Mathematic Bohemia

Elena Wisztová

Hamiltonian connectedness and a matching in powers of connected graphs

Mathematic Bohemica, Vol. 120 (1995), No. 3, 305-317

Persistent URL: http: //dml.cz/dmlcz/126003

Terms of use:

(C) Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

HAMILTONIAN CONNECTEDNESS AND A MATCHING
 IN POWERS OF CONNECTED GRAPHS

Elena Wisztová, Žilina

(Received March 24, 1994)

Summary. In this paper the following results are proved:

1. Let P_{n} be a path with n vertices, where $n \geqslant 5$ and $n \neq 7,8$. Let M be a matching in P_{n}. Then $\left(P_{n}\right)^{4}-M$ is hamiltonian-connected.
2. Let G be a connected graph of order $p \geqslant 5$, and let M be a matching in G. Then $G^{5}-M$ is hamiltonian-connected.

Keywords: power of a graph, matching, hamiltonian connectedness
AMS classification: 05C70, 05C45

1. Introduction

By a graph we mean a finite undirected graph with no loops or multiple edges (a graph in the sense of [1] and [2]). If G is a graph, then we denote by $V(G), E(G)$ and $\delta(G)$ the vertex set, the edge set and the diameter of G, respectively. The number $|V(G)|$ is called the order of G. If $u, v, w \in V(G)$, then the degree of u in G and the distance between v and w in G will be denoted by $\operatorname{deg}_{G} u$ and $d_{G}(v, w)$, respectively. If $W \subseteq V(G)$, then we denote by $\langle W\rangle_{G}$ the subgraph of G induced by W.

A path connecting vertices u and v in G is referred to as $u-v$ path in G. We say that a graph G is hamiltonian-connected if for every pair of distinct vertices u and v of G, there exists a hamiltonian $u-v$ path in G.

If a spanning subgraph F of G is a regular graph of degree one, then we say that F is a 1-factor of G. A set $M \subseteq E(G)$ is called a matching in G if no two edges in M are incident with the same vertex. We denote by $\mathcal{M}(G)$ and $\mathcal{H}(G)$ the set of matchings in G and the set of hamiltonian paths of G, respectively.

For every integer $n \geqslant 1$, by the n-th power G^{n} of G we mean the graph with $V\left(G^{n}\right)=V(G)$ and

$$
E\left(G^{n}\right)=\left\{u v ; u, v \in V(G) \quad \text { and } \quad 1 \leqslant d_{G}(u, v) \leqslant n\right\} .
$$

We now mention some results concerning hamiltonian properties of powers of connected graphs.

Theorem A. [5] If G is a nontrivial connected graph, then G^{3} is hamiltonianconnected.

Theorem B. [6] Let G be a connected graph of order $p \geqslant 4$ and let M be a matching in G. Then there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$.

Theorem C. [3] Let G be a connected graph of order $p \geqslant 4$. Then for every matching M in G^{4} there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$.

2. Results

In the present paper we prove the following two theorems

Theorem 1. Let P_{n} be a path with n vertices, where $n \geqslant 5$ and $n \neq 7,8$. Let M be a matching in P_{n}. Then $\left(P_{n}\right)^{4}-M$ is hamiltonian-connected

Theorem 2. Let G be a connected graph of order $p \geqslant 5$ and let M be a matching in G. Then $G^{5}-M$ is hamiltonian-connected.

To prove Theorem 1 we will use two lemmas and five remarks. The following lemma immediately follows from Theorem B.

Lemma 1. Let M be a matching in a complete graph K_{n}, where $n \geqslant 5$. Then $K_{n}-M$ is hamiltonian-connected.

The following notation will be useful for us
Let $n \geqslant 1$ be an integer, and let w_{1}, \ldots, w_{n} be mutually distinct vertices. We denote by A_{n} the path with

$$
V\left(A_{n}\right)=\left\{w_{1}, \ldots, w_{n}\right\} \quad \text { and } \quad E\left(A_{n}\right)=\left\{w_{i} w_{i+1} ; 1 \leqslant i \leqslant n-1\right\} .
$$

A permutation $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of the set $\{1,2, \ldots, n\}$ with the property that $\left|k_{i}-k_{i+1}\right| \leqslant k$ for every $i \in\{1,2, \ldots, n-1\}$ determines the hamiltonian path $P \in \mathcal{H}\left(\left(A_{n}\right)^{k}\right)$ with $E(P)=\left\{w_{k_{1}} w_{k_{2}}, w_{k_{2}} w_{k_{3}}, \ldots, w_{k_{n-1}} w_{k_{n}}\right\}$. The path P is a $w_{k_{1}}-w_{k_{n}}$ path of $\left(A_{n}\right)^{k}$ and also a $w_{k_{n}}-w_{k_{1}}$ path of $\left(A_{n}\right)^{k}$.

Finally, we define

$$
A_{n *}=A_{n}-w_{n-1} w_{n}+w_{n-2} w_{n} \quad \text { for } n \geqslant 3
$$

Remark 1. Let M be a matching in A_{4}. Then there exist hamiltonian $w_{1}-w_{3}$, $w_{2}-w_{3}$ and $w_{2}-w_{4}$ paths of $\left(A_{4}\right)^{3}-M$.

Let T be a tree of order $p=4$ which is not isomorphic to A_{4}. Then T is isomorphic to $A_{4 *}$. For the sake of simplicity we will assume that $T=A_{4^{*}}$. Let M be a matching in T. For every $j, j \in\{1,3,4\}$, there exists a hamiltonian $w_{2}-w_{j}$ path of $T^{2}-M$.

