ( / 0 - We consider also 

a broader notion of a J-map, i. e., such that 

(4.2) T ^ J ( / £ ) . 

A J-map is a J-quotient map if and only if it is continuous. As observed in [4], 

the original definitions can be expressed with the aid of a single formula. Namely, 

a continuous map f:{-+T fulfils 

(4.3) |/o £ adhT $ = > f~(y0) n adh? f~{&) + 0 

for every filter & on Y if and only if it is bi-quotient at y0 [11, 14], for every countably 

based filter & on Y if and only if it is countably bi-quotient at y0 [17, 18], for every 

principal filter & on Y if and only if it is pseudo-open at y0 [1], for every principal 
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filter & of a /^-closed set if and only if it is topologically quotient. Of course, 

formula (4.3) makes sense for general convergences r and f. 

It was proved by G. Whyburn [19] and [20, Theorem 2] that a T\ topology is an 

accessibility topology if and only if every topologically quotient map onto it is pseudo-

open (see Theorem 1.3). V. Kannan, in [12], proved the same result without the 

condition T\. On the other hand, F. Siwiec proves in [17, Theorem 4.3] that a topol

ogy is a strong accessibility topology if and only if every topologically quotient map 

onto it is countably bi-quotient. Both the results are special cases of the following 

characterization in which the projection J is equal either to P or to P„ or else to S. 

T h e o r e m 4.4. Let J ^ T be a projection of the type (2.1). A topology r is 

topologically maximal in fix J if and only if for every topologically quotient map / 

from (a topology) f to T, one has J ( / £ ) = r . 

P r o o f . Let / be a topologically quotient map from (A", £) onto (Y, T) and let 

J(ft) > T. As T(J(f£)) = T(f£) = T, the topology r is not topologically maximal 

in fix J . 

Conversely, if r is not topologically maximal in fix J , then there are y0 and a filter 

Jf?0 e 3 such that for every T-closed set F with y0 e c\T(F\y0), there exists H £ Jif 

such that y0 e clT(F\H\y0). Let i? be the convergence as in (3.2). Since y0 $ f| H, 
Hzjrn 

there exists H0 £ JV0 such that y0 € HC for every H e jf0 with H C H0. For every 

such H, let us consider the following topology r# on Hc: the neighborhood filter 

of y0 is the trace on Hc of the neighborhood filter of y0 in Y; all the other points are 

isolated. Let T0 be the topology on a copy Y0 of Y for which y0 is isolated and which 

coincides with r for all the other points. The natural map / from the sum topology 

i = © TH © To on ® i J c e Yo onto Y is topologically quotient: T( /£ ) = T. 
H„DHejtf„ HnDHeJK, 

On the other hand, / £ = t? and thus J ( / f ) > T( /£)- • 

5. COVERING MAPS 

The following properties are traditionally defined for topologies (the references 

we give below concern the topological case), but it is natural and essential for our 

approach to formulate them for general convergences. A convergence T is 

sequential [8] if each sequentially closed set is closed: 

Frechet at x0 [1, 8, 9] if for every set A such that x0 £ clT A. there exists a sequence 

( i n ) in A convergent to x0; 

strongly Frechet (or countably bi-sequential) at x0 [17, 16] if for every countably 

based filter & adherent (in T) to x0, there is a countably based filter 'S convergent 
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to x0 (in r ) and such that <$ # J5"; in the case of pretopologies r , the above condition 

amounts to the following: if for every decreasing sequence of sets (An) with â o £ 

f]clT An, there is a sequence xn £ >1„ that converges to x0\ 

bi-sequential at x0 [16] if for every filter & adherent (in r ) to x0, there is a 

countably based filter <S convergent to x0 (in r) and such that <S # &\ 

a sequence convergence at x0 if for every filter & adherent (in r ) to x0, there 

is a sequence filter £ convergent to x0 (in r) and such that S # & (in view of 

[6, Theorem 3.5], this amounts to: if a;o £ hmT &, then there exists a sequence filter 

S ^ & such that x0 £ limT <?). 

In [17], F. Siwiec introduces the notion of sequence-covering maps: a continuous 

map / : X —> Y is sequence-covering if for every sequence (j/„) „ in Y convergent to y, 

there exists a sequence (.T„)n convergent to x so that f(xn) = i/n and / (x ) = y. His 

Theorems 4.1, 4.2 and 4.4 are resumed in the following: 

T h e o r e m 5 .1 . A topology r is sequential (resp. Frechet, strongly Frechet) if and 

only if every sequence-covering map f from a topology £, to r is topologically quotient 

(resp. hereditarily quotient, countably hi-quotient). 

