Mathematic Bohemia

Bohdan Zelinka

Distances between partially ordered sets

Mathematica Bohemica, Vol. 118 (1993), No. 2, 167-170

Persistent URL: http://dml.cz/dmlcz/126044

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DISTANCES BETWEEN PARTIALLY ORDERED SETS

Bohdan Zelinka, Liberec

(Received October 31, 1991)

Summary. A distance between finite partially ordered sets is studied. It is a certain measure of the difference of their structure.

Keywords: isomorphism of partially ordered sets, distance, distance graph
AMS classification: 06A07, 05C12

There exist various distances between isomorphism classes of graphs; see [1], [2], [3], [4], [5]. In a similar way as in [4] for graphs, the distance between isomorphism classes of partially ordered sets (shortly posets) may be introduced. For the sake of brevity, we will speak about the distance between posets instead of the distance between isomorphism classes of posets; we must bear in mind that then two posets having the zero distance need not be identical, but they are isomorphic.

If a poset P with an ordering \leqslant is given, then a subposet of P is a subset of P whose ordering is the restriction of \leqslant onto it. When it does not lead to a misunderstanding, we shall use the same symbol \leqslant in distinct posets.

Consider the class \mathscr{P}_{n} of all posets with n elements, where n is a positive integer. Let P_{1}, P_{2} be two posets from \mathscr{P}_{n}. The distance $d\left(P_{1}, P_{2}\right)$ between the posets P_{1}, P_{2} is equal to n minus the maximum number of elements of a poset which is isomorphic simultaneously to a subposet of P_{1} and to a subposet of P_{2}.

We will prove a theorem.

Theorem 1. Let P_{1}, P_{2} be two posets from \mathscr{P}_{n}. Let P_{0} be a poset containing subgraphs isomorphic to both P_{1} and P_{2}, and let P_{0} have the minimum number of elements among all posets with this property. Then the number of elements of P_{0} is $n+d\left(P_{1}, P_{2}\right)$.

Proof. Denote $d\left(P_{1}, P_{2}\right)=p$. Then there exists a subposet P of P_{1} which has $n-p$ elements and is isomorphic to a subposet P^{\prime} of P_{2}. Suppose that P_{1}, P_{2} are disjoint and take their union $P_{1} \cup P_{2}$; in this union $x \leqslant y$ if and only if $x \leqslant y$ in P_{1} or in P_{2}. Now choose an isomorphism φ of P onto P^{\prime} and for each $x \in P$ identify the vertices x and $\varphi(x)$. The poset thus obtained from $P_{1} \cup P_{2}$ will be denoted by P_{0}. If $x \in P_{1}, y \in P_{1}$, then $x \leqslant y$ in P_{0} if and only if $x \leqslant y$ in P_{1}. If $x \in P_{2}, y \in P_{2}$, then $x \leqslant y$ in P_{0} if and only if $x \leqslant y$ in P_{2}. If $x \in P_{1}-P, y \in P_{2}-P$, then $x \leqslant y$ in P_{0} if and only if there exists $z \in P$ such that $x \leqslant z$ in P_{1} and $z \leqslant y$ in P_{2}. If $x \in P_{2}-P$, $y \in P_{1}-P$, then $x \leqslant y$ in P_{0} if and only if there exists $z \in P$ such that $x \leqslant z$ in P_{2} and $z \leqslant y$ in P_{1}. We shall prove that P_{0} is really a poset. The trausitivity of the ordering \leqslant is clear. We shall only prove that $x \leqslant y$ and $y \leqslant x$ is not possible for $x \neq y$. It suffices to prove this for $x \in P_{1}-P, y \in P_{2}-P$; the proof for $x \in P_{2}-P$, $y \in P_{1}-P$ is analogous and for other pairs x, y the assertion is clear. Suppose that $x \in P_{1}-P, y \in P_{2}-P$ and simultaneously $x \leqslant y$ and $y \leqslant x$. Then there exist elements z_{1}, z_{2} of P such that $x \leqslant z_{1}$ in $P_{1}, z_{1} \leqslant y$ in $P_{2}, y \leqslant z_{2}$ in $P_{2}, z_{2} \leqslant x$ in P_{1}. As $z_{1} \leqslant y, y \leqslant z_{2}$ in P_{2}, we have $z_{1} \leqslant z_{2}$ in P_{2} and also in P. As $z_{2} \leqslant x, x \leqslant z_{1}$ in P_{1}, we have $z_{2} \leqslant z_{1}$ in P_{1} and also in P. Therefore in P we have simultaneously $z_{1} \leqslant z_{2}$ and $z_{2} \leqslant z_{1}$ and thus $z_{1}=z_{2}$. But then $x \leqslant z_{1}$ and $z_{1} \leqslant x$ in P_{1}; we have $x=z_{1}$, which is a contradiction with the assumption that $x \in P_{1}-P, z_{1} \in P$. The poset P_{0} has $2 n-(n-p)=n+p$ elements and has the required property.