Remark 2. Let M be a matching in A_{5}. Clearly, $\left(A_{5}\right)^{4}$ is the complete graph. It follows from Lemma 1 that $\left(A_{5}\right)^{4}-M$ is hamiltonian-connected.

We define the following matchings in A_{5} :

$$
M_{1}=\left\{w_{1} w_{2}, w_{3} w_{4}\right\}, \quad M_{2}=\left\{w_{1} w_{2}, w_{4} w_{5}\right\}, \quad M_{3}=\left\{w_{2} w_{3}, w_{4} w_{5}\right\} .
$$

For every matching $M^{\prime} \in \mathcal{M}\left(A_{5}\right)$ there exists $k \in\{1,2,3\}$ such that $M^{\prime} \subseteq M_{k}$.
The permutations

$$
\begin{aligned}
& (1,3,5,4,2),(1,4,5,2,3),(1,3,2,5,4),(1,4,2,3,5),(2,4,1,3,5) \text {, } \\
& (3,1,4,2,5),(4,1,3,2,5) \text { for } k=1, \\
& (1,4,3,5,2),(1,4,2,5,3),(1,3,5,2,4),(1,4,3,2,5),(2,4,1,3,5) \text {, } \\
& (3,1,4,2,5),(4,1,3,2,5) \quad \text { for } k=2 \\
& (1,4,3,5,2),(1,4,2,5,3),(1,3,5,2,4),(1,3,4,2,5),(2,1,4,3,5), \\
& (3,4,1,2,5),(4,2,1,3,5) \quad \text { for } k=3
\end{aligned}
$$

of the set $\{1,2,3,4,5\}$ determine in $\left(A_{5}\right)^{3}-M_{k}$ the hamiltonian $w_{1}-w_{j}$ and $w_{i}-w_{5}$ paths, where $1 \leqslant i<j \leqslant 5$.

Hence for every $i, j, i \in\{1,2,3,4\}$ and $j \in\{2,3,4,5\}$ there exist hamiltonian $w_{i}-w_{5}$ and $w_{1}-w_{j}$ paths of $\left(A_{5}\right)^{3}-M$.

Remark 3. Let M be a matching in A_{6}. The permutations
$(1,4,6,3,5,2),(1,4,6,2,5,3),(1,3,5,2,6,4),(1,3,6,4,2,5),(1,3,5,2,4,6)$,
$(2,5,1,4,6,3),(2,6,3,5,1,4),(2,6,4,1,3,5),(2,5,3,1,4,6),(3,6,2,5,1,4)$,
$(3,6,2,4,1,5),(3,5,1,4,2,6),(4,1,3,6,2,5),(4,1,3,5,2,6),(5,2,4,1,3,6)$
of the $\operatorname{set}\{1, \ldots, 6\}$ determine the hamiltonian $w_{i}-w_{j}$ paths of $\left(A_{6}\right)^{4}-M$, where $1 \leqslant i<j \leqslant 6$.

This means that $\left(A_{6}\right)^{4}-M$ is hamiltonian-connected.
Remark 4. Let M be a matching in A_{7}. The permutations
$(1,4,6,3,7,5,2),(1,4,6,2,5,7,3),(1,3,7,5,2,6,4),(1,3,7,4,6,2,5)$,
$(1,3,7,5,2,4,6),(1,3,6,4,2,5,7),(2,6,4,1,5,7,3),(2,6,3,7,5,1,4)$,
$(2,6,4,1,3,7,5),(2,5,7,3,1,4,6),(2,6,4,1,3,5,7),(6,2,4,1,5,7,3)$,
$(6,2,5,7,3,1,4),(6,2,4,1,3,7,5),(6,2,4,1,5,3,7),(7,5,1,4,2,6,3)$,
$(7,5,2,6,3,1,4),(7,3,6,2,4,1,5)$
of the set $\{1, \ldots, 7\}$ determine the hamiltonian $w_{i}-w_{j}$ paths of $\left(A_{7}\right)^{4}-M$, where $i \in\{1,2,6,7\}, j \in\{1,2, \ldots, 7\}$ and $i \neq j$.

The permutations
$(3,6,2,7,5,1,4),(3,6,2,7,4,1,5),(4,1,3,6,2,7,5)$ of the set $\{1,2, \ldots, 7\}$ determine the hamiltonian $w_{3}-w_{4}, w_{3}-w_{5}, w_{4}-w_{5}$ paths of $\left(A_{7}\right)^{5}-M$.

If $M=\left\{w_{1} w_{2}, w_{6} w_{7}\right\}$, then there exist no hamiltonian $w_{3}-w_{4}, w_{3}-w_{5}, w_{4}-w_{5}$ paths of $\left(A_{7}\right)^{4}-M$.

This means that $\left(A_{7}\right)^{5}-M$ is hamiltonian-connected and for $i \in\{1,2,6,7\}$, $j \in\{1,2, \ldots, 7\}, i \neq j$ there exist hamiltonian $w_{i}-w_{j}$ paths of $\left(A_{7}\right)^{4}-M$.

Remark 5. Let M be a matching in A_{8}.

