Mathematic Bohemia

Jiří Karásek

Rotations of λ-lattices

Mathematica Bohemica, Vol. 121 (1996), No. 3, 293-300

Persistent URL: http://dml.cz/dmlcz/125987

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ROTATIONS OF λ-LATTICES

Jirí Karásek, Brno
(Received August 18, 1995)

Summary. In [2], J. Klimeš studied rotations of lattices. The aim of the paper is to résearch rotations of the so-called λ-lattices introduced in [3] by V. Snášel.

Keywords: λ - \wedge-semilattice, λ - V-semilattice, λ-lattice, left semirotation, right semirotation, rotation, complete λ-lattice

AMS classification: $06 \mathrm{~A} 06,06 \mathrm{~A} 15,06 \mathrm{~B} 99$

The set of all lower (upper) bounds of a subset X of an ordered set A will be denoted by $L(X)(U(X))$. In the case of a finite set $X=\{a, b, \ldots\}$ we write $L(a, b, \ldots)(U(a, b, \ldots))$ instead of $L(X)(U(X))$. As usual, under a Galois correspondence we mean a pair (f, g) of mappings between ordered sets P and Q such that f, g are antitone and the compositions $g f, f g$ are extensive.

It is easy to prove the following

1. Lemma. Let P, Q be ordered sets, $f: P \rightarrow Q, g: Q \rightarrow P$ mappings. Then the pair (f, g) is a Galois correspondence between P and Q if and only if we have, for each $x \in P, y \in Q$,

$$
\begin{aligned}
& f(L(x, g(y))) \subseteq U(f(x), y) \\
& g(L(f(x), y)) \subseteq U(x, g(y))
\end{aligned}
$$

2. Definition. A below directed ordered set A with a binary operation \wedge is called a λ - \wedge-semilattice if it satisfies the following three axioms:
(1) $a \wedge b \in L(a, b)$ for each $a, b \in A$.
(2) If $a \leqslant b$, then $a \wedge b=a$ for each $a, b \in A$.
(3) \wedge is commutative.

A λ - \wedge-semilattice is defined dually. An ordered set with two binary operations \wedge and V is called a λ-lattice if it is a λ - \wedge-semilattice and λ - \vee-semilattice.
3. Theorem. Let K, L be λ - \wedge-semilattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. Then the pair of mappings (f, g) is a Galois correspondence between K and L if and only if, for each $x \in K, y \in L$,

$$
\begin{aligned}
& f(x \wedge g(y)) \in U(f(x), y) \\
& g(f(x) \wedge y) \in U(x, g(y))
\end{aligned}
$$

Proof. " \Rightarrow ": Let (f, g) be a Galois correspondence between K and L. Let $x \in$ $K, y \in L$. By 1 , we have $f(L(x, g(y))) \subseteq U(f(x), y), g(L(f(x), y)) \subseteq \dot{U}(x, g(y))$. But $x \wedge g(y) \in L(x, g(y))$ by $2(1)$, so that $f(x \wedge g(y)) \in U(f(x), y)$. Interchanging K and L, f and g, we obtain the second assertion.
$" \Leftarrow$ ": Let $x \in K, y \in L$. We have $g f(x)=g(f(x) \wedge f(x)) \in U(x, g f(x))$, thus $g f(x) \geqslant x$ by $2(2)$. The mapping $g f$ is therefore extensive. Now, let $x_{1}, x_{2} \in K$, $x_{1} \leqslant x_{2}$. Then, by $2(2), x_{1}=x_{1} \wedge g f\left(x_{2}\right)$, for, by extensivity of $g f, x_{1} \leqslant x_{2} \leqslant g f\left(x_{2}\right)$. This implies $f\left(x_{1}\right)=f\left(x_{1} \wedge g f\left(x_{2}\right)\right) \in U\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ and $f\left(x_{1}\right) \geqslant f\left(x_{2}\right)$; hence the mapping f is antitone. Interchanging K and L, f and g, we obtain extensivity of $f g$ and antitony of g. Consequently, the pair (f, g) is a Galois correspondence between K and L.
4. Definition. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. The pair of mappings (f, g) is called
a) a left semirotation between K and L if

