Mathematica Bohemica

Michal Fečkan

Invariant curves from symmetry

Mathematica Bohemica, Vol. 118 (1993), No. 2, 171-174
Persistent URL: http://dml.cz/dmlcz/126048

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

INVARIANT CURVES FROM SYMMETRY

Michal Fečkan, Bratislava

(Received December 20, 1991)

Summary. We show that certain symmetries of maps imply the existence of their invariant curves.

Keywords: invariant curves, discrete dynamical systems
AMS classification: 58 F21, 58 F08

1. Introduction

In this paper we shall investigate the following problem: Does a symmetry of a continuous map imply the existence of invariant curves? An affirmative answer to a similar question for ordinary differential equations was given in [1].

We study a continuous map $F: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}, m \geqslant 2$ equivariant under an orthogonal representation of a compact Lie group. Then assuming some other properties of F we show the existence of invariant curves which lie on spheres. The proof of the theorem of this paper is based on results of the paper [1] and features of orthogonal representations.

2. Main result

Consider a continuous map $F: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}, m \geqslant 2$ such that
i) there exist x_{1}, x_{2} satisfying

$$
\left(\left|F\left(x_{1}\right)\right|-\left|x_{1}\right|\right)\left(\left|F\left(x_{2}\right)\right|-\left|x_{2}\right|\right)<0 ;
$$

ii) F is equivariant under a linear othogonal representation T of a compact Lie group $G, T=\left\{T_{g}: g \in G\right\}$, i.e.,

$$
F\left(T_{g} x\right)=T_{g} F(x)
$$

iii) T is transitive on the unit sphere $S^{m-1} \subset \mathbf{R}^{m}$, i.e.,

$$
\left\{T_{g} x: g \in G\right\}=S^{m-1}
$$

for each $x \in S^{m-1}$ (see [1, p. 478]).
Theorem. Under the above assumptions F has an invariant curve.
Proof. Since F is equivariant under T and T is transitive, we have $|F(x)|=$ $\varrho(|x|)$ for a continuous function $\varrho:[0, \infty) \rightarrow[0, \infty)$. We note that the assumption ii) implies $F(0)=0$. The condition i) implies

$$
\left(\varrho\left(\left|x_{1}\right|\right)-\left|x_{1}\right|\right) \cdot\left(\varrho\left(\left|x_{2}\right|\right)-\left|x_{2}\right|\right)<0 .
$$

Hence there is $h>0$ such that $\varrho(h)=h$. Thus the sphere $S_{h}=\{x:|x|=h\}$ is invariant under F. Take $x_{0} \in S_{h}$. Then by [1, Lemma 1 and Lemma 2] there is
$K_{0} \in C(T)=\left\{K: K\right.$ is an $m \times m$ matrix, $K T_{g}=T_{g} K$ for each $\left.g \in G\right\}$
such that $F\left(x_{0}\right)=K_{0} x_{0}$.
Further $K_{0} T_{g} x_{0}=T_{g} K_{0} x_{0}=T_{g} F\left(x_{0}\right)=F\left(T_{g} x_{0}\right)$. Thus

$$
\left|K_{0} T_{g} x_{0}\right|=\left|F\left(T_{g} x_{0}\right)\right|=\left|F\left(x_{0}\right)\right|=h .
$$

Since T is transitive and $T_{g} x_{0} \in S_{h}$, we see that $\left|K_{0} x\right|=|x|, \forall x \in S_{h}$. Thus K_{0} is orthogonal. Hence the eigenvalues of K_{0} lie on the unit circle.

We have $K_{0} T_{g} x_{0}=F\left(T_{g} x_{0}\right)$. Since T is transitive we have

$$
K_{0} x=F(x)
$$

for each $x \in S_{h}$. Hence $F / S_{h}=K_{0}$, i.e., the restriction of F on S_{h} is the linear $\operatorname{map} K_{0}$.