1. We denote

$$
M_{1}=E\left(A_{8}-w_{1}\right) \cap M .
$$

Then $M_{1} \in \mathcal{M}\left(A_{8}-w_{1}\right)$. It follows from Remark 4 that for every $j, j \in$ $\{2,4,5,6,7,8\}$, there exists a hamiltonian $w_{3}-w_{j}$ path $P_{1} \in \mathcal{H}\left(\left(A_{8}-w_{1}\right)^{4}-M_{1}\right)$. Then
$P=P_{1}+w_{1} w_{3}$ is a hamiltonian $w_{1}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$,
$P=P_{1}+w_{1} w_{j}$ is a hamiltonian $w_{1}-w_{3}$ path of $\left(A_{8}\right)^{4}-M$ if $j=4$.
Analogously we can show that for every $j, j \in\{1,2, \ldots, 7\}$, there exists a hamiltonian $w_{8}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$.
2. We denote

$$
M_{1}=E\left(A_{8}-w_{1}-w_{2}-w_{3}\right) \cap M
$$

Then $M_{1} \in \mathcal{M}\left(A_{8}-w_{1}-w_{2}-w_{3}\right)$. It follows from Remark 2 that for every $j, j \in$ $\{4,6,7,8\}$, there exists a hamiltonian $w_{5}-w_{j}$ path $P_{1} \in \mathcal{H}\left(\left(A_{8}-w_{1}-w_{2}-w_{3}\right)^{4}-M_{1}\right)$.

We put

$$
\begin{array}{lll}
P=P_{1}+w_{5} w_{3}+w_{3} w_{1}+w_{1} w_{2} & \text { if } & w_{1} w_{2} \notin M \\
P=P_{1}+w_{5} w_{1}+w_{1} w_{3}+w_{3} w_{2} & \text { if } & w_{1} w_{2} \in M
\end{array}
$$

Then P is a hamiltonian $w_{2}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$.
Further, we put

$$
\begin{array}{llll}
P=P_{1}+w_{j} w_{1}+w_{1} w_{3}+w_{3} w_{2} & \text { if } j=4 & \text { and } & w_{2} w_{3} \notin M \\
P=P_{1}+w_{j} w_{3}+w_{3} w_{1}+w_{1} w_{2} & \text { if } & j=4 & \text { and }
\end{array} w_{2} w_{3} \in M . ~ \$
$$

Then P is a hamiltonian $w_{2}-w_{5}$ path of $\left(A_{8}\right)^{4}-M$.
The path

$$
P=P_{1}+w_{5} w_{1}+w_{1} w_{3}+w_{2} w_{j} \quad \text { if } \quad j=4
$$

is a hamiltonian $w_{2}-w_{3}$ path of $\left(A_{8}\right)^{4}-M$.
Analogously we can show that for every $j, j \in\{1,2, \ldots, 6,8\}$, there exists a hamiltonian $w_{7}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$.
3. The permutations

$$
\begin{aligned}
& (3,8,6,2,7,5,1,4),(3,8,6,2,7,4,1,5),(3,8,5,2,7,4,1,6) \\
& (4,1,3,8,6,2,7,5),(4,1,3,8,5,7,2,6),(5,1,3,8,4,7,2,6)
\end{aligned}
$$

of the set $\{1, \ldots, 8\}$ determine the hamiltonian $w_{i}-w_{j}$ paths of $\left(A_{8}\right)^{5}-M$, where $3 \leqslant i<j \leqslant 6$.
4. If $M=\left\{w_{1} w_{2}, w_{3} w_{4}, w_{5} w_{6}, w_{7} w_{8}\right\}$, then for $i, j, 3 \leqslant i<j \leqslant 6$ there exists no hamiltonian $w_{i}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$.

This means that $\left(A_{8}\right)^{5}-M$ is hamiltonian-connected and for $i \in\{1,2,7,8\}$, $j \in\{1,2, \ldots, 8\}, i \neq j$ there exists a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{8}\right)^{4}-M$.

Lemma 2. Let $n \geqslant 9$, and let M be a matching in A_{n}. Then $\left(A_{n}\right)^{4}-M$ is hamiltonian-connected.

Proof. We distinguish the following cases and subcases:

1. Let $n=9$. In $\left(A_{9}\right)^{4}-M$ we shall construct hamiltonian $w_{i}-w_{j}$ paths, where $1 \leqslant i<j \leqslant 9$. Denote

$$
\begin{gathered}
W_{1}=\left\{w_{1}, \ldots, w_{5}\right\}, W_{2}=\left\{w_{5}, \ldots, w_{9}\right\}, \\
G_{1}=\left\langle W_{1}\right\rangle_{A_{9}} \text { and } G_{2}=\left\langle W_{2}\right\rangle_{A_{9}} .
\end{gathered}
$$

Moreover, denote by M_{1} and M_{2} the matchings with the properties

$$
M_{1} \in \mathcal{M}\left(G_{1}\right), M_{2} \in \mathcal{M}\left(G_{2}\right) \text { and } M_{1} \cup M_{2}=M
$$

1.1. $1 \leqslant i<j \leqslant 5$ or $5 \leqslant i<j \leqslant 9$.

We prove the proposition of Lemma 2 for the case $1 \leqslant i<j \leqslant 5$.
If $5 \leqslant i<j \leqslant 9$, then the proof is analogous.
It follows from Remark 2 that there exists a hamiltonian $w_{i}-w_{j}$ path $P_{1} \in$ $\mathcal{H}\left(\left(G_{1}\right)^{4}-M_{1}\right)$ and a hamiltonian $w_{5}-w_{6}$ path $P_{2} \in \mathcal{H}\left(\left(G_{2}\right)^{4}-M_{2}\right)$. If $w_{j}=w_{5}$, then according to Remark 2 there exists a hamiltonian $w_{i}-w_{5}$ path $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{3}-M_{1}\right)$. This implies that there exists $x \in V\left(G_{1}\right)$ such that $x w_{5} \in E\left(P_{1}\right)$ and $x \neq w_{1}$.
Then $d_{A_{0}}\left(x, w_{6}\right) \leqslant 4$. We put

$$
P=\left(P_{1} \cup P_{2}\right)-x w_{5}+x w_{6}
$$

Then P is a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{9}\right)^{4}-M$.
1.2. $1 \leqslant i<5$ and $5<j \leqslant 9$.

