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Summary. We investigate free groups over sequential spaces. In particular, we show that 
the free k-group and the free sequential group over a sequential space with unique limits 
coincide and, barred the trivial case, their sequential order is u\. 
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1. INTRODUCTION 

Usually, by an L-group a group equipped with a convergence of sequences com
patible with the group operation is understood. The notion dates back to O. Schrei-
er ([21]). The most important class of L-groups consists of groups in which the 
convergence has unique limits and satisfies the Urysohn axiom of convergence. Such 
groups are known as FLUSH-convergence groups (the so called Katowice notation, 
cf. [14]) or L*GRsep ([8]). It is known that there are nice correspondences between 
certain sequential convergences and certain sequential closures (cf. [7], [10]). In par
ticular, each FUSH-convergence space can be viewed as a sequential (topological) 
space having unique sequential limits and each FLUSH-convergence group can be 
viewed as a group equipped with a sequential topology having unique sequential lim
its such that the group operation is sequentially continuous. Since sequential spaces 
are fc-spaces, a natural question arises what is the relationship between L-groups 
and the more recent fc-groups (cf. [18]). The two theories have been developed in
dependently, though there were clues indicating that their intersection is non-void 
(cf. [5] and [20]). In [4] it is proved that sequential groups with unique sequential 
limits, hence FLUSH-convergence groups, can be identified with a subclass of weakly 
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Hausdorflf fc-groups. In the present paper we show that the identification extends to 
free groups. As a corollary, we show that epics in the category of FLUSH-groups are 
morphisms with top dense range. The identification also yields a tool for studying 
certain sequential properties of free fc-groups and free topological groups ([19]). 

2 . L-GROUPS VERSUS ifc-GROUPS 

For Ar-spaces and fc-groups the reader is referred to [13], [if and [18], [11], and for 
spaces and groups equipped with a sequential convergence to [10], [1] and [15], [9], 
[5], [8]. Epics in T2 fc-groups are investigated in [12]. 

For the reader's convenience we recall here some basic facts about sequential spaces 
and .fe-spac.es. 

Let X be a topological space. A subset U of A' is said to be sequentially open if 
whenever a .sequence (xn) converges in X to x E (/, then xn £ U for all but finitely 
many n 6 N; its complement is called sequentially closed. Open sets are sequentially 
open and the latter sets form a topology; the resulting space will be denoted by 
s(X). This yields a well-known modification functor s acting on the category TOP 
of topological spaces and continuous maps. A topological space Y is said to be 
sequential if s(Y) = Y. A mapping / of a sequential space Y into X is continuous iff 
it is sequentially continuous. A quasi-compact space is a topological space with the 
property that every open cover has a finite subcover; a compact space is a T2 quasi-
compact space. A continuous map p: T -* X is said to be a test if T is compact. 
A subset U of A' is said to be k-open (k-closed) if for all tests <p:T —• X, <p~l(U) 

is open (closed). Open sets are Ar-open and the latter form a topology; the resulting 
space will be denoted by k(X). The corresponding functor acting on TOP is denoted 
by k. If k(X) = X, then X is said to be a k-space. Clearly, s(X) is determined by 
all tests the domain of which is u; + 1 (the space of all ordinal numbers less than or 
equal to u). Indeed, a subset U of X is sequentially open (closed) iff <p~l(U) is open 
(closed) for all tests <p: UJ -f 1 —» X. We say that X is weakly Hausdorff, or t2, if for 
each test <p:T —• X, <p(T) is closed in X. In a t2 space X the set <p(T) is compact 
for each test <p ([13]). The categories K of fc-spaces and WHK of t2 fc-spaces (with 
continuous maps as morphisms) have nice properties (cf. [11]). 

For X, Y G TOP their topological product will be denoted by X x Y and, for X, 
Y € K, k(X x Y) is their product in K; it will be denoted by X x* Y and called 
the k-product of X and Y (in [11] the topological product of X and Y is denoted 
by X x c Y and the Ar-prodiict is denoted by X x V). Similarly, if X and Y are 
sequential, then s(X x Y) is their sequential product and will be denoted by X xs Y. 

A k~group is a group G with a fc-topology such that inversion is continuous and 
multiplication is continuous on the fc-product. 
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A group G equipped with a sequential topology such that inversion is continuous 
and such that multiplication is continuous on the sequential product is said to be a 
sequential group ([4]). 

It is known that there is a one-to-one relationship between FUSH-convergences 
and sequential topologies with unique limits. Clearly, this induces a one-to-one re
lationship between FLUSH-convergence groups and sequential groups with unique 
sequential limits. (Recall that (L) stands for the compatibility of the convergence: if 
(xn) converges to x and (yn) converges to y, then (tf^1) converges to x~l and (xnyn) 

converges to xy.) Indeed, if we start with a FLUSH-convergence in a group, sequen
tially open sets form a sequential topology having the same convergent sequences as 
the original convergence. Axiom (L) guarantees that the group equipped with the 
induced sequential topology is a sequential group with unique sequential limits. 

Note that in the FLUS-convergence group theory (the uniqueness of limits is not 
assumed) the invariants fail to be "topological" (cf. Remark 2.1 in [5]). In fact, a 
group can be equipped with two non-isomorphic FLUS-convergences inducing the 
same sequential topology. The first example of such a group is due to A. Kaminski. 

In the sequel, the following results from [4] will be needed. 

Theorem 0. (i) A sequential space is <2 iff it has unique sequential limits. 

