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Abstract. This paper generalizes earlier author's results where the linear and quasilinear 
equations with constant coefficients were treated. Here the method of limit passages and 
a fixed-point theorem is used for the linear and quasilinear equations with almost periodic 
coefficients. 
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1. INTRODUCTION 

1.1. Preliminaries. One of the methods the author developed in his research 
works is presented here. This method has been inspired by S. N. Simanov's paper [9] 
and is based on the use of Cauchy integrals. Another method, not presented here, is 
based on the Fourier transform. 

1.2. Notation and definitions. We denote: N—the set of all positive integers, 
Mo—the set of all non-negative integers, R—the set of all real numbers (real axis), 
C—the set of all complex numbers (complex plane). 

If E is a non-void set and m, n are positive integers then Em denotes the Cartesian 
product E x E . . . x E of m factors and Em x n is the set of all matrices of m rows and n 
columns, the elements of which belong to E; E l x l = E1 = E. Analogously we could 
denote more-dimensional matrices. 
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If n £ N and m = (mi,...,m„) € N 0 , m! — (m'x,... ,m'n) 6 N n then the 
inequality m < m* means the system of inequalities nij < mj, 7 = 1,2,..., n. 

If VK, Af are non-void subsets of C or R and if w,£ are complex numbers then 
wM = {UJ\: \ e M}, E.+ M = {(, + n: n e M}, M + Af = {\ + fi: \ e M, IJ. e Af}, 

0 + Af = .M + 0 = 0 + 0 = 0 and S(M) stands for the smallest additive semigroup 
containing M and 5(0) = 0. 

The distance of two sets M,Ar, of a point z and a set M and of two points z,w 

in C or R, respectively, is denoted by dist[M,Af], dist[z,AT\ and dist[z,w]. 
The boundary of a set M is denoted by dM. 

If a is a positive number then by a strip or an a-strip in the complex plane we 
mean the set ir(a) = {z 6 C: | Rez| < a } . 

If 20 € C and .Re (0,oo) then K(Z0,R), K(Z0,R) and K(z0,R), respectively, denote 
an open disc, a closed disc and a circle centred at z0 with its radius R in the complex 
plane. 

For number vectors or matrices, even more-dimensional, we use the norm |.|, which 
is equal to the sum of absolute values of all coordinates of the vector or all elements 
of the matrix. 

k 

In addition to the usual symbol \~[ aj = ai a2 • • • °* f° r a product we will use the 
i = i 

1 
symbol f] a,- = a*,... ax for the product with the reversed order of factors. 

j=k 
For a vector m = (m . , . . . , m M ) e Ng , M € N, we introduce the combinatory 

number 

where \m\ = mx + ... + mu-
) (ml\)..,(mMl), 

1.3. Spaces. We will deal with functions / : R -> X, where X is one of the spaces 
E, Em , E m x n and E = R or E = C. 

We denote by C(X), CB(X) and AP(X), respectively, the space of all continuous 
functions / : R -+ X, the space of all functions from C(X) bounded on R and the 
space of all almost periodic functions from CB(X). The mean value of a function 
/ € AP(X) is denoted by M(f) or Mt{f(t)}. 

The spaces CB(X) and AP(X) are made Banach spaces (B-spaces) with the norm 
defined by | / | = sup{|/(<)|: * € R}. For k = 1 and k = 2 we will denote by Ck(X), 
CBk (X) and APk (X) the space of all functions from C(X) with continuous derivatives 
up to the order fcon R, the space of all function from Ck(X) which are bounded on 
R and have bounded derivatives up to the order k, and the space of all functions 
from CBk (X) which are almost periodic and have almost periodic derivatives up to 
the order k. 
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The spaces CBk(X) and APk(X) endowed with the norm 

ll/ll = m a x { | / | , 1/1} if fc = 1, 

Ill/Ill = m a x { | / | , l/l, 1/1} if k = 2, 

become B-spaces. 

If all elements of a matrix almost periodic function / e AP(X) are trigonometric 
polynomials then / is called a trigonometric polynomial. 

R e m a r k 1.1. The space AP(X) is the closure of the set of all trigonometric 
polynomials from CB(X). Analogously APk(X) and CBk(X),k = 1,2. 

1.4. Almost periodic functions. Any almost periodic function from AP(X) 
has a representation by a Fourier (trigonometric) series which is uniquely determined 
up to the order of summation. By A/ we denote the set of all Fourier exponents of 
an almost periodic function / and the set iA/ will be called the spectrum of / . 

If / is an almost periodic function with the Fourier series ]>Z vW exp (iAi), A € A/, 
A 

then we denote £) ( / ) = Y, \fW\, ^ e A/. If the Fourier series of a function / 
A 

converges absolutely then £ ( / ) < oo. 
For any function from AP(X) there exists a sequence of the so-called Bochner-

Fejer approximation (trigonometric) polynomials Bm, m = 1,2,... of the function / 
with their spectra contained in iA/ and uniformly convergent to / on R and moreover 
E(-*m) < £ ( / ) , m = 1,2,..., (see [1], [5], [7], [8]). 

1.5. Equations with constant coefficients. The basic problem the author 
dealt with in his paper [6], is to solve the differential equations 

(1.1) i(t)=a0x(t) + b0x(t~T) + f(t), 

where T is a positive constant, the so-called time lag, a0,b0 belong to C n X n , where 
n e N, / e AP^C"* 1 ) and x is an unknown function from Cl(Cnxl). An im­
portant role is played by the properties of the matrix function $(z) ~ zE - a0 ~ 
b0 exp (-ZT), z £ C , where E = En is the unit matrix from Cnxn, and by the proper­
ties of its determinant A(z) = det$(z). This determinant is called the characteristic 
quasipolynomial and the equation A(z) = 0 is called the characteristic equation of 
the differential equation (1.1). 

Under a(A(z)) we understand the set of all roots of the characteristic quasipo­
lynomial A(z). The quasipolynomial is a transcendent entire function (in general) 
of complex variable z and, consequently, the quasipolynomial A(z) has an infinite 
number of roots without any finite limit point. Each strip 7r(a),a > 0, contains only 
a finite number of roots of the characteristic quasipolynomial A(z) because $(z)z~1 
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is arbitrarily close to the unit matrix E in the strip it (a) for z sufficiently large (in 
absolute value). Hence the matrix <E>(z) is a regular one for such z. Consequently, 
the positive number a can be chosen so that the finite set it(2a)ria(A(z)) lies on the 
imaginary axis of the complex plane. If n(2a) n a(/X(z)) ^ 0 and this set contains 
just the points i f i , . . . ,ifj0, jo £ N, then we set 0 = {£j — & : j,fc = 1 , . . . , Jo}> and 
if 7r(2a) n a(A(z)) = 0, then we set 9 = 0. 

1.6. Favard's theorem. In the sequel we will need 

Theorem 1.1. (Favard) If a function f € AP(Cmxn),m,n € N, and if Af n 
(—d,d) — 0 where d is a positive number, then the primitive function F(t) = 
J0 / (s) ds, t 6 R, is an almost periodic function, too, and the estimate 

(1.2) \F-M(F)\<Md\f\ 

M{F)= lim 1 / F(s)ds 
r-*oo i jp 

is the mean vaiue of the almost periodic function F and Md i s a positive constant 
depending on d only. 

The proof of Favard's theorem was published in [1], [2], [5], [7], [8]. 

2. EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS 

2.1. Basic equations. In the sequel we study the differential equations 

(2.1) x(t) = a0x(t) + b0x(t - T) + a(t)x(t) + b(t)x(t - T) + f(t) 

where r is a positive constant, o0,bo G Cnxn, a,b e AP1(C"X"), for which X)(°) < 
°o, XX&) < °° a n d / £ /1P1(C"X1), n £ N. Our aim is to prove the existence and 
uniqueness of an almost periodic solution of Equation (2.1) the spectrum of which 
is contained in a certain apriori given set iA,A C R. Such a solution is called an 
almost periodic A-solution. 