According to Lemma 1 there exists a hamiltonian $w_{i}-w_{5}$ path $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{4}-M_{1}\right)$ and a hamiltonian $w_{5}-w_{j}$ path $P_{2} \in \mathcal{H}\left(\left(G_{2}\right)^{4}-M_{2}\right)$. We put

$$
P=P_{1} \cup P_{2}
$$

Then P is a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{9}\right)^{4}-M$.
From these two subcases it follows that $\left(A_{9}\right)^{4}-M$ is hamiltonian-connected.
2. Let $n \geqslant 10$. Assume that for every tree A_{m}, where $9 \leqslant m<n$, it is proved that $\left(A_{m}\right)^{4}-M^{*}$ is hamiltonian-connected for any matching $M^{*} \in \mathcal{M}\left(A_{m}\right)$.
In $\left(A_{n}\right)^{4}-M$ we shall construct hamiltonian $w_{i}-w_{j}$ paths, where $1 \leqslant i<j \leqslant n$.
2.1. $1 \leqslant i<j \leqslant 5$ or $(n-4) \leqslant i<j \leqslant n$.

We prove the proposition of Lemma 2 for the case $1 \leqslant i<j \leqslant 5$. If $(n-4) \leqslant i<$ $j \leqslant n$, then the proof is analogous. Denote

$$
\begin{gathered}
W_{1}=\left\{w_{1}, \ldots, w_{5}\right\}, W_{2}=\left\{w_{5}, \ldots, w_{n}\right\} \\
G_{1}=\left\langle W_{1}\right\rangle_{A_{n}} \text { and } G_{2}=\left\langle W_{2}\right\rangle_{A_{n}}
\end{gathered}
$$

Moreover, denote by M_{1} and M_{2} the matchings with the properties

$$
M_{1} \in \mathcal{M}\left(G_{1}\right), M_{2} \in \mathcal{M}\left(G_{2}\right) \text { and } M_{1} \cup M_{2}=M
$$

It follows from the induction hypothesis and Remarks 3, 4, 5 that there exists a hamiltonian $w_{5}-w_{6}$ path $P_{2} \in \mathcal{H}\left(\left(G_{2}\right)^{4}-M_{2}\right)$. It follows from Remark 2 that
there exists a hamiltonian $w_{i}-w_{j}$ path $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{4}-M_{1}\right)$ and if $w_{j}=w_{5}$, then $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{3}-M_{1}\right)$. This implies that there exists $x \in V\left(G_{1}\right)$ such that $x w_{5} \in E\left(P_{1}\right)$ and $x \neq w_{1}$. Then $d_{A_{n}}\left(x, w_{6}\right) \leqslant 4$ and

$$
P=\left(P_{1} \cup P_{2}\right)-x w_{5}+x w_{6}
$$

is a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{n}\right)^{4}-M$.
2.2. $1 \leqslant i \leqslant 4$ and $6 \leqslant j \leqslant n$ or $5 \leqslant i<j \leqslant n-4$ or $5 \leqslant i \leqslant n-5$ and $n-3 \leqslant j \leqslant n$.
2.2.1. There exists $w_{k} \in V\left(A_{n}\right)$ with the property
(1)

$$
i<k<j \text { and } 5 \leqslant k \leqslant n-4
$$

Denote

$$
\begin{gathered}
W_{1}=\left\{w_{1}, \ldots, w_{k}\right\}, W_{2}=\left\{w_{k}, w_{k+1}, \ldots, w_{n}\right\} \\
G_{1}=\left\langle W_{1}\right\rangle_{A_{n}} \text { and } G_{2}=\left\langle W_{2}\right\rangle_{A_{n}}
\end{gathered}
$$

Further, denote by M_{1} and M_{2} the matchings with the properties

$$
M_{1} \in \mathcal{M}\left(G_{1}\right), M_{2} \in \mathcal{M}\left(G_{2}\right) \text { and } M_{1} \cup M_{2}=M
$$

According to the induction hypothesis and Remarks 2, 3, 4, 5 there exists a hamiltonian $w_{i}-w_{k}$ path $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{4}-M_{1}\right)$ and a hamiltonian $w_{k}-w_{j}$ path $P_{2} \in \mathcal{H}\left(\left(G_{2}\right)^{4}-M_{2}\right)$. Then

$$
P=P_{1} \cup P_{2}
$$

is a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{n}\right)^{4}-M$.
2.2.2. There exists no $w_{k} \in V\left(A_{n}\right)$ with the property (1). Then $w_{i} w_{j} \in E\left(A_{n}\right)$ and $5 \leqslant i<j \leqslant n-4$. Hence $w_{j}=w_{i+1}$.
We denote by G_{1} or G_{2} the component of $A_{n}-w_{i} w_{i+1}$ which contains w_{i} or w_{i+1}, respectively. Further, we denote by M_{1} and M_{2} the matchings with the properties

$$
M_{1} \in \mathcal{M}\left(G_{1}\right), M_{2} \in \mathcal{M}\left(G_{2}\right), M_{1}=M \cap E\left(G_{1}\right) \text { and } M_{2}=M \cap E\left(G_{2}\right)
$$

It follows from the induction hypothesis and Remarks 2, 3, 4, 5 that there exists a hamiltonian $w_{i-1}-w_{i}$ path $P_{1} \in \mathcal{H}\left(\left(G_{1}\right)^{4}-M_{1}\right)$ and a hamiltonian $w_{i+1}-w_{i+2}$ path $P_{2} \in \mathcal{H}\left(\left(G_{2}\right)^{4}-M_{2}\right)$. Then

$$
P=P_{1} \cup P_{2}+w_{i+1} w_{i+2}
$$

is a hamiltonian $w_{i}-w_{j}$ path of $\left(A_{n}\right)^{4}-M$.
From this subcases it follows that $\left(A_{n}\right)^{4}-M$ is hamiltonian-connected. Thus the proof of Lemma 2 is complete.