$$
\begin{aligned}
& f(x \wedge g(y)) \in U(f(x), y) \cap L(f(x) \vee y) \\
& g(f(x) \wedge y) \in U(x, g(y))
\end{aligned}
$$

for each $x \in K, y \in L$,
b) a right semirotation between K and L if

$$
\begin{aligned}
& f(x \wedge g(y)) \in U(f(x), y) \\
& g(f(x) \wedge y) \in U(x, g(y)) \cap L(x \vee g(y))
\end{aligned}
$$

for each $x \in K, y \in L$,
c) a rotation between K and L if it is a left and a right semirotation.
5. Remark. (1) In the case of K, L being lattices, the notion of a left semirotation, right semirotation, and rotation coincide with the corresponding notions introduced by J. Klimeš in [2].
(2) In the definition of a left semirotation, it suffices to require that K is a λ - \wedge-semilattice; similarly for a right semirotation.
6. Lemma. Let K, L be λ-lattices, (f, g) a left or right semirotation between K and L. Then the pair of mappings (f, g) is a Galois correspondence between K and L.

Proof. It follows from 3.
7. Lemma. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. Then the following statements are equivalent:
(a) (f, g) is a left semirotation between K and L.
(b) (f, g) is a Galois correspondence between K and L and, for each $x \in K, y \in L$,

$$
f(L(x \wedge g(y))) \cap L(f(x) \vee y) \neq \emptyset
$$

Proof. (a) \Rightarrow (b): Let (a) hold. Then (f, g) is a Galois correspondence between K and L by 6 . For any $x \in K, y \in L, f(L(x \wedge g(y))) \cap L(f(x) \vee y) \neq \emptyset$, for $f(x \wedge g(y))$ belongs to this intersection by 4 .
(b) \Rightarrow (a): Let (b) hold. Let $x \in K, y \in L$. As $f(L(x \wedge g(y))) \cap L(f(x) \vee y) \neq \emptyset$, there exists $u \in L(x \wedge g(y))$ such that $f(u) \in L(f(x) \vee y)$. Thus $u \leqslant x \wedge g(y)$, $f(u) \leqslant f(x) \vee y$. Regarding the antitony of f we obtain $f(x \wedge g(y)) \leqslant f(u) \leqslant$ $f(x) \vee y$, so that $f(x \wedge g(y)) \in L(f(x) \vee y)$. By 3, we have $f(x \wedge g(y)) \in U(f(x), y)$, $g(f(x) \wedge y) \in U(x, g(y))$. Summarizing, we get $f(x \wedge g(y)) \in U(f(x), y) \cap L(f(x) \vee y)$, $g(f(x) \wedge y) \in U(x, g(y))$, and (f, g) is a left semirotation between K and L.
8. Lemma. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. Then the following statements are equivalent:
(a) (f, g) is a right semirotation between K and L.
(b) (f, g) is a Galois correspondence between K and L and, for each $x \in K, y \in L$,

$$
g(L(f(x) \wedge y)) \cap L(x \vee g(y)) \neq \emptyset
$$

Proof. Dual to 7 .
9. Theorem. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. Then the following statements are equivalent:
(a) (f, g) is a rotation between K and L.
(b) (f, g) is a Galois correspondence between K and L and, for each $x \in K, y \in L$, the sets $f(L(x \wedge g(y))) \cap L(f(x) \vee y)$ and $g(L(f(x) \wedge y)) \cap L(x \vee g(y))$ are nonempty.
Proof. It follows from 7 and 8.
10. Remark. While in the case of lattices, both sets in (b) are singletons under the assumptions of 9 , in our case any of them may contain more elements, which is shown by the following example.
11. Example. Let K, L be λ-lattices with isomorphic Hasse diagrams:

If two elements x, y in K or L have the standard supremum or infimum, we put $x \vee y=\sup \{x, y\}$ or $x \wedge y=\inf \{x, y\}$. In the other cases the joins and meets are inscribed in the diagrams. Define a mapping $f: K \rightarrow L$ as follows:

$$
f\left(a_{i}\right)=b_{7-i} \text { for each } i \in\{1,2,3,4,5,6\}
$$

and put $g=f^{-1}$. Then (f, g) is a rotation between K and L, but

$$
g\left(L\left(f\left(a_{2}\right) \wedge b_{4}\right)\right) \cap L\left(a_{2} \vee g\left(b_{4}\right)\right)=\left\{a_{4}, a_{6}\right\}
$$

12. Notatión. Let A, B be sets, $f: A \rightarrow B, g: B \rightarrow A$ mappings. Denote

$$
\begin{aligned}
& C_{g f}=\{x \in A ; x=g f(x)\} \\
& C_{f g}=\{y \in B ; y=f g(y)\}
\end{aligned}
$$

13. Lemma. Let K, L be λ-lattices, (f, g) a left semirotation between K and L. Then the set $C_{f g}$ is an upper subset of the ordered set L such that $y_{1}, y_{2} \in C_{f g}$ implies $f g\left(y_{1} \wedge y_{2}\right) \in L\left(y_{1}, y_{2}\right)$.

Proof. Let $y \in C_{f g}, s \in L, y \leqslant s$. By $6,(f, g)$ is a Galois correspondence between K and L, so that g is antitone and we have $g(y) \geqslant g(s)$, thus $g(s)=$ $g(s) \wedge g(y)$. Using extensivity of $f g$ we obtain $f(g(s) \wedge g(y))=f g(s) \geqslant s$, and, moreover, $f g(y)=y$ (for $\left.y \in C_{f g}\right)$. As (f, g) is a left semirotation, $s \leqslant f g(s)=$ $f(g(y) \wedge g(s)) \leqslant f g(y) \vee s=y \vee s=s$, hence $f g(s)=s$ and $s \in C_{f g}$. Further, let y_{1}, $y_{2} \in C_{f g}$. As $y_{1} \geqslant y_{1} \wedge y_{2}, y_{2} \geqslant y_{1} \wedge y_{2}$, we get $g\left(y_{1}\right) \leqslant g\left(y_{1} \wedge y_{2}\right), g\left(y_{2}\right) \leqslant g\left(y_{1} \wedge y_{2}\right)$. In view of the antitony of $f, f g\left(y_{1} \wedge y_{2}\right) \leqslant f g\left(y_{1}\right)=y_{1}, f g\left(y_{1} \wedge y_{2}\right) \leqslant f g\left(y_{2}\right)=y_{2}$, hence $f g\left(y_{1} \wedge y_{2}\right) \in L\left(y_{1}, y_{2}\right)$.
14. Lemma. Let K, L be λ-lattices, (f, g) a right semirotation between K and L. Then the set $C_{g f}$ is an upper subset of the ordered set K such that $x_{1}, x_{2} \in C_{g f}$ implies $g f\left(x_{1} \wedge x_{2}\right) \in L\left(x_{1}, x_{2}\right)$.

Proof. Dual to 13 .
15. Theorem. Let K, L be λ-lattices, (f, g) a rotation between K and L. Then:
(1) $C_{g f}$ is an upper subset of the ordered set K.
(2) $C_{f g}$ is an upper subset of the ordered set L.
(3) $x_{1}, x_{2} \in C_{g f}$ implies $g f\left(x_{1} \wedge x_{2}\right) \in L\left(x_{1}, x_{2}\right), f\left(x_{1} \wedge x_{2}\right) \in U\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \cap$ $L\left(f\left(x_{1}\right) \vee f\left(x_{2}\right)\right)$.
(4) $y_{1}, y_{2} \in C_{f g}$ implies $f g\left(y_{1} \wedge y_{2}\right) \in L\left(y_{1}, y_{2}\right), g\left(y_{1} \wedge y_{2}\right) \in U\left(g\left(y_{1}\right), g\left(x_{2}\right)\right) \cap$ $L\left(g\left(y_{1}\right) \vee g\left(y_{2}\right)\right)$.
(5) $f \upharpoonright C_{g f}$ is an order antiisomorphism of $C_{g f}$ onto $C_{f g}$.
(6) $g \upharpoonright C_{f g}$ is an order antiisomorphism of $C_{f g}$ onto $C_{g f}$.