2.2. Formal solutions. First, we solve the given equation in a formal manner. 
This means that we are looking for the so-called formal solution Xf represented by 
a trigonometric series with coefficients from C" x l which formally satisfies Equation 
(2.1). 

For trigonometric series we introduce the so-called formal arithmetic, differential 
and integral operations, the formal shift and the formal mean value. The formality 
of these operations consists in the fact that they are performed without any regard 

354 



to the convergence of the trigonometric series and without any justification (as con­
cerns the convergence) of the operations performed. Hence, not only the resulting 
trigonometric series but also the series entering into the formal operations need not 
be convergent. The coefficients of the trigonometric series entering into particular 
formal operations are supposed to be elements of normed linear spaces such that the 
operations in question can be accomplished. 

Given a trigonometric series 

(2.2) x{t)~J^c(u)exp{wt), u 6 A, 

where A is an at most countable set of real numbers, then iA is called the spectrum 
of the trigonometric series (2.2), Further, we denote 

V>) = Y>M|, ,/€ A, 

so that the inequality ^2(x) < oo denotes the absolute convergence of the trigono­
metric series x. 

In the case A = 0 the associated trigonometric series is equal to zero. If we are 
given the trigonometric series (2.2) and A C A C R, where A is an at most countable 
set, then for x we use also the representation 

x(t) ~ V c(u) exp (itu), v e A, 

in which c(u) = 0 for v 6 A \ A. 
Let two trigonometric series 

a(t) ~ VJa(A)exp(iAt), A e A , , b(t) ~ VJ/3(/i)exp(i,ut), /J- G A2, 

be given where the sets A3- C R, j = 1,2, are at most countable. If a,f3 are two 
complex numbers and s e R then we define formal operations 

i) the formal linear combination (formal sum, difference and scalar multiple) 

aa(t) + /3b(t) ~ VJ [a.a(u) + P./3(u)} exp (iut), ueAiU A2, 

where a(u) = 0 for v f Ai, /3(u) = 0 for u $ A2; 
ii) the formal product 

a(t)b(t) ~ J2 \ J2 aW^r') e x p (wt^ ^ € Ai + A2, A e Ai, t j eA j ; 



iii) the formal derivative (term-by-term differentiation) 

a(t) ~ VJiAa(A)exp(iAr.), A e A j ; 

iv) the formal primitive trigonometric series (term-by-term integration) 

A(t) = I a(t)dt ~ A0 + VJ— a(A)exp(iAt), A e A j , A0 e C " x l , 

under the assumption that 0 $ Ai; 

v) the formal shift (for a given real number s) 

a(t + s) ~ VJ [a(A) exp (iAs)] exp (iAt), A e A t; 

vi) the formal mean value of a trigonometric series defined to be its absolute term. 

R e m a r k 2.1. Let us note that under the assumption of the appropriate con­
vergence of the trigonometric series entering into the formal operations these formal 
operations coincide with the non-formal ones. 

In connection with the formal operations we speak about a formal almost peri­
odic solution (A-solution) of the almost periodic differential Equation (2.1). The 
trigonometric series (2.2) is called a formal almost periodic A-solution of Equation 
(2.1) if this trigonometric series solves Equation (2.1) formally, i.e. after inserting the 
trigonometric series representing a, b, f, x, x into Equation (2.1) and after having 
formally performed the indicated operations the right and left sides of the equation 
give rise to trigonometric series the spectra of which are contained in iA and for ev­
ery v 6 A the coefficients at exp(ii4) on both sides are equal. Clearly, every almost 
periodic solution (A-solution) of Equation (2.1) is also its formal almost periodic 
solution (A-solution). The contrary is not true. 

2.3. Construction of a formal solution. We begin with the case when a, 6 
and / are trigonometric polynomials. 

Theorem 2.1 . Ifia Equation (2.1) a, b and f are trigoaometric polynomials and 
if (see at the ead 1.5. concerning the set 8) 

(2.3) A = inf (Att U A&) > 0, 

f dist[0, S(A„ U Ai,)] > 0 for 9 ± 0, 
2.4) do = I 

. [2 for (9 = 0, 

(2.5) d = dist[iA,cr(A(z))]>0, 
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where A = A/ + S(Att UAjU {0}), then there exists a unique formal almost periodic 

A-solutionXf of Equation (2.1). 

P r o o f . Let M 6 N, N € N and let 

M 

a(t) = VJa(^)exp( i / i f c t ) . 

w 
6W = VJ /3 (^ )exp( i^ t ) , 

k=i 

/ ( . ) = Y>(A)exp(iAt), A 6 A,. 

Further, let the sought formal solution x; have the representation 

Xf(t) ~ Vc(cr)exp(icrt), cr € A, 

so that its formal derivative £/ has the representation 

Xf(t) ~ V^iffc(cr)exp(icrt), cr 6 A. 

Substituting formally into Equation (2.1) and equating the corresponding coefficients 
of the exponential functions exp(iut) we get for the coefficients c(a) a system of 
infinitely many linear algebraic equations 

$(ia)c(cr) = ^Pa(fi)c(a - ft) + VJ(i(v)c(a - */)exp(-i(cr - V)T) 

(2.6) " 

A 

where p e A0, v e A6, cr e A, cr - /i e A, a - v e A, A 6 A/, where <5A,T = 0 for A ^ cr 

and <5ACT = 1 for A = a• By assumptions (2,3), (2.4), (2.5) the matrix $(2) is regular 

for z e iA so that for every a e A we obtain from (2.6) a unique expression 

c(a) = Ф l (icr) V^ a(м) c(°" _ ß) + J Z Ж ^ M ^ ~~ ") Є X P (-K'7 - ^ ) r ) 

(2.7) џ 

+ £<W(A) . 

Thus, the uniqueness of the formal almost periodic A-solution Xf is ensured, pro­

vided it exists. To prove its existence we complete the solution of the system (2.7). 

Every a e A can be expressed in the form cr = A + Sai = A + mp, + nv, where A 6 A/, 



m = ( m . i , . . . , m M ) e N 0

x M , n = (nu ... ,nN) e N 0

x W , S = (m,n). 

Such an expression for a e K need not be unique, but owing to the fact that the sets 

A0, At, A/ are finite the number of such expressions is also only finite. This makes 

it possible to solve completely the system (2.7). In the system we shall distinguish 

the coefficients e(A + SO) and c(X' + s'uj), where A, A' 6 A/ and s,s' e N 0

x ( M + ' v ) , 

and also the equations for them if A ̂  A' or s i=- s' even if A + SO = X' + S'LO. We say 

that a' = A' + s'O is lower than a = A + SO if A' = A and S' ^ S, S' / s. 

For every A 6 A/ we formally solve Equation (2.1)—for simplicity and lucidity— 

for a "harmonic" ip(X) exp (iAi) separately, i.e. for /(<) = ip(X)exp(iXt), and by x,\ 

we denote the corresponding formal almost periodic A-solution. Their formal sum 

for A e A/ gives then a formal almost periodic A-solution Xf. 

Hence, A 6 A/ being fixed we consider the subsystem of the system (2.7) with 

a e X + 5(A0 U At U {0}) C A. Let s 6 N 0

x ( M + A , ) be fixed; substituting successively 

from the equations for coefficients c(a') where a1 is lower than a = X + SO into the 

equation for c(A + SCO) we obtain such an equation for c(A + SO) which contains only 

c(A) from all coefficients c(a') where a' is lower than a = X + SO. The number of all 

possible different "descents" from A + SO to A is 

1*1 \ W 
(•m1!)...(том!)(пi!)--.(nлf!)' 