Theorem 1 immediately follows from Lemma 2 and Remarks 2 and 3.
To prove Theorem 2 we will use the previous lemmas and remarks as well as the two following lemmas.

Lemma 3. Let T be a tree of order $p \geqslant 5$ and let M be a matching in T. Then $T^{5}-M$ is hamiltonian-connected.

Proof. The cases when $p \in\{5,6,7\}$ follows immediately from Lemma 1 and Remark 4

Let $p=8$. If T is isomorphic to A_{8}, or $\delta(T) \leqslant 5$, then the proposition of Lemma 3 follows from Remark 5 and Lemma 1.

Denote

$$
\begin{aligned}
T_{1} & =A_{8 *} \\
T_{2} & =A_{8}-w_{7} w_{8}+w_{5} w_{8} \\
T_{3} & =A_{8}-w_{7} w_{8}+w_{4} w_{8} \\
\mathcal{T} & =\left\{T_{1}, T_{2}, T_{3}\right\}
\end{aligned}
$$

If T is not isomorphic to A_{8} and $\delta(T)>5$, then T is isomorphic to one of the elements of \mathcal{T}. For the sake of simplicity we shall assume that $T \in \mathcal{T}$. Further, we denote

$$
M_{0}=E\left(T-w_{8}\right) \cap M
$$

Then $T-w_{8}=A_{7}$ and $M_{0} \in \mathcal{M}\left(A_{7}\right)$. It follows from Remark 4 that there exists a hamiltonian $w_{i}-w_{j}$ path $P_{0} \in \mathcal{H}\left(\left(A_{7}\right)^{5}-M_{0}\right)$, where $i, j \in\{1, \ldots, 7\}, i \neq j$. Since $\left|E\left(P_{0}\right)\right|=6$, there exist integers $k, l, k, l \in\{1, \ldots, 7\}, k \neq l$, such that $w_{k} w_{l} \in E\left(P_{0}\right)$ and

$$
\begin{array}{ll}
k, l \notin\{1,6\} & \text { if } \quad T=T_{1}, \\
k, l \neq 5 & \text { if } \\
k, l \neq 4 & \text { if } \\
k=T_{3}
\end{array}
$$

Then

$P=P_{0}-w_{k} w_{l}+w_{k} w_{8}+w_{1} w_{8}$ is a hamiltonian $w_{i}-w_{j}$ path of $T^{5}-M$, where $i, j \in\{1, \ldots, 7\}$,
$P=P_{0}+w_{j} w_{8}$ is a hamiltonian $w_{i}-w_{8}$ path of $T^{5}-M$ if $j=3$ and $i \in\{1,2,4,5,6,7\}$ $P=P_{0}+w_{i} w_{8}$ is a hamiltonian $w_{3}-w_{8}$ path of $T^{5}-M$ if $i=2$ and $j=3$

This means that for $p=8$ the statement of Lemma 3 is correct.
Let $p \geqslant 9$. Assume that for every tree T^{*} of order p^{*}, where $5 \leqslant p^{*}<p$, it is proved that $\left(T^{*}\right)^{5}-M^{*}$ is hamiltonian-connected for any matching $M^{*} \in \mathcal{M}\left(T^{*}\right)$.

If T is isomorphic to A_{p}, or if $\delta(T) \leqslant 5$, then the result follows from Lemma 2 or Lemma 1. We shall assume that T is not isomorphic to A_{p} and $\delta(T)>5$.

Let x and y be arbitrary distinct vertices of T. We shall construct a hamiltonian $x-y$ path P of $T^{5}-M$.
We denote by t_{x}, t_{y} the vertices of T with the following properties:
(1) $t_{x} t_{y} \in E(T)$,
(2) t_{x}, t_{y} belong to the $x-y$ path in T,
(3) $0 \leqslant d_{T}\left(t_{x}, x\right)<d_{T}\left(t_{y}, x\right)$.

Then $T-t_{x} t_{y}$ has two components. We denote by T_{x} or T_{y} the component of $T-t_{x} t_{y}$ which contains x, t_{x} or y, t_{y}, respectively. Further, we denote by M_{x} and M_{y} the matching with the properties

$$
M_{x} \in \mathcal{M}\left(T_{x}\right), M_{y} \in \mathcal{M}\left(T_{y}\right), M_{x}=M \cap E\left(T_{x}\right) \text { and } M_{y}=M \cap E\left(T_{y}\right)
$$

We define graphs T_{1} and T_{2} :

$$
T_{1}=T_{x} \quad \text { and } \quad V\left(T_{2}\right)=V\left(T_{y}\right) \cup\left\{t_{x}\right\}, E\left(T_{2}\right)=E\left(T_{y}\right) \cup\left\{t_{x} t_{y}\right\}
$$

Finally, we denote by M_{1} and M_{2} the matchings with the properties

$$
M_{1} \in \mathcal{M}\left(T_{1}\right), M_{2} \in \mathcal{M}\left(T_{2}\right), M_{1}=M_{x} \text { and } M_{2}=M \cap E\left(T_{2}\right)
$$