Before showing that these three theorems not only extend to arbitrary conver

gences, but are special cases of a single abstract result (Theorem 5.5), let us consider 

another group of results analogous to Theorem 5.1 in the sense that the role of 

convergent sequences is played by compact sets. We shall see that they also follow 

from Theorem 5.5. A mapping / : £ —> r is said to be compact-covering if for every 

r-compact set K, there exists a ^-compact set C such that / ( C ) = K (a subset K 

of a convergence space is compact if adhjifn K ^ 0 for every filter Jt? on K). In 

all the following definitions, f and r are general convergences rather than topologies 

as is the case in classical definitions [7]. 

We say that a convergence r is 

locally compact if for every filter & that converges to x, there exists a compact 

set K such that x E K e J7 ;3 

a k-convergence if a set is closed provided that its intersection with each compact 

set is closed; 

a k'-convergence at x0 if for every set A such that a:o £ clT A, there exists a compact 

set K such that x0 £ c\T(A n K)\ 

a strongly k'-convergence at x0 if for every countably based filter !? adherent (in r ) 

to x0, there exists a compact set K such that a:o £ adhT(&\lK), where &VK stands 

for the supremum of & and the principal filter of K. 

1 In [10] a convergence is called locally compact if every filter contains a compact set; the 
two defintions coincide for Hausdorff convergences. 
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The following theorem collects and generalizes the results of F. Siwiec and 

V. J. Mancuso [18] (for locally compact topologies and fc'-topologies), A. V. Arh-

angelskii [2] and E. Michael [15, Lemma 11.2] (for A;-topologies) and F. Siwiec [17] 

(for strongly fc'-topologies). 

We say that a convergence r is topologically Hausdorff if Tr is a Hausdorff topology. 

T h e o r e m 5.2. Let T be either a topologically Hausdorff pseudotopology or an 

arbitrary topology. Then r is a k-convergence (k', strongly k', locally compact) if and 

only if each compact-covering map f from a topology £ tor is topologically quotient 

(resp. pseudo-open, countably bi-quotient, bi-quotient). 

Observe that the above properties of convergences are, of topological, pretopolog-

ical, paratopological, pseudotopological and general nature in the sense that r has a 

property if and only if, respectively, TT, PT, P^T, ST (and r ) does. 

In order to put the listed concepts into a unified framework, let T be a conver

gence and consider First T, the least first-countable convergence finer than r,4 the 

least sequence convergence Seqr , finer than T,5 and KT the least locally compact 

convergence finer than T.6 The mappings Seq, First and K are co-projections, that 

is, isotone expansive idempotent mappings. 

All classes of convergences that have been described in this section admit the 

common characterization [4] 

(5.1) (V J? 6 3 ( T ) ) (.TO 6 adhT & =-=> x0 G adh f i v &), 

where E is equal either to First or A", and 3 ( T ) is the family of principal filters 

of (iTT)-closed sets, of principal filters, of countably based filters and of arbitrary 

filters. Sequential, Frechet and strongly Frechet convergences, but not bi-sequential 

convergences, can be also characterized by (5.1) with E = Seq. 

It was observed in [4] that (5.1) amounts to 

(5.2) r =s JET, 

where the projection J corresponds via (2.1) to the family of filters 3 ( T ) . Namely, 

the topologization T corresponds to the class of the principal filters of closed sets, P 

to the class of principal filters, P^ to the class of countably based filters, and S to 

the class of all filters. The following table recapitulates the corresponding properties 

of the type (5.2). 

4 x £ limFirst T •? if there exists a countably based filter 'S such that x 6 limT 3 

'•" x £ limseqr 9 if there exists a sequence filter £ such that x 6 limT £ and £ C &. 
0 x 6 l im/o & if x S limT & and if there exists a r-compact set C G &. 
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> ^ Seq First K 

т sequential sequential fc-convergence 

p Fréchet Fréchet fc'-convergence 

pш 
strongly Fréchet strongly Fréchet strongly fc'-convergence 

s sequence convergence bi-sequential locally compact 

Table rgences of the type T ̂  JET. 

Of course, a mapping / from £ to r is continuous if and only if7 / £ ^ f. On 

the other hand, / is sequence-covering if and only if SeqT > / (Seqf ) , and if / is 

compact-covering, then KT ^ Sf(K£). 

Let E be a co-projection. A map / : ( -+ T is an E-relatively J-mcCp [4], if 

f: E£ -> ET is a, 7-map, that is, if 

(5.3) £ľт ^ J / (SÇ) . 

Therefore, sequence-covering maps are exactly Seq-relatively /-maps, where / stands 

for the identity map. As for compact-covering maps, we have 

Proposit ion 5 .3 . Let / : £ -> T be a continuous map. If KT is Hausdorff, then 

each property below implies its successor: 

1. f is a K-relatively I-map; 

2. f is compact-covering; 

3. / is a K-relatively S-map. 