Since T is transitive, T is irreducible. Hence the minimal polynomial of K_{0} is irreducible as well. Indeed, let the minimal polynomial p be expressed as $p=p_{1} p_{2}$ for p_{1}, p_{2} nonconstant polynomials. Then $\exists \alpha \in \mathbf{R}^{m}$ such that $\beta=p_{2}\left(K_{0}\right) \alpha \neq 0$. Consider $Y=\operatorname{ker} p_{1}\left(K_{0}\right)$. Then $\beta \in Y$, since $p_{1}\left(K_{0}\right) \beta=p_{1}\left(K_{0}\right) \cdot p_{2}\left(K_{0}\right) \alpha=$
$p\left(K_{0}\right) \alpha=0$. Hence $Y \neq\{0\}$. Using the property $K_{0} T_{g}=T_{g} K_{0}, \forall g \in G$, we have $p_{1}\left(K_{0}\right) T_{g}=T_{g} p_{1}\left(K_{0}\right), \forall g \in G$. This implies that Y is invariant under T_{g}, $\forall g \in G$. But T is irreducible, hence $Y=\mathbf{R}^{m}$ and p_{2} has to be constant. This is a contradiction. Thus K_{0} satisfies either an equation $K_{0}=d \cdot I, d \in \mathbf{R}$ or

$$
\begin{equation*}
K_{0}^{2}=b \cdot K_{0}+c \cdot I \tag{1}
\end{equation*}
$$

for $b, c \in \mathbf{R}$ and $I=$ Identity.
Let the minimal polynomial of K_{0} be $y-d$, i.e., $K_{0}=d \cdot I$. Since K_{0} is orthogonal we have $d= \pm 1$ and the existence of an invariant curve is trivial.

Let $y^{2}-b y-c$ be the minimal polynomial. Since K_{0} has only eigenvalues on the unit circle,

$$
y^{2}=b y+c
$$

has only roots with absolute values 1 . We have applied the Cayley-Hamilton theorem [2]. This implies

$$
|b| \leqslant 2, \quad c= \pm 1
$$

From (1) and $K_{0}^{\top}=K_{0}^{-1}$ we have

$$
\begin{align*}
& K_{0}=b \cdot I \pm K_{0}^{-1}=b \cdot I \pm K_{0}^{\top} \\
& K_{0} \mp K_{0}^{\top}=b \cdot I \tag{2}
\end{align*}
$$

First, we consider

$$
\begin{equation*}
K_{0}-K_{0}^{\top}=b \cdot I \tag{3}
\end{equation*}
$$

Then $b=0, K_{0}=K_{0}^{\top}$. In this case the polynomial $y^{2}-1$ is not irreducible. Thus it is not minimal and we arrive at the first case.

Now we consider the second version of (2),

$$
K_{0}+K_{0}^{\top}=b \cdot I
$$

Let us take $B=K_{0}-\frac{b}{2} \cdot I$. Then $K_{0}=\frac{b}{2} \cdot I+B$ and $B^{\top}=-B$. By $K_{0} K_{0}^{\top}=I$ we have

$$
\begin{align*}
I & =\left(\frac{b}{2} \cdot I+B\right)\left(\frac{b}{2} \cdot I-B\right) \\
& =\frac{b^{2}}{4} \cdot I-B^{2}, \\
B^{2} & =\left(\frac{b^{2}}{4}-1\right) \cdot I . \tag{4}
\end{align*}
$$

Let $|b|<2$. Then B is invertible. Consider

$$
A=\{c \cdot x+d \cdot B x: c, d \in \mathbf{R}\}, \quad x \neq 0
$$

Note that $B^{\top}=-B$ implies $x \perp B x$. Then by (4) $K_{0} A=A$ and easy computation shows that the matrix $K_{0} / A=E$ under the basis $B x, x$ has the form

$$
E=\left(\begin{array}{cc}
\frac{b}{2} & \frac{b^{2}}{4}-1 \\
1 & \frac{b}{2}
\end{array}\right)
$$

E has eigenvalues $\frac{1}{2}\left(b \pm \sqrt{b^{2}-4}\right)$. Hence E is equivalent to a rotation. This implies that $C=A \cap S_{h}$ is an invariant circle of F and F / C is equivalent to a rotation.

Finally, let $b= \pm 2$. Then the polynomial $y^{2} \mp 2 y+1=(y \mp 1)^{2}$ is not irreducible. Thus we have again arrived at the first case.

Corollary. The dynamics of F on an invariant curve predicted by Theorem is equivalent to a rotation.

Proof. The statement follows immediately from the above proof.

References

[1] G. Cicogna, G. Gaeta: Periodic solutions from symmetry, Nonlinear Analysis T.M.A. 13 (1989), 475-488.
[2] G. Birkhoff, S. Mac Lane: A Survey of Modern Algebra, The Macmillan Company, New York, 1965.

Author's address: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava, Slovakia.