Every such "descent" is accomplished by a successive substitution and is uniquely 

defined by an increasing sequence P = P(s) of vectors from N0

 + 

0 = P 0 ^ Px s? • • • «J P\s\ = s, 

which satisfies \P5 - Pj~i\ = 1, j = 1,...,|S|, while Pj = (Qj,Rj), Qj e N 0

x M , 

Rj € N 0
x i v , j = 0 , 1 , . . . , |s|. To every such sequence P = P(s) for a fixed A we 

can associate in a unique manner a sequence p = p(s) of vectors po,Pi,- • • ,P\s\ 

from f^x(M+w> satisfying po = 0, |ft-| = 1, j = l , . . . , | s | , and PA = E f t ' . ^ = 
3=0 

0 , 1 , . . . , |S|, while pj = («,-, f3-), 4,- e N j x M , f̂  e Nj x / V , i = 0 , 1 , . . . , |s|. This means 
that pj = Pj - Pj-i, qj = Qj - Qj - i , fj = Rj - Rj-i, j = 1 , . . . , |s|. Let us denote 
by cp(X + SO) the part of the right-hand side of Equation (2.7) for c(X + SO) obtained 
by the successive substitution using the sequence P = P(S). This procedure yields 
ep(A + SO) = <6p(iA)y?(A), where 

o 

*H~)= I I ^H^ + iPjtohiPjO), 



7(0) = 1, l(pjuj) = a(q}p) + fl(fjP) exp (-IPJ-IOT), j = 1 , . . . , |s|, a(0) = 0,13(0) = 
0. We obtain then by a formal sum 

e(A + SO) = VJ cp(A + su) = VJ $p(iA)</9(A) 

where the summation is over all mutually different sequences P = P(s) with a fixed 
A e A/ and a fixed S e M0

X ( M + W ) . 

Thus, for every "harmonic'VM e xP (iAi), A e A/, we get a formal almost periodic 
A-solution 

(2.8) xx(t) -Yin 'M'AMA) exp (i(A + sw)t), 
s>6 P 

and the formal sum of these solutions yields a formal almost periodic A-solution of 
Equation (2.1) 

The proof of Theorem 2.1. is complete. D 

3. ALMOST PERIODIC SOLUTIONS 

3.1. Closed regions Gk, Gp. In the sequel we will take up the case 9 ^ 0 
but the case 0 = 0 when A(z) has no purely imaginary roots would be even easier. 
Hence, let i£i, •••,ifj„, jo £ ^> be all mutually different purely imaginary roots in 
C of the quasipolynomial A(z) and let gi,..., Qja be their multiplicities. We pick a 
positive constant S = \mm{a,A,do,d,d^,T,2}, where d^ = min{|£j — ̂ | : j ^ k; 
j,k = 1 , . . . , jo} for jo > 1 and d$ = 2 for jo = 1 or 0 = 0 and where a positive number 
a is chosen so that 7r(2a)n<r(A(,z)) = {i£j, . . . ,i£,-„} for 9 ^ 0 or ir(2a)rio-(A(«)) = 0 
for 0 = 0. 

Further, unless stated otherwise, we assume that we are given a fixed vector s and 
a fixed sequence of vectors P = P(s). Recall that K(Z,S) and K(Z,S) are the open 
disc and the closed disc centred at z with their radius S in the complex plane C. In 
C we construct closed regions 

jo 

Gk = ix(a) \ ( J nfej - iPku\ S), fc = 0 , 1 , . . . , |s|, 
3 = 1 



and we denote by Gp their intersection, so that 

W I I JO 

GP =f]Gk= 7r(a) \ \J \J K fe - iPkw; 5). 
k=0 k=Oj=l 

Each of the closed regions Gk is a shift of the region G0 in the complex plane by PkO 
units downward, k = 0 , 1 , . . . , |s|. Since the matrix function $(z) introduced in 1.5. 
is analytic and regular on Go, the matrix function Q(z+iPku) is analytic and regular 
on Gk and the same property is possessed also by §~~l (z + iPkQ),k = 0 , 1 , . . . , |s|. 
It follows that the matrix function <kp(z) is analytic on the closed region Gp. 

In the case 6 = 0 the boundary Lp = dGp of the closed region Gp is formed by two 
lines | Rez| = a which form the boundary of the strip 7r(a). For 0 ^ 0 the boundary 
Lp = dGp is formed by two lines | Rez| = a and by a circle Kjik = K(i£j -iPkCS; S), 
j = 1 , . . . , jo; k = 0 , 1 , . . . |S|. In virtue of the assumptions of Theorem 2.1 and of 
the choice of the positive number S it is ensured for 0 ^ 0 that no point z 6 K^k 

belongs to any disc Ki>m. Namely, the distance between the point z and the center 
w = i£,i — iPmQ of the open disc »c,im is greater than or equal to the radius S of this 
disc. We have 

dist[z, w] = \z — if( + \PmCo\ 

= \z - i& + iPkO + i(0 - 6 + Fm - Pk)G)\ 

> \Zj - 6 + (Pm ~ PkM -\Z- i& + iPkC0\. 

Since \z — ifj + \PkCo\ = S we have for (Pm — Pk)Co jt 0 the inequality dist[z, w) ^ 
de — S ^ S and for j ^ I and (Pk - Pm)Q = 0 the inequality dist[z,u>] > d£ - S ^ 6 
and for j = I and (Pk - Pm)C0 = 0 the equality dist[z,u>] = \z — i£,- + iPt,u)| = (5 
because of w = i£,- - iP,tuJ, j , i = 1, . . . ,j0; k,in = 0,1,. . . |s|. 

3.2. Outline of further investigation. We attempt to prove that the obtained 
formal A-solution is a A-solution of Equation (2.1). The approach could be the 
following: first, to prove the absolute and consequently also uniform convergence of 
the trigonometric series x\ on R for every A € Af, see (2.8). After inserting into 
Equation (2.1) to prove the same for the trigonometric series i\ which is the formal 
derivative of x\. The formal solution x\ then becomes an almost periodic A-solution 
of Equation (2.1) for f(t) = <p(\) exp (i\t),t G R. It follows that xf = ]T x\, A e A/, 

A 

is an almost periodic A-solution of Equation (2,1), (A/ is a finite set). 
Instead of this, for better economy, we shall prove directly a certain absolute and 

uniform convergence on R of the trigonometric series 

t3-1) E [ E E *H-%»(A) exp (iAt)] exp (iffiM), 



which arises by a rearrangement of the trigonometric series Xf. Namely, the conver­
gence of the series 

(3.2) ££|X>P(iAMA)exp(iA.)| 

will be considered in the sequel. In the case of the one-point spectrum for f(t) = 
(p(X)exp(i\t), t e R when xs and x\ coincide and x\ coincides with (3.1), the 
convergence of the series (3.2) ensures the absolute and uniform convergence of x\. 

Eventually, with the use of passing to limits we proceed to the case when a, b and 
/ are not trigonometric polynomials. 

3.3. Integral representat ion. For a given vector s we can choose a sufficiently 
large positive number R such that all circles Kj,i, j = 1, • . . , jo; / = 0 , . . . , |s| belong 
to the interior of the closed region it (a) D S(0; R) the boundary of which we denote 
by LR. 

Now, we use the Cauchy integral for the expression inside the norm in the series 
(3.2). If we denote by LR(P) the boundary of the closed region Gp n re(0; R) then 

Y"J 4>p(iAV(A) exp (iAt) = ^<f $P(z)F(t, z) dz 

- Y.J2 r 7 f *^(~)-F(*>z) d * > A G A/> 

(3.3) = ÒJ *pWҒ(i,г)tb 

'Kj.i 

where 

(3.4) j ' ( t , g ) = V J e ^ ) _ ( i ^ ) y ( A ) , A e A ; , ten. 