Proof. (1) follows from 14.
(2) follows from 13.
(3) The first part follows from 14. Further, let $x_{1}, x_{2} \in C_{g f}$. Then $f\left(x_{1} \wedge x_{2}\right) \in$ $U\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$, for f is antitone. We have $f\left(x_{1} \wedge x_{2}\right)=f\left(x_{1} \wedge g f\left(x_{2}\right)\right) \in L\left(f\left(x_{1}\right) \vee\right.$ $\left.f\left(x_{2}\right)\right)$ by 4 . Hence $f\left(x_{1} \wedge x_{2}\right) \in U\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \cap L\left(f\left(x_{1}\right) \vee f\left(x_{2}\right)\right)$.
(4) Dual to (3).
(5) and (6) hold for any Galois correspondence and are well-known.
16. Theorem. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings such that $g f$ and $f g$ are extensive on K and L, respectively. If, for any $x, u \in K, y, v \in L$, $x \wedge g(y) \leqslant u \vee g(v)$ is equivalent to $f(x) \vee y \geqslant f(u) \wedge v$, then (f, g) is a rotation between K and L.

Proof. First, we shall show that f is antitone. Let $x_{1}, x_{2} \in K, x_{1} \leqslant x_{2}$. Then $x_{1} \wedge g f\left(x_{1}\right) \leqslant x_{1} \leqslant x_{2} \leqslant x_{2} \vee g f\left(x_{2}\right)$, thus $f\left(x_{1}\right)=f\left(x_{1}\right) \vee f\left(x_{1}\right) \geqslant f\left(x_{2}\right) \wedge f\left(x_{2}\right)=$ $f\left(x_{2}\right)$, and f is antitone. Interchanging K and L, f and g, we obtain antitony of g. Hence the pair (f, g) is a Galois correspondence between K and L. Hence, by $3, f(x \wedge g(y)) \in U(f(x), y), g(f(x) \wedge y) \in U(x, g(y))$ for any $x \in K, y \in L$. Further, we have $x \wedge g(y) \leqslant g f(x \wedge g(y))=g f(x \wedge g(y)) \vee g f(x \wedge g(y))$, consequently $f(x) \vee y \geqslant f g f(x \wedge g(y)) \wedge f(x \wedge g(y))$. But $f g f(x \wedge g(y)) \geqslant f(x \wedge g(y))$, so that $f g f(x \wedge g(y)) \wedge f(x \wedge g(y))=f(x \wedge g(y))$, and we get $f(x \wedge g(y)) \leqslant f(x) \vee y$. Again, interchanging K and L, f and g, we have $g(f(x) \wedge y) \leqslant x \vee g(y)$. This yields $f(x \wedge g(y)) \in U(f(x), y) \cap L(f(x) \vee y), g(f(x) \wedge y) \in U(x, g(y)) \cap L(x \vee g(y))$ for any $x \in K, y \in L$, and (f, g) is a rotation between K and L.
17. Lemma. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. If, for any $x, a \in K, y, b \in L$,
(1) $f(x) \geqslant f(a) \wedge b$ implies $x \leqslant a \vee g(b)$, and
(2) $g(y) \geqslant a \wedge g(b)$ implies $y \leqslant f(a) \vee b$,
then (f, g) is a rotation between K and L.
Proof. First, we shall show extensivity of the mapping $g f$. For any $a \in K$, we have $f(a) \geqslant f g f(a) \wedge f(a)$. By (1), we obtain $a \leqslant g f(a) \vee g f(a)=g f(a)$. Now, let us show antitony of the mapping f. Let $x_{1}, x_{2} \in K, x_{1} \leqslant x_{2}$. As $g f$ is extensive, $x_{2} \leqslant g f\left(x_{2}\right)$, so that $g f\left(x_{2}\right) \geqslant x_{1} \wedge g f\left(x_{1}\right)$. This implies, by (2), $f\left(x_{2}\right) \leqslant f\left(x_{1}\right) \vee f\left(x_{1}\right)=f\left(x_{1}\right)$. Interchanging K and L, f and g, we get extensivity of $f g$ and antitony of g. By 3, we have $f(x \wedge g(y)) \in U(f(x), y)$ for any $x \in K$, $y \in L$. As $g f$ is extensive, $g f(x \wedge g(y)) \geqslant x \wedge g(y)$, and by (2), $f(x \wedge g(y)) \leqslant$ $f(x) \vee y$, i.e. $f(x \wedge g(y)) \in L(f(x) \vee y)$ for any $x \in K, y \in L$. Summarizing, we obtain $f(x \wedge g(y)) \in U(f(x), y) \cap L(f(x) \vee y)$ for any $x \in K, y \in L$. Similarly $g(f(x) \wedge y) \in U(x, g(y)) \cap L(x \vee g(y))$ for any $x \in K, y \in L$ and (f, g) is a rotation between K and L.
18. Lemma. Let K, L be λ-lattices, (f, g) a left semirotation between K and L. Then, for any $a \in K, y, b \in L, g(y) \geqslant a \wedge g(b)$ implies $y \leqslant f(a) \vee b$.

