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SEVENTY YEARS OF PROFESSOR MIROSLAV FIEDLER 

ZDENĚK VAVŘÍN, Praha 

In the paper [Rl], J. Sedlacek and A. Vrba described the life and work of Professor 
Miroslav Fiedler on the occasion of his sixtieth birthday. Also, the list of M. Fiedler's 
publications was included. 

On April 7, 1996, Prof. Fiedler celebrated his seventieth birthday. We shall try 
here to continue the paper [Rl] and show that though retired since 1992, his activities 
have by no means diminished during the past ten years.1 

He still is Chief Editor of the Czechoslovak Mathematical Journal, editor of three 
other journals: Linear Algebra and Its Applications, Mathematica Slovaca, and Nu-
merische Mathematik. Since 1994, he has been chairman of the Czech National 
Committee for Mathematics. In recognition of his merits he was awarded the Hans 
Schneider ILAS (International Linear Algebra Society) Prize in 1993. 

We shall briefly describe Prof. Fiedler's scientific achievements. (The list of publi
cations below includes a few papers which were listed in [Rl] but were not published 
at that time. The numbering continues that in [Rl].) 

In the past ten years, M. Fiedler published nearly 50 papers. A vast majority of 
them concern matrix theory, in particular special classes of matrices. 

Prof. Fiedler resumed studying Hankel matrices (his first paper on this topic was 
published in 1964) and related classes, such as Toeplitz, Bezout, and Loewner ma
trices, in mid-eighties [106, 107, 109, 110, 117, 118, 121, 122, 123, 135, 140, 143]. 

While the basis of their theory was given by famous mathematicians of the end of 
the last and the beginning of this century, these matrices have become very popu
lar again since the seventies, especially due to their occurrance in linear systems 
theory. M. Fiedler (in some cases jointly with his colleague and for decades the clos
est collaborator V. Ptak) studied mutual relations and connections with associated 
polynomials and rational functions. 

1 Last year a special issue of Linear Algebra and Its Applications was dedicated to 
M. Fiedler and V. Ptak. It contains a survey of their scientific career up to now [R2]. 
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It may be surprising that Loewner matrices played a role in the solution of the 

following problem [132]: Given a polynomial ip(x) with all its roots real numbers, 

find its symmetric companion matrix (the characteristic polynomial of which equals 

<p(x)) [133], [134]. 

Another series of papers, in some cases jointly with T.L. Markham, concerned 

the classes related to M-matrices [119, 120, 125, 126, 129, 136, 159], completion 

problems [114, 116], Hadamard products of matrices [120, 124, 148, 154], and gen

eralized inverses [129, 139, 141, 151]. Several of these papers [125, 126, 136] gave an 

exhausting answer to topics studied previously by other authors. 

Let us also mention an interesting new notion introduced and studied in a recent 

joint paper of M. Fiedler and V. Ptak [156], the notion of spectral georhetric mean of 

two positive definite matrices A and B (of the same order). The spectral geometric 

mean of A, B is the matrix F (always existing and unique) which satisfies F = C AC 

and F = C~^BC~X for some positive definite matrix C. 

In graph theory, one of Prof. Fiedler's pioneering ideas was his definition of alge

braic connectivity [59] as the second smallest eigenvalue of the Laplacian matrix of 

the graph (i.e. the matrix of the quadratic form E^k ie f i f 1 ' ~~ xk)2 if G = (V, E), 

V = { 1 , . . . ,n} being the set of vertices and E the set of edges.) It is interesting to 

note that it found important applications in the numerical solution of large systems 

of linear equations as well as in the so called seriation problems. In fact, it served 

as a basis for spectral methods in both areas. It turned out that the eigenvector 

(now generally called Fiedler vector) of the Laplacian corresponding to the algebraic 

connectivity has good both the separation and ordering properties for the vertex set 

of the graph. 

Another original Fiedler's idea was to study classes of minimax problems for graphs 

([131], [137], [142]) based on minimizing (or, maximizing) various characteristics of 

a weighted graph when all weightings on edges with a constant sum are considered, 

thus obtaining absolute characteristics. In particular, an explicit formula for the 

absolute algebraic connectivity of a tree was obtained [130], 

Quite recently, Prof. Fiedler returned [144, 151] to the topic which had interested 

him decades ago — geometry of simplexes and its connection with graphs, matrices 

and resistive electrical networks. In [151], he found a simple relationship between 

the Menger matrix and the Moore-Penrose inverse of the Gram matrix of outward 

normals to the simplex (normalized in such a way that the sum of the normals is 

zero). 

In conclusion, we use the opportunity to extend to Professor Miroslav Fiedler our 

best wishes of good health, full success in his scientific work and much happiness in 

his personal life. 
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