The function F has the following properties: 

i) 

(3.5) lim \F(t,z)\ = Q 

uniformly with respect to t € R. This implies the existence of a constant R' 

such that the inequality 

(3.6) \F(t,z)\Hl 



holds uniformly with respect to t 6 R for all z e C, \z\ > R'. 

ii) Denoting | | / | | = max{|/ | , | / |} the estimate 

(3.7) |F(i,-)|$i±£||/|| 

holds uniformly with respect to t G R for all z € C for which | Rez| = a. Indeed, 
for | Rez| ?= 0 the equalities 

exp (iAí) 
- ., = exp 

z - ìA 

= exp 

/
ooRez 

exp ((ІA - z)s) ås 

/•ooReг 

(Ш) / e x p ( ( i Л - ф ) d s , 
!0 

F(t,z)- f(t + s)exp(-zs)ds 
Jo 
i r r R e 2 • 1 

= - / « + / / ( . + s)exp(-*«)ds 
2 1 L Jo J 

are valid. 

3.4. Est imates . Assume that 0 =J= 0. Owing to the choice of positive numbers 

a, <5 and to the properties of the matrix $(z) and the quasipolynomial A(z) there 

exists a positive constant Cj such that the inequalities 

i r ' W K C f o r z e C o 

| # - 1 ( z ) K C 1 | z | - l f o r z e G 0 \ { 0 } 

are valid. If we pass to the limit for R -f oo on the right-hand side of the equality 

(3.3) we get the equality 

1 / /—-ct+ioo /•«+ioo\ 

_T_ *p(iA)V(A) exp (iAi) = _ - _ ( - / _ _ . + J ^ J §P(z)F(t, z) dz 

(3.9) A ., ,„ 

- E E w f *p(~W,*)dz, A£A;. 
i = l i = 0 */K'-t 

This can be seen by taking into account the estimates (3.6) and (3.7) which imply 

the absolute convergence of the improper integrals on the right-hand side in (3.9) 

and the convergence to zero uniformly with respect to t € R for R -+ oo of integrals 

over the arcs of the circle K(0; R) lying in the a-strip. 

The quasipolynomial A(z) may be expressed in the form A(z) = (z - i^j)e'Aj(z) 

where A-(z) ?= 0 for z € £(.£,-;<$), j = 1 , . . . ,io- Hence, the inverse matrix $ _ 1 may 

362 



be expressed in the form * _ 1 ( ~ ) = (z ~ iij)~ejTj(z), where Vj(z) = AJ1(z)^(z), 

j = 1,... ,j0, and where $(z) is the matrix whose elements with subscripts k, I are 

equal to the algebraic complements of $(z) with subscripts /, k: k, I = 1,..., n. The 

matrix F,- is analytic in the closed disc a(i^;S), j = l,...,j0. According to this 

decomposition and in view of 

-'(*) = -^-*(z)=E-(-T)boexp(-ZT), 

* ( A ) W = - j i * ^ ) = -(-r)Xexp (-ZT), h = 2,3,... 

it is possible to choose the already defined constant Ci large enough so that besides 

the estimates (3.7) also the following ones are true: 

K S - W ' I < C\ for z e G0, 

(3.10) [ ( r ' W J ^ K C i l z l - 1 f o r « 6 G 0 \ { 0 } , 

for j = 1,..., j 0 ; h = 0,1, . . . ,e, where g = max{#i ,ft0}-

Lemma 3.1. The magnitudes of the integrals 

Iij(v) = -~f< iP(z)F(t,z)4z 

are estimated by 

l а д ř ) к a Л ; l ) f Й 2 ! = ± i M ) 

l f c = l •* * = 1 

j = l,.. -jo; 1 = 0,1,..., \§\, where positive constants L, Md do not depend on s and 

P(s), either. 

P r o o f . Notice that the development 

7~1\ ~ iA + iP,Q - i& f-__ îA + iPiO) - i£j ' 



is valid for arbitrary A e A/ and z 6 Kj,\ because (see (2.5)) 

dist[iA + iP,w; i&] = |iA + iPiw - i£ \ J> d > 8 - \z + iPiio - i^\, 

i = l , . . . , i o ; l = 0 , l , . . . , | s | . 

Next, let us recall the already verified fact that the discs KJJ do not intersect, j = 
1, . . . jo; I = 0 , 1 , . . . , \s\. For economy in writing we will use the notation 

o 
<I>pj,i(z) = J J i>kj,i(z)-y(pkuj), where 

fc=|-i 

**j,.(~) = (* _ I (~ +il5*-5))1~4" (r^(- +iP| tD)) f e 

(<5W = 0 for fc T̂  i and <5H = 1 for k = i) so that 

<SP(z) = (z + iP,u> - ifc)"«*jy,,(~), J = 1, • • • ,io; M = 0 ,1 , . . ., |s|. 

(The function $pj,i(z) is analytic in the closed ring Kj,i.) We employ this expression 
when evaluating the integrals 

Ii-iiP) = ~hfK **(-)*•('.-)<-* 
= _y±I jLiA^l ^(A)exp(iAi) 

Z - 2*1 & . , (z + iPjcD - i&)«(- - iA) ̂  j l j 

„ ~ 1 / (z + iPtiD-i^y^p^^dz 
= E E S i ; j (DT+IT^TF^^ 

y ^ T ^ O ^ - ^ ^ - p exp(iAf) 

2* (ei-ft-D! -^(iA + iP,w-4J-)
h+lW 

= exp(i(fc - P,u))t) VJ P j-' f />; - ^ -gj,i,h(t), A 6 A/, 
(Qj - h)\ 

n (t\ \ - " « p ( i ( A + P . . - - f e ) . ) 
».'.*(') = 2 . (iA + i p ^ - i i T p r - ^ ) - A e A , , 

and . = 0 , 1 , . . . , |s|; h = 0 , 1 , . . .,£,-; j = 1,.. .,j0. 

The almost periodic function gj,i,h (being a trigonometric polynomial) is a primi­
tive function to the almost periodic function gj,i,h-i while their spectra have positive 
distance from the origin in the complex plane since the assumption (2.5) ensures 
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|A + Pj(5 - Jil > d > 0. Using repeatedly the estimate from the Favard theorem we 

obtain inequalities 

\Hi,h\ < Mi\gj,,,0\ = M* | / | s: M t?||/| |, 

h.= 1 , . . . , Qf, i = 1 , . . . , i 0 ; / = 0 , 1 . . . , |s|. Denoting by L the smallest non-negative 

integer satisfying the system of inequalities (for 9 ^ 0. otherwise we set L = 0) 

L A - & I X ) , i = l , . . . , i o , 

and using the estimates (3.10) we get the inequalities 

l*l'i,,(i£i-ilV')l = |rf' ml^C, for fc = /, 

l*»:hi,i(i& -iJP*w)| = |(*-»(ifc - i P ^ + iP f co)) ( , , ) | ^ Ci 

= f - | ^ < ^ ^o<|fc-/Ki, 
1*11/(ifí - i^i-5)| = K*^1 (ifí - î iW + -Ptw)) 

Ci ^ _ ^ __ C І 

" &• + (P* - P.)G| " | (P* - P,)u>| -LA + (LA - |fc|) 

Cx L+l L + \ 
"" | f c - / | A - L A "• |fc-/|A -1 '" |fc-/|25 x 

for | fc-/ | > L , /i = 0 , . . . , e i ; i = 1, •••Jo; fc,/ = 0, l , . . . , | s | . 