P r o o f . (1) = > (2) If / is not compact-covering, then there exists a T-compact 

set K such that K <t f(C) for every ^-compact set C, that is, K n f(C)c ^ 0. The 

family & = {/(C) c : C e X(£)\, where JT(£) stands for the family of ^-compact 

sets, is a filter base and K e 9*. If <?/ is an ultrafilter finer than # V K , then 

\m\KT <?/ + 0. If S? is a filter of X such that f(<$) = <?/, then for each C e JT(£) 

there exists G e & such that / (G) c / ( C ) c , hence / (G) n / (C) = 0 and thus 

G n C = 0, that is, G C C c . Therefore C c £ <S for every ^-compact set C so that 

C <fi<g and hence £f is not iff-convergent. Consequently, f/ is not f(K£) convergent 

and KT % fK£. 

(2) = > (3) Suppose that there exists an ultrafilter <?/ such that y e lim/fr <&'• 

Hence y e limT <$/ and there exists a T-compact set K in < .̂ Since / is compact-

covering, there exists a ^-compact set C such that / ( C ) = K. Therefore, C is 

7 Recall that /£ stands for the finest convergence on V making / into a continuous mapping. 
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in f~{<%)*. Consider an ultrafilter W of f~(W) V C. Then f(W) = % and W 

converges for K£ to an element x of C and consequently f{x) € lim/j^-j) <&. Since, 

by continuity, f{K£) is finer than £"r, / (x ) 6 lim^r ^ and, by unicity of limits, y 

is equal to f{x). D 

Generalizing the classical Theorems 5.1 and 5.2, we prove in Theorem 5.4 that 

a convergence r fulfils (5.3) if and only if every £-relatively J-map is a J-map. 

Actually we prove more, namely that a necessary condition for (5.3) to hold is that 

every weakly £-relatively J-map is a J-map. A map / : f -> r is a weakly E-relatively 

J-map if / : f —> ET is a J-map, that is, if 

(5.4) ET > J ( / f ) . 

The latter class is essentially broader than the former; Example 5.6 shows that 

Theorem 5.4 improves the quoted classical theorems even in the context of mere 

topologies. 

For example, a map / : X -> Y is weakly first-countable-relatively /-map if for 

every y e Y and each countably based filter & such that y € lim^", there exists 

an arbitrary (!) filter <S such that & = f{<S) and IimS? n f~{y) + 0; it is weakly 

locally-compact-relatively 5-map if for every y e Y and each filter & containing a 

compact set and such that y e l i m ^ , there exists an arbitrary (!) filter <S such that 

&• = f{<S) and lim <S n / ~ (y) + 0. 

Taking into account Formula (4.2) that characterizes various quotient maps, we 

are in a position to state the following general theorem: 

T h e o r e m 5.4. Let E be a co-projection and D ^ J be projections. Then the 

following properties are equivalent: 

1. T > J£ r ; 
2. every E-relatively D-map onto r is a J-map; 

3. every weakly E-relatively D-map onto r is a J-map. 

P r o o f . (1) = > (2) Let r ^ JET and let / : £ -> r be a weakly £-relatively 

£>-map. Using (5.3), we have 

(5.5) T ~» JET > JDf{EZ) > J{fO-

(2) => (3) Because every £-relatively D-map is a weakly £-relatively D-map. 

(3) = > (1) If r j£ J £ r , then the identity map i: f = £ r -> r , which is always a 

weakly £-relatively D-map, is not a J-map. D 
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Theorem 5.4 specializes for other important co-projections. We say that a mapping 

/ : £ -» T is first-countable-covering if for every countably based filter & that T-con-

verges to y, there exists x ' f~(y) and a countably based filter <S that ^-converges 

to x and satisfies f(W) = &; this amounts to the inequality First T > / (Fi rs t £). 

We could now apply Theorem 5.4 and obtain analogues of Theorem 5.1. Instead 

we are going to improve Theorem 5.4 in the case where E is one of the three co-

projections Seq, First, K. The improvement consists in characterizations in terms 

of E-relatively J-maps or weakly E-relatively J-maps with topologies (rather than 

general convergences) as domains. 

T h e o r e m 5.5. Let J ^ S be a projection. Let E be a co-projection equai to Seq 

or First, or let T be a topologicaliy Hausdorff pseudotopology and E = K. Then for 

every projection D ^ J , the following properties are equivalent: 

1. r 3s JET; 

2. each E-relatively D-map (or S-map) from a topology onto T is a J-map; 

3. each weakly E-relatively D-map (or weakly E-relatively S-map) from a topology 

onto T is a J-map. 

Moreover, if r is a topology, then the Hausdorff condition can be dropped. 