Proof. By $6,(f, g)$ is a Galois correspondence between K and L. Let $a \in K$, $y, b \in L, g(y) \geqslant a \wedge g(b)$. Then $y \leqslant f g(y) \leqslant f(a \wedge g(b)) \leqslant f(a) \vee b$ in view of extensivity of $f g$, antitony of f, and Definition 4.
19. Lemma. Let K, L be λ-lattices, (f, g) a right semirotation between K and L. Then, for any $x, a \in K, b \in L, f(x) \geqslant f(a) \wedge b$ implies $x \leqslant a \vee g(b)$.

Proof. Dual to 18 .
20. Theorem. Let K, L be λ-lattices, $f: K \rightarrow L, g: L \rightarrow K$ mappings. Then the following statements are equivalent:
(1) (f, g) is a rotation between K and L.
(2) For each $x, a \in K, y, b \in L, f(x) \geqslant f(a) \wedge b$ implies $x \leqslant a \vee g(b)$, and $g(y) \geqslant a \wedge g(b)$ implies $y \leqslant f(a) \vee b$.
(3) $f g$ and $g f$ are extensive and, for any $x, a \in K, y, b \in L, a \geqslant x \wedge g(y)$ implies $f(a) \leqslant f(x) \vee y$, and $b \geqslant f(x) \wedge y$ implies $g(b) \leqslant x \vee g(y)$.
(4) $f g$ and $g f$ are extensive and, for any $x \in K, y \in L, f(U(x \wedge g(y))) \subseteq L(f(x) \vee y)$, $g(U(f(x) \wedge y)) \subseteq L(x \vee g(y))$.
Proof. (1) $\Leftrightarrow(2)$: It follows form 17,18 , and 19 .
$(1) \Rightarrow(3)$: By $6,(f, g)$ is a Galois correspondence between K and L, thus the mappings $f g$ and $g f$ are extensive. Let $a \geqslant x \wedge g(y)$. Then, by antitony of f and
$4, f(a) \leqslant f(x \wedge g(y)) \leqslant f(x) \vee y$. Interchanging K and L, f and g, we obtain the other implication.
(3) $\Rightarrow(1)$: First, let us show antitony of f. Let $x_{1}, x_{2} \in K, x_{1} \leqslant x_{2}$. Then $x_{2} \geqslant x_{1}=x_{1} \wedge g f\left(x_{1}\right)$, thus $f\left(x_{2}\right) \leqslant f\left(x_{1}\right) \vee f\left(x_{1}\right)=f\left(x_{1}\right)$. Again, interchanging K and L, f and g, we obtain antitony of g. Let $x \in K, y \in L$. As $x \wedge g(y) \leqslant x \wedge g(y)$, we have $f(x \wedge g(y)) \leqslant f(x) \vee y$. Further, $x \wedge g(y) \leqslant x, x \wedge g(y) \leqslant g(y)$, hence $f(x \wedge g(y)) \geqslant f(x), f(x \wedge g(y)) \geqslant f g(y) \geqslant y$, so that $f(x \wedge g(y)) \in U(f(x), y)$. Altogether, $f(x \wedge g(y)) \in U(f(x), y) \cap L(f(x) \vee y)$. Analogously, $g(f(x) \wedge y) \in$ $U(x, g(y)) \cap L(x \vee g(y))$ and (f, g) is a rotation between K and L.
(3) \Leftrightarrow (4): Trivial.
21. Definition. A bounded ordered set A with two mappings \wedge and V of the power set $\mathcal{R}(A)$ of A into A is called a complete λ-lattice if it satisfies the following three conditions:
(i) If $X_{1} \subseteq X_{2} \subseteq A$, then $\wedge X_{1} \geqslant \wedge X_{2}, \vee X_{1} \leqslant \bigvee X_{2}$.
(ii) If $X \subseteq A$ has a least element x, then $\wedge X=x$.
(iii) $\bigvee X \in U(X)$ for each $X \subseteq A$.