Let us consider vectors h = (ho, hi,... ,h\s\) 6 N 0

x ^ s ' + i ^ and let h be a non-

negative integer. We have 

\s\ 

\*%M - i^)l « E I I l*ij,!(i& - i|5^)l' l̂ »°)l 
ih |=h*=0 

<r 2 M ' ? ' C l r r (£ + i)Cil7(i>*g)l 
H 25 Í ! ( | S | - / ) ! _ ! _ 

C_ / | 5 | \ fl- 2fc(L + l ) C 1 | 7 ( ? ^ ) | 

|S|! V / j M 2Í 

/i = 0 , 1 , . . . ,Qf, j = 1 , . . . , jo; M = 0 , 1 , . . . , |.s|, since 

E ( ' J I ) = (W + 1 ) ^ 2 ' 1 

|h|=h 



Setting e = max{.i, • • • > £?„} we get the estimates 

e> j 

14^)1 *s £ (-pÂ)!!*^,/^ - iPia))l • I*.'-*' 

<§('?) E(2Mrf)"||/ll ft 12*^+1)0,17^] 
' ' ' v ' h=i fc=i 

^ |i§M('f ) É(2M„)h|l/llli .2 e( i + 1)cilT(P* 
h = l fc=l 

Since 

M r M -I W 

(3,ii) n ww3)! = n(ia(»)Dmi nd^"*)!)"'' 
*=i ufc=i j fc=i 

where s = (m,,n),m = (mi , . . . ,%) , n = («i,.. • ,n^), Lemma 3.1 is proved. D 

Lemma 3.2. The improper integrals 

I-(P) + I+(P) = ± ^ l^*100 + ja*'00yp(z)F(t,z)dz 

converge absolutely and the following estimate is valid: 

i/.(p)+/+(P)i * i ^ c j n ( - ^ i ^ r l f n ^ l lAh"'1 lmi 
ufc=i j ' I* 

|5| = 0,1,. . . ; a*=a(Mfc), * = 1,...,M; /3k = fi(i>k), k = l,...,N. 

Proof. We distinguish two cases: |s| = 0 and \s\ > 0. First, we consider |S| = 0 
when (i_ = I-(6),I+ = I+(6)) 

l̂  + ̂ l<|/-l + | / + l < ^ 1 £ ( - J i ^ + i-rpr-.)^-11/11 

= - ^ C _ | | / | | . az 

Now, let us consider |s| > 0. It, suffices to estimate the magnitude of the improper 
integral I+ (P) since the estimate for the magnitude of I_ (P) can be obtained anal­
ogously with the same result: 

|j+(p)i=_y [+'°° t^w*'11) dz\ ̂  i S /~|#p(a+iv)| dv •,if n-



The inequality \a + iv\ >• (a + |n|)/\/2 holds true clearly for every v e R so that 
according to the estimate (3.8) we get the inequality 

m 
\<i>p(a + iv)\<Y[\1^1{a + i(v + pP))\\'r(PP)\ 

j=0 

<V2C1\flV2C1Mp,Q)\}f[7--J-L 
) a + \v + PjQ\ 

We split the improper integral into the sum of three integrals 

J-oc J-oo J-ss Jo 

and estimate the magnitude of each term separately. In virtue of the choice of the 
positive constant 5 (see at the beginning of 3.1.) one easily finds that 

i 
|5|!(2đ)l' 

W __ ч - 1 , 0 0 , W 

Ţ[(a + ÌPjш + v\)) dv = Г J > ' 
j=0 ' J° S'=0 

(š-PЛӣ + v) 

^ |5|!(2tf)l»r 

Let us note that the expression WJJ = a + \(Pj — Pi)CJ + v\ satisfies the relations 

%Uj,i = a + (Pi- Pj)u> -v>.(l- j)25 for 0 < j < I - 1, 

Wjj = a + piQ — v for j = I - I, 

Wjj = a + v for j = I, 

Wjli = a + (Pj - Pi)w + v>-(j -1 + 1)26 for j > I, 

for 0 ^ v < piQ; j , I = 0 , 1 , . . . , \s\. Further, let us note that 

(3.13) / 
Jo 

2Sdv 2Sp,ú) 26 

(a + v)(a + piш — v)^ a(a + piш) a 



since (a + v)(a + piu - v) > a(a + piu) for 0 <_ v < piu for / = 0 , 1 , . . . , |s|. Using 

(3.12) and (3.13) we obtain the desired estimate 

ro / W \ - l 1*1 y - P , . ^ / 1*1 \ - i 

M E M d"=E/p_ (n-i.o) d« 
Ifl rp,0 / Ifl \ - 1 

=Ei (EH ^ 
(=1 •/0 v j = 0 

< y \ 1 /•*'" 2<Sdi> 
"" £ f l!(|S| - « + 1)!(25)IJI jo (a + v)(a + ptu - u) 

мE " (|g| + 1)!(2<5)W ^ \ I ) (|3| + 1)!(2*)W 

Summing up the above estimates we get the inequality 

rfrrt ,n - A V ' J ^ 2(|s| + l) + 2l5l+i 2 

so that 

l ^ < K . ^ f i ^ i b _ _ ! l , „_,,_ 

The same estimate is valid for | /_(P) | . Because of the inequality 2\/2/TC < 1 and 

owing to (3.11) the validity of the inequality in Lemma 3.2 is established. D 

3.5. Almost periodic solutions. Now we show that the obtained formal solu­

tion is an almost periodic solution of Equation (2.1). 

Theorem 3.3. The formal almost periodic A-solution Xf from Theorem 2.1, is 

an almost periodic A-solution of Equation (2.1). Moreover, it is unique and satisfies 

the estimate 

(3.14) \\xf\\ <£ 4 | / | | 

where the positive constant A depends only on oo, bo, d, dg, A, T, 5, T where 

S = £ 1-001 = _ » , M e A0; T = £ \0(V)\ = 2(6), f € A». 

P r o o f . With the aid of the estimates from Lemmas 3.1 and 3.2 for the magni­

tudes of the integrals /,,., I„(P), I+(P) we shall prove the convergence of the series 



(3.2), which yields the absolute and uniform convergence with respect to t € R of 

the trigonometric series xf. 

I E C P ( A + S-)exp(iAt)| sj \UP) + I+(P)\ + E E ViAP)\ 
' A ' i = i ( = 0 

< £iii fii \1±SL rr 2e(i: + 1)cifei 
" IC^L «2 / i * 

h=l j= l J 

1 I 3 = 1 

where 7;- = 7(p,-w)> j = 1, • • •, |s|; C2 = ^ ? + i o 2 (2Md)h and the positive constant 
/>=i 

M<j depends only on d and is defined by Theorem 1.1. This implies 

£ E c ИA + ^)exp(iAt)k >J ^ i i я i l ľ 
p I л I \ * / I5!- í = , 

1 /2в(L + l ) C , | Љ Ң " f c x T T 

M n * ! v 

and the convergence of the series (3.2) follows since 

E E E c p ( A + s a ^ e x p (* ( л + S ű ) *) 
sЏÕ P i Л ' 

= VJ У2 E C p ( Л + Sö) exp(iAí) 

1 /2<ҶЬ + l ) C i M 

SŽÕ lk=l k 

= dCгЦ/Цexp (2«(L + l)Ci(S + Г)/ í ) . 



If we denote A = CXC2 exp (2^(L + \)CX(S + T)/6) then |z / | < 4 | | / | | . Inserting into 
Equation (2.1) we get 

\x}\ ^ (|ao| + |60| + \a\ + |6|)|x/| + | / | s: [(|a0| + |60| + S + T ) l + 1]| | / | | . 

Setting A = (|aol + \bo\ + S + T)A +1 we conclude that the estimate (3.14) holds. • 

Corollary 3.4. Let A1; A2 be two non-void sets of real numbers and let S, T be 
two positive constants. If a, b, f from Equation (2.1) are trigonometric polynomials 
with A/ C Ax, Aa C A2, Ab c A2 and £ ( a ) sj S, £(&) sC T and if 

(3.15) A ' = i n f A 2 > 0 , 

(316) f d i B t M ( A , ) ] > 0 for^0, 

I 2 for 0 = 0, 
(3.17) d' = dist [iA'; a(A(z))] > 0, 

whereA' = Ai+S(A2U{0}), then there exists exactly one almost periodic A' -solution 
Xf of Equation (2.1). This solution satisfies the estimate (3.14) where the positive 
constant A depends only on ao, i>o, A', d'e, d', r, S, T. 

P r o o f . The existence of an almost periodic A'-solution Xf follows from Theorem 
3.3 which ensures the existence of an almost periodic A-solution where A = A/ + 
S(Att U At U {0}), so that A C A' and an almost periodic A-solution is also an almost 
periodic A'-solution. 