P r o o f . By Theorem 5.4, (1) => (2) => (3). 

(3) = > (1) Suppose that T J£ JET. Then i: ET —> T is a weakly E-relatively 

D-map for every projection D, but not a J-map. 

In the case of E = Seq, let £ be the sum topology of all convergent T-sequences 

with their limits and let h: £ -> SeqT be the canonical (convergence) quotient map. 

In the case of E = First, let f be the topological sum of the form 0 Xy, where 0 

is the collection of all T-convergent countably based filters the elements of which con

tain the limit; here ^ is the neighborhood filter of limT <3 in X<g while the other points 

of Xy are isolated. Let h: f —• ET be the canonical (convergence) quotient map. 

Consider now the case E = K. Recall that X(T) denotes the family of all T-com-

pact sets. For every compact set K, the restriction r \K of the pseudotopology r 

to K is a topology, because TT is Hausdorff [10]. If r is already a topology, r \K is 

a topology without the Hausdorff assumption. Let { = 0 T\K- Then / = i o h 
Kejf(T) 

fulfils (5.4), but J(fO = J(i o h(0) = JET and r ^ JET. • 

The class of weakly .E-relatively J-maps is essentially broader than the class of 

E-relatively 5-maps. 

E x a m p l e 5.6. (a weakly Seq-relatively I-map non Seq-relatively I-map) Let 

X = {zoo} U {xn • n 6 M} u {x(,ltk) : n, k ' H} be the domain of a bi-sequence that 

converges to rc^. Denote by £ the subspace topology o f F = {a;00}U{x(Ilifc) : n, k'N} 
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and by T the subspace topology of Z = {Xoo} U {xn : n £ N}. Let / : Y -+ Z be 

defined by /(••rCo) = £co and /(*(„,k)) = :r„ for each A,-. Now, T is sequential and 

locally compact (i.e., r = SeqT = A T ) , and the map / is open, hence almost-open 

(i.e., T >• / £ ) . Hence / is a weakly Seq-relatively /-map and a weakly /^'-relatively 

/ -map (i.e., A 'T = Seqr ^ /£)• On the other hand, i. = A'£ = Seq£ is the discrete 

topology t, and thus fi is also the discrete topology; therefore / is neither a Seq-

relatively / -map nor a A-relatively / -map. 

In view of the table on page 380 and because bi-quotient maps are precisely con

tinuous S-maps, we have the following 

Corollary 5.7. A pseudotopology r is a sequence convergence if and only if each 

sequence-covering map f from a topology £ to r is bi-quotient. 

On the other hand, we have 

Corollary 5.8. A pseudotopology r is a bi-sequential convergence if and only if 

each hrst-countable-covering map f from a topology £ to r is bi-quotient. 

As mentioned above, each Frechet pretopology with unicity of sequence limits is 

an accessibility pretopology and each strongly Frechet paratopology with unicity of 

sequence limits is a strong accessibility paratopology. 

Not every bi-sequential Hausdorff pseudotopology is a hyper-accessibility pseudo

topology. In fact, in view of the following proposition the natural topology of the 

unit interval is an example. 

Propos i t ion 5.9. If a sequential Hausdorff pretopology is a hyper-accessibility 

pretopology, then it is a sequence convergence. 

P r o o f . Let T be a Hausdorff pretopology which is sequential (T Seq T = T) and 

which is not a sequence convergence (Seqr > T) . By [6, Theorem 6.3, Corollary 7.4], 

SeqT = SeqTT and by [6, Theorem 5.4], SSeqT = SeqT so that SeqT is a pseudo

topology strictly finer than T and with the same topological projection. • 

F. Siwiec [17] mentioned the converse of one of the preceding remarks, namely that 

each Hausdorff sequential strong accessibility topology is strongly Frechet. If we set 

D = Pu and E = First or E = Seq, then we see that the observation of Siwiec is a 

special case of the following general fact: 

T h e o r e m 5.10. Let D >. T be a projection and E a co-projection. If TET = r 

is topologically maximal in fix/), then DET = r . 

P r o o f . Let TET = T. As DET >- TET, by maximally, DET = T. D 
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On the other hand, we have 

E x a m p l e 5.11. (Hausdorff, non sequential, topological^ maximal topology in 
HxS) Let & be a free ultrafilter on X. Let r be the topology on X u j o o } for which 
^ is the trace of ^ ( o o ) on X and all the other points are isolated. This Hausdorff 
topology is not sequential (more precisely, T S e q r is the discrete topology), but it is 
topologically maximal in fix 5. In fact, the only pseudotopology that is strictly finer 
than r is the discrete topology t. 

Incidentally, the identity i: t -> r is obviously sequence-covering but not topolog
ically quotient. 
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