Instead of $\bigwedge\{a, b\}$ we write $a \wedge b$ for any $a, b \in A$; similarly with V.
22. Remark. A complete λ-lattice need not be a λ-lattice with regard to the binary operations \wedge and \vee. It becomes a λ-lattice, if we add the condition (iv) If $a, b \in A, a \leqslant b$, then $a \vee b=b$.
23. Theorem. Let K, L be complete λ-lattices, $f: K \rightarrow L$ a mapping satisfying the conditions
$f(\bigvee X) \geqslant \wedge f(X)$ for each $X \subseteq K$, and
$f(x \wedge y) \geqslant f(x) \vee f(y)$ for each $x, y \in K$.
Then there exists a unique mapping $g: L \rightarrow K$ such that (f, g) is a Galois correspondence between K and L.

Proof. Define a mapping $g: L \rightarrow K$ as follows:

$$
g(y)=\bigvee\{x \in K ; f(x) \geqslant y\} \text { for any } y \in L
$$

We have $f g(y)=f(\bigvee\{x \in K ; f(x) \geqslant y\}) \geqslant \wedge\{f(x) ; x \in K, f(x) \geqslant y\} \geqslant$ $\wedge U(y)=y$ for any $y \in L$, because $\{f(x) ; x \in K, f(x) \geqslant y\} \subseteq U(y)$. Thus $f g$ is extensive. Now, let $y_{1}, y_{2} \in L, y_{1} \leqslant y_{2}$. Then

$$
\left\{x \in K ; f(x) \geqslant y_{1}\right\} \supseteq\left\{x \in K ; f(x) \geqslant y_{2}\right\}
$$