The uniqueness of an almost periodic A'-solution follows from the fact that the 
system (2.7) for coefficients c(<x) for <x £ A' coincides with the system (2.7) for cr e A 
since a(p) = 0 for /J e A2 \ Aa and fi(v) = 0 for v 6 A2 \ Aj and ip(\) = 0 for 
A e A i \ A / . 

The construction of the constant A is the same as before with the only exception 
that the constants A, dg, d are replaced by the constants A', d'e, d!, respectively, for 
which it is apparent that A' ^ A, d'e ^ do, d' ^ d so that the constant A could at 
worst increase. • 

R e m a r k 3.5. Corollary 3.4 ensures the validity of the estimate (3.14) with a 
constant A common for all almost periodic A'-solutions xj of Equation (2.1) of the 
whole class of trigonometric polynomials a, 6, / from Corollary 3.4. 

3.6. Limit passages. The conclusions obtained under the assumption that a, 6, 
/ are trigonometric polynomials remain valid even under more general assumptions. 

Theorem 3.6. If in Equation (2.1) a, b are trigonometric polynomials and / is an 
almost periodic function with an almost periodic derivative f and if the conditions 



(2.3), (2.4), (2.5) from Theorem 2.1 are MSUed then Equation (2.1) has exactly one 
almost periodic A-solution Xf and this solution satisfies the estimate (3.14). 

R e m a r k 3.7. Equation (2.1) may admit infinitely many almost periodic solu­
tions but only one of them has its spectrum contained in iA (hence is an almost 
periodic A-solution). 

P r o o f of T h e o r e m 3.6. There exists a sequence of Bochner-Fejer approx­
imation polynomials Bm, m = 1,2,.., of the function / (with spectra contained 
in iA/) uniformly convergent to / on U such that the sequence of derivatives Bm, 
m = 1,2,... forms a sequence of Bochner-Fejer approximation polynomials of the 
almost periodic function / which converges uniformly on R to / . 

If we choose Aj = A/, A2 = AB U Aj, then A' = A and for Equation (2,1) with 
/ = Bm we have satisfied the assumptions from Corollary 3.4 which coincide in this 
case with the assumptions (2.3), (2.4), (2.5), m = 1,2,.... The equation x(t) = 
a0x(t) + b0x(t - T) + a(t)x(t) + b(t)x(t - r) + Bm(t) has exactly one almost periodic 
A-solution xm and this solution satisfies the estimate ||xm | | ^ j4||Bm | |, m = 1,2,.... 
Since the spectrum of the trigonometric polynomial Bm+k - Bm is contained in iA/, 
the equation x(t) = a0x(t) + b0x(t-r) + a(t)x(t) + b(t)x(t-T) + Bm+k(t) - B m ( t ) has 
also exactly one almost periodic A-solution, namely xm+k - xm, and the estimate 
||xm+,t - xm\\ ^ A\\Bm+k - Bm\\ holds ; m, k = 1,2,.... In virtue of the uniform 
convergence of the sequences of trigonometric polynomials J3m and Bm to the almost 
periodic functions / and / , respectively, it is readily seen that the sequences of almost 
periodic functions {xm}, {xm} converge uniformly on R and the limit functions 
Xf = limxm, Xf = limxm satisfy Equation (2.1). Thus, Xf is an almost periodic 
A-solution of Equation (2.1) and the validity of the estimate (3.14) can be verified 
by using the limit passage for m -> oo in the estimates for the magnitude of xm, 
ni = l , 2 , . . . . 

It remains to check the uniqueness which could be damaged by the limit passage. 
So, let us suppose the existence of an almost periodic A-solution y of Equation (2.1). 
Taking into account that a, b, f have almost periodic derivatives of the first order, 
the almost periodic function y has besides the first also the second almost periodic 
derivative y. In such a case there exists a sequence ym,m = 1,2,... of Bochner-Fejer 
approximation polynomials of the almost periodic function y to which they converge 
uniformly on R and their derivatives ym and ym, m = 1,2,..., form sequences of 
Bochner-Fejer approximation polynomials of the almost periodic functions y and y, 
respectively, to which they converge uniformly on R. It is easy to verify that the 
sequences of trigonometric polynomials fm(t) = ym(t) — a0ym(t) — b0ym(t — r) — 
a(i)ym(t) - b(t)ym(t - r ) and fm(t) = ym(t) - a0ym(t) - b0ym(t - T) - a(t)ym(t) -
b(t)ym(t-T) —a(t)ym(t) — b(t)ym(t — r),m = 1,2,..., converge uniformly on R to the 
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almost periodic functions / and / , respectively. Denoting A. = A = A/ + S(AaUA tU 
{0}), A2 = Aa U A;, then A' = Ai + S(A2 U {0}) and the assumptions (3.15), (3.16), 
(3,17) are satisfied which coincide here with the assumptions (2.3), (2.4), (2.5). The 
spectra of the trigonometric polynomials /„, and consequently also the spectra of 
the trigonometric polynomials Bm - fm are contained in iA, m = 1,2,..., so that 
by Corollary 3.4 the equation x(t) = a0x(t) + b0x(t - T) + a(t)x(t) + b(t)x(t - r) + 
B,n(t) — fm(t) has exactly one almost periodic A-solution, namely wm = xm — ym, 
which satisfies the estimate \\wm\\ = \\xm - ym\\ ^ A||J3m - /mil, m = 1,2,.... 
However, \\xf - y\\ = lim \\xm - ym\\ = 0 and hence Xf = y. D 

Corollary 3.8. Let Ai, A2 be two non-void sets of real numbers and let S, T be 
two positive constants. If the assumptions (3.15), (3.16), (3.17) are satisfied and if f 
is an almost periodic function with its spectrum contained in iAi having the almost 
periodic derivative f and if a, b are trigonometric polynomials with their spectra 
contained in iA2 for which ]T(a) ^ &> X)(&) ^ T, then Equation (2.1) has exactly 
one almost periodic A'-solution Xf where A' = Ai + S(A2 U {0}) and this solution 
satisfies the estimate (3.14) where the positive constant A depends only on a0, b0, 
d'e, d', A', r, S, T. 

P r o o f . The validity of Corollary 3.8 can be verified by passing to the limit 
analogously as in the proof of Theorem 3.3. D 

R e m a r k 3.9. Corollary 3.8 ensures the validity of the estimate (3.14) with a 
constant A common for all almost periodic A'-solutions Xf of Equation (2.1) of the 
whole class of trigonometric polynomials a, b and an almost periodic function / from 
Corollary 3.8. 

Now, we abandon the assumptions that a, b are trigonometric polynomials. 

Theorem 3.10. If a and b are almost periodic functions with absolutely conver­
gent Fourier series having almost periodic first derivatives and f is the function from 
Theorem 3.6. and if the assumptions (2.3), (2.4), (2.5) are satisfied, then Equation 
(2.1) has exactly one almost periodic A-solution Xf, where A = A/ + S (A„ U A& U {0}), 
and this solution satisfies the estimate (3.14) in which the positive constant A de­
pends only on a0, &o, A, d9, d,T,S = 2 ( a ) , T = £X&). 

P r o o f . As a consequence of the fact that the almost periodic functions a and 
6 have almost .periodic derivatives d and b, respectively, there exist sequences am 

and bm, in = 1,2,..., of Bochner-Fejer approximation polynomials of the almost 
periodic functions a and b, respectively, to which they converge uniformly on R, 
the derivatives am and bm of which form sequences of Bochner-Fejer approximation 
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polynomials of the almost periodic functions ci and ft, respectively, to which they 
converge uniformly on R. 