We distinguish the following cases and subcases:

1. There exist $t_{x}, t_{y} \in V(T)$ with the properties (1)-(3) such that $\left|V\left(T_{x}\right)\right| \geqslant 5$ and $\left|V\left(T_{y}\right)\right| \geqslant 5$. Then $\left|V\left(T_{1}\right)\right| \geqslant 5$ and $\left|V\left(T_{2}\right)\right| \geqslant 5$.
1.1. Let $t_{x} \neq x$. According to the induction hypothesis there exists a hamiltonian $x-t_{x}$ path $P_{1} \in \mathcal{H}\left(\left(T_{1}\right)^{5}-M_{1}\right)$ and a hamiltonian $t_{x}-y$ path $P_{2} \in \mathcal{H}\left(\left(T_{2}\right)^{5}-M_{2}\right)$. We put

$$
P=P_{1} \cup P_{2}
$$

1.2. Let $t_{x}=x$. We denote by x_{1} the vertex of T_{x} with the property that $x x_{1} \in E\left(T_{x}\right)$. If $t_{y}=y$, then we denote by y_{1} the vertex of T_{y} with the property that $y y_{1} \in E\left(T_{y}\right)$. Then $d_{T}\left(x_{1}, t_{y}\right)=2$ and $d_{T}\left(x_{1}, y_{1}\right)=3$. It follows from the induction hypothesis that there exists a hamiltonian $x-x_{1}$ path $P_{1} \in \mathcal{H}\left(\left(T_{x}\right)^{5}-M_{x}\right)$ and a hamiltonian path $P_{2} \in \mathcal{H}\left(\left(T_{y}\right)^{5}-M_{y}\right)$. Let us suppose that

$$
\begin{array}{lll}
P_{2} \text { is a hamiltonian } t_{y}-y \text { path } & \text { if } & t_{y} \neq y \\
P_{2} \text { is a hamiltonian } y_{1}-y \text { path } & \text { if } & t_{y}=y .
\end{array}
$$

We put

$$
\begin{array}{ll}
P=P_{1} \cup P_{2}+x_{1} t_{y} & \text { if } \quad t_{y} \neq y \\
P=P_{1} \cup P_{2}+x_{1} y_{1} & \text { if } \quad t_{y}=y
\end{array}
$$

2. For every two vertices t_{x}, t_{y} with the properties (1)-(3) we have $\left|V\left(T_{x}\right)\right|<5$ or $\left|V\left(T_{y}\right)\right|<5$. We put $t_{y}=y$. Without loss of generality we assume that $\left|V\left(T_{y}\right)\right|<5$.
2.1. Let $\left|V\left(T_{y}\right)\right|=1$. Then $V\left(T_{y}\right)=\{y\}$ and $\left|V\left(T_{x}\right)\right| \geqslant 8$. There exists $u \in V\left(T_{x}\right)$ such that $u \neq x, u \neq t_{x}$ and $1 \leqslant d_{T}\left(u, t_{x}\right) \leqslant 2$. Then $2 \leqslant d_{T}(u, y) \leqslant 3$. It follows from the induction hypothesis that there exists a hamiltonian $x-u$ path $P_{1} \in \mathcal{H}\left(\left(T_{x}\right)^{5}-M_{x}\right)$. We put

$$
P=P_{1}+u y .
$$

2.2. Let $\left|V\left(T_{y}\right)\right|=4$. According to Remark 1 there exists a hamiltonian $y-v$ path $P_{2} \in \mathcal{H}\left(\left(T_{y}\right)^{5}-M_{y}\right)$, where $v \in V\left(T_{y}\right)$ and

$$
\begin{array}{lll}
d_{T}(v, y)=1 & \text { if } & T_{y} \text { is not isomorphic to } A_{4} \\
d_{T}(v, y)=2 & \text { if } & T_{y} \text { is isomorphic to } A_{4} .
\end{array}
$$

Since $\left|V\left(T_{y}\right)\right|=4$ and $p \geqslant 9$, we have $\left|V\left(T_{x}\right)\right| \geqslant 5$. We denote by u the vertex with the properties

$$
u \in V\left(T_{x}\right), \quad u \neq x \quad \text { and } \quad d_{T}(u, y) \leqslant 2
$$

Then $d_{T}(u, v) \leqslant 4$. It follows from the induction hypothesis that there exists a hamiltonian $x-u$ path $P_{1} \in \mathcal{H}\left(\left(T_{x}\right)^{5}-M_{x}\right)$. We put

$$
P=P_{1} \cup P_{2}+v u
$$

2.3. Let $1<\left|V\left(T_{y}\right)\right|<4$. Let S_{1}, \ldots, S_{m} be all components of $T-t_{x}$ which are different from T_{y}. We denote by L_{1}, \ldots, L_{m} the matchings in S_{1}, \ldots, S_{m} such that $L_{j}=M \cap E\left(S_{j}\right)$ for $j=1, \ldots, m$.
2.3.1. There exists $i, i \in\{1, \ldots, m\}$ such that $\left|V\left(S_{i}\right)\right| \geqslant 5$.