Now suppose that P_{3} is a poset containing subposets isomorphic to both P_{1} and P_{2}. Let these subposets be P_{1}^{\prime} and P_{2}^{\prime}. As $\left|P_{1}^{\prime}\right|=\left|P_{2}^{\prime}\right|=n$, the intersection $P_{1}^{\prime} \cap P_{2}^{\prime}$ has at least $2 n-\left|P_{3}\right|$ elements. This intersection is isomorphic to a subgraph of P_{1} and to a subgraph of P_{2} and therefore $\left|P_{1}^{\prime} \cap P_{2}^{\prime}\right| \leqslant n-p$, which yields $2 n-\left|P_{3}\right| \leqslant\left|P_{1}^{\prime} \cap P_{2}^{\prime}\right| \leqslant n-p$ and therefore $\left|P_{3}\right| \geqslant n+p$.

By a chain we mean a totally ordered set, i.e. a set in which $\boldsymbol{x} \leqslant \boldsymbol{y}$ or $\boldsymbol{y} \leqslant \boldsymbol{x}$ for any two elements x, y. An antichain is a poset in which $x \leqslant y$ if and only if $x=y$. If P is a poset, then by $c(P)$ (or $a(P)$) we denote the maximum number of elements of a subposet of P which is a chain (or an antichain, respectively).

Theorem 2. Let P_{1}, P_{2} be two posets from \mathscr{P}_{n}. Then $d\left(P_{1}, P_{2}\right) \leqslant n-\min \left\{c\left(P_{1}\right)\right.$, $\left.c\left(P_{2}\right), a\left(P_{1}\right), a\left(P_{2}\right)\right\}$.

Proof. Both the posets P_{1}, P_{2} have a subposet which is a chain with $\min \left\{c\left(P_{1}\right), c\left(P_{2}\right)\right\}$ elements, and hence $d\left(P_{1}, P_{2}\right) \leqslant n-\min \left\{c\left(P_{1}\right), c\left(P_{2}\right)\right\}$. They have also a subposet which is an antichain with $\min \left\{a\left(P_{1}\right), a\left(P_{2}\right)\right\}$ elements, and hence $d\left(P_{1}, P_{2}\right) \leqslant n-\min \left\{a\left(P_{1}\right), a\left(P_{2}\right)\right\}$. This yields the result.

Now we shall construct the distance graph $G\left(P_{n}\right)$ of \mathscr{P}_{n}. The vertex set of $G\left(\mathscr{P}_{n}\right)$ is the set of all isomorphism classes of posets from \mathscr{P}_{n}. (An isomorphism class of
posets if the class of all posets which are isomorphic to a given poset.) Two vertices of $G(\mathscr{P})$ are adjacent if and only if the distance between posets from these classes is equal to 1 .

Theorem 3. Let P_{1}, P_{2} be two posets from \mathscr{P}_{n}. Then the distance between the isomorphism classes containing P_{1} and P_{2} in the graph $G\left(\mathscr{P}_{n}\right)$ is equal to $d\left(P_{1}, P_{2}\right)$.