If we denote A2 = AttUA6, A, = A/ + S(A2U{0}) then A' = A,+S(A2U{0}) = A, 
A0m C A2. Ablu C A2, m = 1.2,...; A/ C A,. Moreover, £(«,„) s: S, X}(M ^ T, 
m = 1,2, According to the choice of A,, A2 the assumptions of Corollary 3.8 are 
satisfied for the equation i(t) - a0x(t) + b0x(t -T) + am(t)x(t) + b,„(t)x(t - T) + f(t). 
Therefore, this equation has exnctly one almost periodic A-solution x,n and for (his 
solution we have the estimate ||.('„, || < -4||/||, m = 1,2,.... Corollary 3.8 implies that 
the equation x(t) = a0x(t) + b0x(t -r) + am(t)x(t) + bm (t)x(t - T) + fm,k(t), where 
fm,k(t) = (am+k(t)-am(1))xm+k(t) + (bm+k(t) - bm(t))xv,+k(t - r). has exactly one 
almost periodic A-solution. It is evident that this solution is xm+k - xm and for this 
solution the estimate \\xm+k - xm\\ < -4||/m>A-|| holds true, m - 1,2,.. .. 

Since any two almost periodic functions u, v with almost periodic derivatives it, v 
satisfy \\uv\\ ^ 2||K|| ||I;|| we get the inequality 

\\xm+k - xm\\ sC A\\fm,k\\ € 2A(\\am+k - a„,|| + ||/,m+fc - b,„ \\)\\xm+k\\ 

s= 2A2(\\am n- - am\\ + \\bm+k - bm\\)\\f\\; m,k = 1,2,.... 

But this means that lim \\xm+i, - xm\\ = 0 for in -> oo uniformly with respect, to 
k — 1,2,..., so that the almost periodic function x} = lima;,,, is an almost periodic 
A-solution of Equation (2.1) and satisfies the estimate (3.14). 

Again, it is necessary to verify the uniqueness of this solution which could be lost 
by the passage to the limit. Let y be also an almost periodic A-solution of Equation 
(2.1). Then the almost periodic function w = x} - y is a unique almost periodic 
A-solut ion of the equation x(t) = a0x(t) + b0x(t -T)+anl(t)x(t) + bm(t).r(t - T) + F(I) 
where F(t) = (a(t) - am(t))w(t) + (b(t) - bm(t))w(1 - r) and this solution satisfies 
the estimate ||io|| = \\x} - y\\ < A\\F\\ sj 2A(| |a- </,„|j + | | 6 - ft.^DIJtt'H, m = 1,2,.... 
The right-hand side converges to zero for m -+ oo. so that y = x}. O 

Corollary 3.11. Let A,, A2 be two non-void sets of real numbers and let S, T be 
two positive constants. If the assumptions (3.15), (3.1C), (3.17) are satisfied and if / 
is an almost periodic function with its spectrum contained in iAi having the aimost 
periodic derivative f and if a. b are aimost periodic functions with their spectra 
contained in iA2 satisfying £ (o ) ^ S, £}(&) ^ T- then Equation (2.1) iias exacfiy 
one almost peiiodic A'-solution x} where A' = A] + S(A2 U {()}) and tin's solution 
satisfies the estimate (3.14) where the positive constant A depends only on a0, b0, 
A', d'e, d', T, S, T. 

P r o o f . Analogous reasoning as in the proof of Theorem 3.10. • 



R e m a r k 3.12. Corollary 3.11 ensures the validity of the estimate (3.14) with a 
constant A common for all almost periodic A'-solutions Xf of Equation (2.1) of the 
whole class of almost periodic functions a, b, / from Corollary 3.11. 

4. QUASILINEAR EQUATIONS 

4.1. Functions of several variables. Let g = g(t,x) be a continuous function 
j : l x n - t Cpx«, where D C C m x n is a non-void set. The function g is said to be 

a) almost periodic in the variable t on R x D if g(t,x) is almost periodic as a 
function of t for any fixed x e D; 

b) uniformly almost periodic in the variable t on R x D if g(t, x) is almost periodic 
in t on R x D and for any s > 0 there exists a set {r} C R relatively dense in 
R such that \g(t + r,x) - g(t,x)\ < e for every r 6 {r}, t e R, x e D; 

c) locally uniformly almost periodic in the variable t on 1 x D if for any compact 
set K C D the restriction gK of the function g on R x K is uniformly almost 
periodic in the variable t on R x K. 

Lemma. Let g: R x D -+ Cpx« be a fuactioa almost periodic ia t on R x D. A 
necessary and sufficient condition for g to be locally uniformly almost periodic in t 
is that g be continuous in x uniformly with respect to t G R on R x D. 

In the proof it is sufficient to take p = q = 1. To prove the sufficiency, let 
K C D be a compact set and e > 0, The restriction <//<• is uniformly continuous in 
x uniformly with respect to t 6 R on R x K. Hence, there exists S = S(e/S) such 
that for any x,y e K and f € R it holds \gx(t,x) - gK(t,y)\ < e/3 in the case 
\x - y\ < 5. Further, there exists a finite <5-net for K, namely, xi,.., ,XK e if such 
that min{|a; — XJ\ : j = 1 , . . . , A/} < S for any a; € K. 

Since the functions /*7-(£) = g(t, Xj), j = 1 , . . . , N, are almost periodic, there exists 
a set {r} C R of e/3-almost periods common for the functions hi,...,hn which 
is relatively dense in R, i.e. \hj(t + r) - ftj(')l < e/3 for any t 6 R,r € {r} and 
j = 1,...,N. Now, let T £ {r}, t e R, I e Jf. Choose j so that j.i - x,\ < S. Then 

IfficCt + T,X)- gK(t,x)\ s$ |g/<(t + r ,x) - gK(t + T,XJ)\ 

+ \gic(t + T,XJ) - gK(t,Xj)\ + \gK(t,Xj) - gK(t,x)\ < s. 

Thus, g is locally uniformly almost periodic in t on 1 x D and the sufficiency is 
proved. Let us remark that, on the same vein, the function gi< may be shown to be 
uniformly continuous on R x Jf. 
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On the other hand, to prove the necessity we take an arbitrary compact set K C D 
and e > 0 and use the uniform continuity of gK on [0,1] x K where / = l(s/3) 
is an inclusion length of the relative density of the set {T} of e/3-almost periods. 
For any x,y £ K and t,s £ [0,1] we have \gK(t,x) - gK(s,y)\ < e/3 in the case 
\t - s\ + \x - y\ < 5. For any t e R there exist T = r(t) € {T} such that t + T £ [0,1]. 
Consequently, for any x, y e K, \x - y\ < 5 and t £ R we get 

\9K(t,x)~gK(t,y)\ <. \gK(t,x)-gK(t + T,x)\ 

+ \gK(t + T,X)- gK(t + T,y)\ + \gK(i + T,y)- gK(t,y)\ < e 

and the assertion follows. 
In the sequel we deal with the cases in which the conditions for the locally uniform 

almost periodicity of introduced function are fulfilled. 
4.2. Harmonic analysis. Let g: R x D - t C! 'x,; be a function almost periodic 

in t on R x D. For any x £ D there exists the Bohr transformation 

1 fs+T 

a(\,x) = a(\,x,g) = lirn — / g(i,x)exp(-iAt)dt 

for each A £ R uniformly with respect to s € R. If a(\,x) is non-zero for a given 
A e R for at least one point x £ D, i.e. a(A,x) ^ 0, x £ D, then A is called the 
Fourier exponent and a(\,x), x £ D, is called the Fourier coefficient of the function 
g. The set of all Fourier exponents of the function g is denoted by Ag. If D is 
a compact set, then the set A3 is at most countable, Due to the compactness of 
D there exists a countable set {XJ} C D, which is dense in D, i.e. the equality 
infj \x - Xj\ = 0 holds for each x £ D. If a(\,Xj) = 0, j = 1,2,..., for some A e R, 

then \a(\,x)\ = \a(\,x - xA\ ^ inf sup\g(t.x) -g(t,Xj)\ = 0 . Thuso(A,x) ^ 0 only 
i t 

for A £ (J Aj = Aa, where Aj is the set of all Fourier exponents of the almost periodic 
i 

function g(i, Xj), t £ R, so that Aj is an at most countable set, j = 1,2,..., and. thus 
also A3 is an at most countable set. 