and $g\left(y_{1}\right)=\bigvee\left\{x \in K ; f(x) \geqslant y_{1}\right\} \geqslant \bigvee\left\{x \in K ; f(x) \geqslant y_{2}\right\}=g\left(y_{2}\right)$ and g is antitone. Let $x \in K$. Then $g f(x)=\bigvee\left\{x_{1} \in K ; f\left(x_{1}\right) \geqslant f(x)\right\} \geqslant x$, because
$x \in\left\{x_{1} \in K ; f\left(x_{1}\right) \geqslant f(x)\right\}$, and $g f$ is extensive. Further, let $x_{1}, x_{2} \in K, x_{1} \leqslant x_{2}$. Then $x_{1}=x_{1} \wedge x_{2}$, consequently $f\left(x_{1}\right)=f\left(x_{1} \wedge x_{2}\right) \geqslant f\left(x_{1}\right) \vee f\left(x_{2}\right) \geqslant f\left(x_{2}\right)$ and f is antitone. Therefore (f, g) is a Galois correspondence between K and L. Let (f, g^{\prime}) be a Galois correspondence between K and L as well. Then, by $3, g^{\prime}(y)=$ $g^{\prime}(y \wedge f g(y)) \geqslant g(y)$ for any $y \in L$. Similarly $g(y) \geqslant g^{\prime}(y)$ for any $y \in L$. Hence g is unique such that (f, g) is a Galois correspondence between K and L.
24. Theorem. Let K, L be complete λ-lattices, $f: K \rightarrow L$ a surjective mapping satisfying the conditions
$f(\bigvee X)=\wedge f(X)$ for any $X \subseteq K$, and
$f(x \wedge y)=f(x) \vee f(y)$ for any $x, y \in K$.
Then there exists a unique mapping $g: L \rightarrow K$ such that (f, g) is a left semirotation between K and L; moreover, $f g=\operatorname{id}_{L}$.

Proof. Define a mapping $g: L \rightarrow K$ as follows:

$$
g(y)=\bigvee\{x \in K ; f(x)=y\} \text { for any } y \in L .
$$

We have $f g(y)=f(\bigvee\{x \in K ; f(x)=y\})=\wedge\{f(x) ; x \in K, f(x)=y\}=y$. Thus $f g=\mathrm{id}_{L}$ and $f g$ is extensive. Now, let $y_{1}, y_{2} \in L, y_{1} \leqslant y_{2}$. As $y_{1}=y_{1} \wedge y_{2}=$ $f g\left(y_{1}\right) \wedge f g\left(y_{2}\right)=f\left(g\left(y_{1}\right) \vee g\left(y_{2}\right)\right)$, we obtain $g\left(y_{1}\right) \vee g\left(y_{2}\right) \in\left\{x \in K ; f(x)=y_{1}\right\}$. Hence $g\left(y_{1}\right)=\bigvee\left\{x \in K ; f(x)=y_{1}\right\} \geqslant g\left(y_{1}\right) \vee g\left(y_{2}\right) \geqslant g\left(y_{2}\right)$ and g is antitone. Let $x \in K$. Then $g f(x)=\bigvee\left\{x_{1} \in K ; f\left(x_{1}\right)=f(x)\right\} \geqslant x$, because $x \in\left\{x_{1} \in K\right.$; $\left.f\left(x_{1}\right)=f(x)\right\}$, and $g f$ is extensive. Further, let $x_{1}, x_{2} \in K, x_{1} \leqslant x_{2}$. Then $x_{1}=x_{1} \wedge x_{2}$, so that $f\left(x_{1}\right)=f\left(x_{1} \wedge x_{2}\right)=f\left(x_{1}\right) \vee f\left(x_{2}\right) \geqslant f\left(x_{2}\right)$ and f is antitone. Consequently, (f, g) is a Galois correspondence between K and L. The uniqueness of g follows from 23. By 3, we have $f(x \wedge g(y)) \in U(f(x), y), g(f(x) \wedge y) \in U(x, g(y))$ for any $x \in K, y \in L$. It remains to show that $f(x \wedge g(y)) \leqslant f(x) \vee y$ for any $x \in K$, $y \in L$. But we have $f(x \wedge g(y))=f(x) \vee f g(y)=f(x) \vee y$, and (f, g) is a left semirotation between K and L.

References

[1] M. Erné, J. Koslowski, A. Melton, G.E. Strecker: A primer on Galois connections. Papers on general topology and applications (Madison, WI, 1991), 704. Ann. New York Acad. Sci., pp. 103-125.
[2] J. Klimeš: Rotations between lattices. Math. Slovaca (Submitted).
[3] V. Snášel: λ-lattices. Thesis. Masaryk University, Brno, 1991. (In Czech.)
Author's address: Jiří Karásek, Technical University, Technická 2, 61669 Brno, Czech Republic.