Proof. If $d\left(P_{1}, P_{2}\right)=0$ or $d\left(P_{1}, P_{2}\right)=1$, then the assertion is clear. Suppose that $d\left(P_{1}, P_{2}\right)=p>1$. There exists a poset P_{0} having $n-p$ elements and isomorphic to a subposet of P_{1} and to a subposet of P_{2}. For the sake of simplicity we may suppose that $P_{0}=P_{1} \cap P_{2}$. Let $P_{1}-P_{0}=\left\{x_{1}, \ldots, x_{p}\right\}, P_{2}-P_{0}=\left\{y_{1}, \ldots, y_{p}\right\}$. For $i=1, \ldots, p-1$ we define $X_{i}=\left\{x_{i+1}, \ldots, x_{p}\right\}, Y_{i}=\left\{y_{1}, \ldots, y_{i}\right\}$; further $X_{0}=\left\{x_{1}, \ldots, x_{p}\right\}, Y_{0}=X_{p}=\emptyset, Y_{p}=\left\{y_{1}, \ldots, y_{p}\right\}$. For $i=0, \ldots, p$ then $Q_{i}=P_{0} \cup X_{i} \cup Y_{i}$. We determine the ordering \leqslant on Q_{i} for each i. If both x and y are in $P_{0} \cup X_{i}$, then $x \leqslant y$ if and only if $x \leqslant y$ in P_{1}. If both x and y are in $P_{0} \cup Y_{i}$, then $x \leqslant y$ if and only if $x \leqslant y$ in P_{2}. If $x \in X_{i}, y \in Y_{i}$, then $x \leqslant y$ if and only if there exists $z \in P_{0}$ such that $x \leqslant z$ in P_{1} and $z \leqslant y$ in P_{2}. If $x \in Y_{i}$, $y \in X_{i}$, then $x \leqslant y$ if and only if there exists $z \in P_{0}$ such that $x \leqslant z$ in P_{2} and $z \leqslant y$ in P_{1}. Analogously as in the proof of Theorem 1 we can prove that this is really an ordering on Q_{i}. Evidently $Q_{0}=P_{1}, Q_{p}=P_{2}$ and $d\left(Q_{i}, Q_{i+1}\right)=1$ for $i=0, \ldots, p-1$ and therefore the isomorphism classes to which these posets belong form a path of length at most p in $G\left(\mathscr{P}_{n}\right)$ connecting the isomorphism classes of P_{1} and P_{2}. Now suppose that there exists a path in $G\left(\mathscr{P}_{n}\right)$ connecting these classes and having the length $q<p$. Let its vertices be the classes containing the posets $P_{1}=R_{0}, R_{1}, \ldots, R_{q}=P_{2}$. For $i=0, \ldots, p-1$ we have $d\left(R_{i}, R_{i+1}\right)=1$. Now we shall define the posets S_{0}, \ldots, S_{q}. We put $S_{0}=P_{1}$. According to Theorem 1 there exists a poset S_{1} with $n+1$ elements which has subposets $R_{0}^{\prime} \cong R_{0}$ and $R_{1}^{\prime} \cong R_{1}$. Now let $2 \leqslant i \leqslant p ;$ suppose that we have constructed the set S_{i-1} which has at most $n+i-1$ elements and contains the mentioned subposet $R_{0}^{\prime} \cong R_{0}$ and subposet $R_{i-1}^{\prime} \cong R_{i-1}$. Again according to Theorem 1 there exists a poset having $n+1$ elements and containing the above mentioned subposet R_{i-1}^{\prime} and subposet $R_{i}^{\prime} \cong R_{i}$; we put $S_{i}=S_{i-1} \cup R_{i}^{\prime}$ and determine the ordering in it analogously as above. As $\left|R_{i-1}^{\prime}\right|=n$ and $R_{i-1}^{\prime} \subseteq S_{i-1} \cap R_{i}^{\prime}$, we have $\left|S_{i}\right| \leqslant n+i$. Hence $\left|S_{q}\right| \leqslant n+q$ and S_{q} contains subposets isomorphic to P_{1} and to P_{2}. The intersection of these subposets has at least $2 n-(n+q)=n-q$ elements and $d\left(P_{1}, P_{2}\right) \leqslant q<p$, which is a contradiction. This proves the assertion.

Theorem 4. The diameter of $G\left(\mathscr{P}_{n}\right)$ is $n-1$. The unique pair of vertices of $G\left(\mathscr{P}_{n}\right)$ having the distance $n-1$ consists of the class containing a chain and the class containing an antichain.

Proof. Evidently $c(P) \geqslant 1, a(P) \geqslant 1$ for every non-empty poset P and therefore $d\left(P_{1}, P_{2}\right) \leqslant n-1$ for any two posets P_{1}, P_{2} from \mathscr{P}_{n}. According to Theorem 2, if C is a chain and A is an antichain with n vertices, then the maximum number of elements of a poset isomorphic simultaneously to a subposet of C and to a subposet of A is 1 and $d(C, A)=n-1$. If P is a poset with n vertices being neither a chain, nor an antichain, then P contains a chain with two elements and an antichain with two elements as its subposet and hence $d\left(P_{1}, P_{2}\right) \leqslant n-2$ whenever $\left\{P_{1}, P_{2}\right\} \neq\{C, A\}$.

References

[1] Baláż V., Kóča J., Kvasnička V., Sekanina M.: A metric for graphs, Časop. pèst. mat. 111 (1986), 431-433.
[2] Chartrand G., Saba F., Zou H.-B.: Edge rotations and distance between graphs, Časop. pést. mat. 110 (1985), 87-91.
[3] Johnson M.: A ordering of some metrics defined on the space of graphs, Czechoslovak Math. J. 37 (1987), 75-85.
[4] Zelinka B.: On a certain distance between isomorphism classes of graphs, Časop. pěst. mat. 100 (1975), 371-373.
[5] Zelinka B.: A distance between isomorphism classes of trees., Czechoslovak Math. J. 33 (1983), 126-130.

Author's address: Katedra matematiky VŠST, Voroněžská 13, 46117 Liberec 1.