Then there exist $u_{1}, u_{2} \in V\left(S_{i}\right)$ such that $u_{1} \neq u_{2} \neq x, d_{T}\left(u_{1}, t_{x}\right) \leqslant 2,1<$ $d_{T}\left(u_{2}, t_{x}\right) \leqslant 3$, and if $x \notin V\left(S_{i}\right)$, then $d_{T}\left(u_{1}, t_{x}\right)=1$. According to the induction hypothesis there exists a hamiltonian path $P_{1} \in \mathcal{H}\left(\left(S_{i}\right)^{5}-L_{i}\right)$. Let us suppose that

$$
\begin{aligned}
& P_{1} \text { is a hamiltonian } u_{1}-u_{2} \text { path if } x \notin V\left(S_{i}\right), \\
& P_{1} \text { is a hamiltonian } u_{2}-x \text { path } \quad \text { if } \quad x \in V\left(S_{i}\right) .
\end{aligned}
$$

Denote

$$
T_{0}=T-V\left(S_{i}\right)
$$

Then T_{0} is a tree, $\left|V\left(T_{0}\right)\right| \geqslant 3$ and $y \in V\left(T_{0}\right)$. Further we denote by M_{0} the matching in T_{0} such that $M_{0}=M \cap E\left(T_{0}\right)$.
2.3.1.1. Let $\left|V\left(T_{0}\right)\right|=3$. Then $m=i=1$ and there exists $v \in V\left(T_{0}\right)$ such that $V\left(T_{0}\right)=\left\{t_{x}, y, v\right\}$ and $E\left(T_{0}\right)=\left\{t_{x} y, y v\right\}$. If $x \notin V\left(S_{1}\right)$, then $x=t_{x}$. We put

$$
\begin{array}{lll}
P=P_{1}+u_{1} v+v x+u_{2} y & \text { if } & x \notin V\left(S_{1}\right), \\
P=P_{1}+u_{2} v+v t_{x}+t_{x} y & \text { if } & x \in V\left(S_{1}\right) \text { and } t_{x} y \notin M, \\
P=P_{1}+u_{2} t_{x}+t_{x} v+v y & \text { if } & x \in V\left(S_{1}\right) \text { and } t_{x} y \in M .
\end{array}
$$

2.3.1.2. Let $\left|V\left(T_{0}\right)\right|=4$. Assume that $x \in V\left(S_{i}\right)$. Then according to Remark 1 there exists a hamiltonian $y-v$ path $P_{2} \in \mathcal{H}\left(\left(T_{0}\right)^{3}-M_{0}\right)$, where $v \in V\left(T_{0}\right), v \neq y$ and

$$
\begin{array}{lll}
d_{T}\left(t_{x}, v\right)=2 & \text { if } & \operatorname{deg}_{T_{0}} t_{x}=1 \\
d_{T}\left(t_{x}, v\right)=1 & \text { if } & \operatorname{deg}_{T_{0}} t_{x}=2 .
\end{array}
$$

Then $d_{T}\left(v, u_{2}\right) \leqslant 5$. We put

$$
P=P_{1} \cup P_{2}+u_{2} v .
$$

Let $x \notin V\left(S_{i}\right)$. There exist $v_{1}, v_{2} \in V\left(T_{0}\right)$ such that $v_{1} \neq v_{2} \neq t_{x} \neq y$. Then $V\left(T_{0}\right)=\left\{t_{x}, y, v_{1}, v_{2}\right\}$. We put

$$
\begin{array}{rll}
P=P_{1}+u_{1} v_{2}+v_{2} y+u_{2} v_{1}+v_{1} x & \text { if } & x=t_{x} \text { and } E\left(T_{0}\right)=\left\{x y, y v_{1}, v_{1} v_{2}\right\}, \\
P=P_{1}+u_{1} v_{2}+v_{2} v_{1}+v_{1} x+u_{2} y & \text { if } & x=t_{x} \text { and } E\left(T_{0}\right)=\left\{x y, y v_{1}, y v_{2}\right\} \\
\text { or } & \text { if } & x=t_{x} \text { and } E\left(T_{0}\right)=\left\{x y, y v_{1}, x v_{2}\right\} \\
P=P_{1}+u_{1} y+u_{2} t_{x}+t_{x} v_{1}+v_{1} x & \text { if } & x=v_{2} \text { and } E\left(T_{0}\right)=\left\{x t_{x}, t_{x} y, y v_{1}\right\} .
\end{array}
$$

2.3.1.3. Let $\left|V\left(T_{0}\right)\right| \geqslant 5$. Since $\left|V\left(T_{x}\right)\right|<5$ or $\left|V\left(T_{y}\right)\right|<5$ for every two vertices t_{x}, t_{y} of T with the properties (1)-(3), we have $x \notin V\left(S_{i}\right)$. It follows from the induction hypothesis that there exists a hamiltonian $x-y$ path $P_{2} \in \mathcal{H}\left(\left(T_{0}\right)^{5}-M_{0}\right)$. Since $\left|V\left(T_{y}\right)\right|<4$, there exists $v \in V\left(T_{0}\right)$ such that $v y \in E\left(P_{2}\right)$ and $d_{T}\left(v, t_{x}\right) \leqslant 4$. We put

$$
\begin{array}{lll}
P=P_{1} \cup P_{2}-y v+u_{1} v+u_{2} y & \text { if } & v \neq t_{x}, \\
P=P_{1} \cup P_{2}-y v+u_{2} v+u_{1} y & \text { if } & v=t_{x} .
\end{array}
$$