If the set J) is a region (open connected non-void set), then there exists a 
monotonous sequence of compact sets K\ C K-2 C • • • C Km C . . . C D for which 
lim Km = D. In such a case the equality A3 = \J Am holds, where Am is the set of 
all Fourier exponents of the restriction of the function j o i R x Km, m = 1,2,..., 
and thus Ag is an at most countable set. 

If g is locally uniformly almost periodic in the variable t on R x D and D is a 
region, then the Fourier series g(t,x) ~ ^a(A,x)exp(iAt), A £ As, can be uniquely 

x 
determined except for its order of summation. If the function g is also analytic in 
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the variable £ on a closed ball lying in D and containing the set R/ of all values of 
the almost periodic function / , then Ap c A , + S(Aj U {0}) is valid for the function 
F(t)^g(t,f(t)),teK. 

4.3 Derivatives. Now we will deal with a function g = g(t,u,v,e): R x D = 
R x C n x l x C n x l x K0 -> C n x l , where R0 C C. In order to avoid complicated 
expressions, we will use the symbolic records of Jacobi matrices, as for example 

9t = 
дg ð(<h 

' ĚЯl. 

дg_ ð(g1 , . . . ,g„) I ľ' . "ľ" | (д_9± 

9tu = 

du d(ui,..., «„) • - \du 
K ' \dg__, »- ' 

a2g = a(gi.,...,gn t) = /W- \ 
(9t<9« 9(1/,!, Un) \dtdUk'j,k=l,...,n 

guv = ^L^(J^) 
dudv \dukdviJj,k,i=i,...,n, 

where the last matrix is three dimensional. Analogously, gv,9tv,9uu,9vv can be 

expressed. These Jacobi matrices will be called the derivatives of the function g. 

The norm of a matrix is the sum of absolute values of all its elements, for example 

I gut) I = l^l^2~i \dukdv, !• 
j k i 

4.4. Quasilinear equations. Using the Banach contraction principle we shall 
deal with following quasilinear (weakly nonlinear) system 

(4.1) x(t) = a0x(t) + b0x(t ~T) + a(t)x(t) + b(t)x(t - r) + f(t) 

+ eg(t,x(t),x(t-T),e), 

where e is a small complex parameter. For e = 0 we get the generating equation 

(2.1) with its conditions for oo, b0, a, b, {. Assume that the function g = g(t,u,v,e) 

together with its derivative gt are locally uniformly almost periodic in the variable t 

on i x D, where D = C n x l x C " x l x S0 and « 0 = K(0, <J0), S0 > 0, and g is analytic 

in the variables u, v, e. 

Put A = S(Af U Aa + 5(A a U At, U {0})). If A£ C A for a function f e AP(Cnxl), 
then the composite function F(t) = F(t,£) = g(t,£(t),<S(t - r) ,e) , t e R, is an 
almost periodic function whose spectrum is contained in iA for each e £ %, as 
AF C AS + 5(A/U{0}) C A/UA 3 +5(Au{0}) C A is valid due to the analyticity of 
the function g in the variables u,v. Thus the "spectrum" iA is wide enough in order 
to allow the existence of an almost periodic A-solution of Equation (4.1). 
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If a positive number R is given then the norm \\gWn is the maximum value 
among the least upper bounds of magnitudes of function g and its derivatives 
9t,9u,9v,9tu,9tv,9uu,9uv,9vv on the (metric) space ftft = R x C# x l x C",xl x S0, 
where C"jXl = {w e C n x l : |w| sg R}. For any given two points U = [t,u,v,e], 
U = [t,u, v, e] from the space fi/i the inequality 

max{\g(U) - g(U)\,\gt(U) - gt(U)\, \gu(U) - gu(U)\, \gv(U) - gv(U)\} 

^\\9\\R\U-U\ = \\9\\R(\U-U\ + \V-V\) 

Theorem 4 .1 . If the conditions (3.IS), (3.16), (3.17) are fulfilled for 

A = 5(A/ U As + 5(A0 U A6 U {0})), 

then for each positive number R. > A\\f\\, where A is from the estimate (3.14), 
there exists such a positive number e(R) that the equation (4.1) has a unique almost 
periodic A-solution xe with the norm \\xc\\ ^ R for each e e R0 for which \e\ < e(R) 
holds. 

P r o o f . Let us consider the Banach space ff(A) = {£ G ^ P 1 ( C n x l ) : Ac C A} 
with the norm ||.||. If a non-negative number R is given, then we define the metric 
closed subspace HR(A) = {§ 6 ff(A): ||f|| ^ R} of the space ff(A). 

If £ € ff (A), R ^ HOI and e € So, then the function 

7( t) = 7(*,e) = g(t,Z(t),Z(t - r),e), t € R, 

is almost periodic and belongs again to ff (A) and 

l7l < UR, l7l = \9t + g*£(t) + gv£(t - r ) K (1 + 2R)\\g\\R. 

T h u s | | 7 | K ( l + 2i?)||g||R. 
Define an operator A = A(e) on the Banach space ff (A) for each e 6 K0 such that 

the operator A maps any function £ e ff (A) onto the function At; e ff(A), which is 
the unique almost periodic A-solution of the equation 

x(t) = a0x(t) + b0x(t - T) + a(t)x(t) + b(t)x(t - T) + f(t) 

+ ea( . , f (v) , f ( . - r ) ,e ) 

(uniqueness is guaranteed by Theorem 3.10) and which satisfies the estimate (3.14), 
i.e. ||Af|| ^ A||/ + ej\\. Due to Corollary 3.11 the constant A is common for all 



functions from ff (A) for A. = A, A2 = Aa U Aj, as A' = A. Thus the final estimate 

i*\\AZ\\<A[\\f\\+e(l + 2R)M\R]-
If a positive number R is chosen such that R > yt||/||, then the operator A = A(e) 

maps the space fffl(A) into itself for any e 6 K0 for which |e| ^ (R - A||/l|)/((l + 
2R)A\\g\\R). 

Further, it is necessary to find out for which e £ So the operator A = -4(e) is 
contractive. If two functions £,TJ belong to HR(A) and e £ % is given, then we put 
7«(*) = <?(*•?«,?(* - T),e) and 7 „M = </(*,»?(.),»,(. - r),e),t G R. 

The function w — A£ — Ar) is the unique almost periodic A-solution of the equation 

x(t) = <*>*(*) + b0x(t - T) + a ( i>W + &(t)x(* - r) + e(7?(t) - 7,(*)) 

and satisfies the inequality 

\\w\\ = | | ^ - Ar,\\ « |e|A||7{ - 7,11 ^ |e|4(l + R)A\\g\\RU - vl 

as 

|7« - 7,1 < 2||fl||iJ||£ - .,11, \ \ - 7, | <_ 4(1 + fl)||fl||H||{ -17||. 

In order to get a contractive operator A on HR(A) it is sufficient to put |e| < 
1 / (4(1+ .R) J 4 | | 9 | |K) . 

The operator A maps the space HR(A) into itself and turns out to be a contraction 
on ffij(A) for \e\ < e(R), where 

e(ff) = min{, 0 - *r Mf* 1 1 
I "'(1+2R)A\\g\\R'4(1+ R)A\\g\\Ri-

Consequently, there exists a unique function a;e from HR(A) for |e| < e(R), R > 
i4||/ | | , such that Axe = xe, i.e. there exists a unique almost periodic A-solution 
xe of Equation (4.1) for each e € K0 if |e| < s(R). This completes the proof of 
Theorem 4.2. O 

Conclusion. The method developed in this paper for the construction of almost 
periodic solutions of almost periodic systems of differential equations can be used 
also for finding an approximative solution of this problem. 
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