2.3.2. For every $i, i \in\{1, \ldots, m\}$ we have $\left|V\left(S_{i}\right)\right|<5$. Denote

$$
T_{0}=T-V\left(T_{y}\right), \quad M_{0}=M \cap E\left(T_{0}\right)
$$

Then $\left|V\left(T_{0}\right)\right|>5, M_{0} \in \mathcal{M}\left(T_{0}\right), x \in V\left(T_{0}\right)$ and for every $i, i \in\{1, \ldots, m\}$, we have $V\left(S_{i}\right) \subset V\left(T_{0}\right)$. There exists $v \in V\left(T_{0}\right)$ such that $v \neq x$ and $1 \leqslant d_{T}\left(v, t_{x}\right) \leqslant 2$. It follows from the induction hypothesis that there exists a hamiltonian $x-v$ path $P_{0} \in$ $\mathcal{H}\left(\left(T_{0}\right)^{5}-M_{0}\right)$. Since $\left|V\left(T_{y}\right)\right| \in\{2,3\}$ and $\delta(T)>5$, there exists $k, k \in\{1, \ldots, m\}$, such that S_{k} is isomorphic to one of the elements of \mathcal{A}, where

$$
\mathcal{A}=\left\{A_{3}, A_{4}, A_{4 *}\right\}
$$

For the sake of simplicity we shall assume that $S_{k} \in \mathcal{A}$. Then

$$
\begin{aligned}
& V\left(S_{k}\right)=\left\{w_{1}, \ldots, w_{n}\right\}, \quad \text { where } n \in\{3,4\} \\
& d_{T}\left(w_{j}, t_{x}\right)=j, \quad \text { for every } j, j \in\{1,2,3\} \\
& d_{T}\left(w_{4}, t_{x}\right)=4 \quad \text { if } \quad S_{k}=A_{4} \quad \text { and } \quad d_{T}\left(w_{4}, t_{x}\right)=3 \quad \text { if } \quad S_{k}=A_{4 *}
\end{aligned}
$$

Let a_{2} and a_{3} be distinct vertices of T_{0} such that $a_{2} w_{2}, a_{3} w_{3} \in E\left(P_{0}\right)$. If $S_{k}=A_{4}$, then there exists $h, h \in\{2,3\}$, such that $a_{h} \neq w_{4}$. Then $d_{T}\left(a_{h}, t_{x}\right) \leqslant 3$. The component T_{y} is isomorphic to one of the elements of \mathcal{B}, where

$$
\mathcal{B}=\left\{A_{2}, A_{3}, A_{3 *}\right\}
$$

We denote the vertices of T_{y} by $t_{1}, \ldots, t_{n}(n \in\{2,3\})$ so that

$$
\begin{array}{lll}
d_{T}\left(t_{j} t_{x}\right)=j & \text { if } & j \in\{1,2\} \\
d_{T}\left(t_{3} t_{x}\right)=3 & \text { if } & T_{y} \text { is isomorphic to } A_{3} \\
d_{T}\left(t_{3} t_{x}\right)=2 & \text { if } & T_{y} \text { is isomorphic to } A_{3 *}
\end{array}
$$

Then $t_{1}=y, d_{T}\left(a_{h}, t_{2}\right) \leqslant 5, d_{T}\left(w_{2}, t_{2}\right)=4, d_{T}\left(w_{3}, t_{2}\right)=5$ and $d_{T}\left(v, t_{3}\right) \leqslant 5$. We put

$$
\begin{aligned}
& P=P_{0}-a_{h} w_{h}+v y+a_{h} t_{2}+w_{h} t_{2} \quad \text { if } \quad T_{y} \text { is isomorphic to } A_{2} \\
& P=P_{0}-a_{h} w_{h}+v t_{3}+t_{3} y+a_{h} t_{2}+w_{h} t_{2} \quad \text { if } \quad T_{y} \text { is isomorphic to } A_{3} \\
& P=P_{0}-a_{h} w_{h}+v y+a_{h} t_{2}+t_{2} t_{3}+t_{3} w_{h} \quad \text { if } \quad T_{y} \text { is isomorphic to } A_{3 *} .
\end{aligned}
$$

We can see that in each subcase P is the hamiltonian $x-y$ path of $T^{5}-M$. Thus the proof of Lemma 3 is complete.

Lemma 4. ([4] p.63) Let G be a connected graph and let L be a subgraph of G which contains no cycle. Then there exists a spanning tree T of G such that L is a subgraph of T.

Proof of Theorem 2. Let G be a graph satisfying the conditions of Theorem 2 and let M be an arbitrary matching in G. As follows from Lemma 4, there exists a spanning tree T of G such that M is a matching in T. According to Lemma 3, $T^{5}-M$ is hamiltonian-connected. Thus $G^{5}-M$ is also hamiltonian-connected.

Remark 6. Let $n \geqslant 1$ be an integer, and let G be the tree of order $p=4 n+4$ which is given in Fig. 1. Let

$$
M=\left\{u_{i 1} u_{i 2}, u_{i 3} u_{i 4} ; 1 \leqslant i \leqslant n\right\} \cup\left\{x y, w_{3} w_{4}\right\}
$$

be a matching in G. Then there exists no hamiltonian $x-y$ path of $G^{4}-M$.
This means that the value 5 of the power in Theorem 2 is the best possible.

Fig. 1
References
[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs \& Digraphs. Prindle, Weber \& Schmidt, Boston 1979.
[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.), 1969.
[3] L. Nebesky: A matching and a hamiltonian cycle of the fourth power of a connected graph. Mathematica Bohemica 118 (1993), 43-52.
[4] J. Sedláček: Introduction Into the Graph Theory. Academia, Praha, 1981. (In Czech.)
[5] M. Sekanina: On an ordering of the set of vertices of a connected graph. Publ. Sci. Univ. Brno 412 (1960), 137-142.
[6] E. Wisztová: On a hamiltonian cycle of the fourth power of a connected graph. Mathematica Bohemica 116 (1991), 385-390.

Author's address: Elena Wisztová, Vysoká škola dopravy a spojov, Hurbanova 15, 01026 Žilina, Slovakia.