(ii) Let X and Y be sequential spaces with unique sequential limits. Then their 

sequential product X xsY has unique sequential limits and coincides with their 

k-product X Xk Y. 

(iii) Let G be a k-group. Then s(G) is a sequential group. IfG is a t<i space, then 

s(G) has unique sequential limits. 

(iv) Let G be a sequential group with unique sequential limits. Then G is a ti 

k-group. 

R e m a r k 0. The assertion (ii) in Theorem 0 follows by Theorem 3.6 in [22] (s-

products and fc-products of finitely many spaces coincide) and the fact that unique 
sequential limits are preserved by products. Observe that while Theorem 3.6 in [22] is 
proved by categorical arguments, in [4] a simple topological proof of (ii) in Theorem 0 
is given. 

R e m a r k 1. Denote by WHSG the category of all sequential groups having 
unique sequential limits, with sequentially continuous homomorphisms as morphisms. 
It follows from (iv) in Theorem 0 that WHSG is a full subcategory of WHKG (con
sisting of all $2 A:-groups, see [11]). This in turn induces an isomorphism between 
FLUSH-convergence groups and the corresponding full subcategory of WHKG. 

R e m a r k 2. Since the fc-product of two ib-groups is a Ar-group, it follows from 

(ii) in Theorem 0 that the ^-product of two t2 sequential groups is a <2 sequential 
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group. The assertion can be easily extended to finite products. The Ar-product of 
uncountably many J 2 sequential groups need not be a sequential group. E.g., let X be 
an uncountable power of the one-dimensional torus. The fc-product topology is the 
usual product topology for X\ it is a fc-group topology but fails to be sequential. The 
question arises whether every fc-product of countably many t<i sequential groups is a 
sequential group. The answer is "yes" provided the topological product of countably 
many compact sequential spaces with unique sequential limits is a sequential space. 

The relevant information on free FLUSH-convergence groups (commutative, non-
commutative, pointed commutative and pointed noncommutative) can be found in [5] 
and [6]. For free fc-groups and their relationship to free topological groups, the reader 
is referred to [18] and [11]. Interesting facts about free continuous algebras are con
tained in [20]. 

Definition. Let X be a sequential space having unique sequential limits with 
a distinguished point e and let FX be a sequential group having unique sequential 
limits which contains X as a subspace and has e as its identity element. Then FX is 
said to be the pointed (Graev) free sequential group over X if each continuous map of 
X into a sequential group G with unique sequential limits, sending e to the identity 
element of G, can be uniquely extended to a continuous homornorphism of FX into 
G. The (non-pointed) free sequential group, the abelian free sequential group and the 
pointed abelian free sequential group are defined in the obvious way. 

R e m a r k 3. Let X be a sequential space with unique sequential limits. The 
existence and properties of all four types of free sequential groups FX follow directly 
from the corresponding results for FLUSH-convergence free groups ([5]). 

Theorem 1. Let X be a sequential space with unique sequential limits. Let FX 

be the free k-group generated by X. Then FX is a sequential group with unique 

sequential limits. 

P r o o f . Consider the sequential modification s(FX) of FX. Since X is a <2 
space, FX is a *2 space as well (cf. Corollary 2.13 in [11]). By (iii) in Theorem 0, 
s(FX) is a sequential group with unique sequential limits and, by (iv) in Theorem 0, 
it is a $2 fc-group. Since the identity mapping of s(FX) into FX is continuous, 
necessarily s(FX) = FX. • 

Corollary 1. Let X be a sequential space with unique sequential limits. Let FX 

be the free k-group (abelian, pointed, poinetd abelian) over X. Then FX is the free 

sequential (abelian, pointed, pointed abelian) group over X. 

P r o o f . The free sequential group over X (cf. Remark 3) is a t% fc-group ((iv) in 

Theorem 0), hence it has to coincide with FX. D 
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R e m a r k 4. Corollary 1 yields an alternative construction of the free FLUSH-
convergence group via the free ib-group. Indeed, if X is a FUSH-convergence space, 
then the free FLUSH-convergence group (pointed, abelian, pointed abelian) gener
ated by X can be constructed via applying successively the topological modification 
functor, then the free Ar-group functor and then the sequential convergence functor 
assigning to each topological space (in general to each filter convergence space) the 
associated sequential (FUS-) convergence. 

Theorem 2. Let f': G —• H be an epic in the category of sequential groups with 
unique sequential limits. Then f(G) is dense in H. 

P r o o f . Clearly, / is an epic in the category WHKG. By Corollary 2.48 in [11], 
/(G) is dense in H. D 

Corollary 2. Epics in WHSG are exactly morphisms with dense range. 

Corollary 3. Epics in the category of FLUSH-convergence groups are exactly 
morphisms with top-dense range. 

3. SEQUENTIAL CONDITIONS IN FREE GROUPS 

Let X be a Ar-space with a distinguished point (basepoint) e. The pointed (Graev) 
free Ar-group over X will be denoted by FKX (recall that if X is t2, then FKX is t2 

as well). Similarly, for a Tychonoff space X with a distinguished point e the pointed 
(Graev) free topological group over X will be denoted by FaX. As a rule, the non-
pointed (Markov) free groups are covered as a special case with e isolated. Since the 
choice of e plays no role in our considerations, we usually do not mention it. 

Theorem 3. Let X be a t2 k-space. Then X is sequential iff FKX is sequential. 

P r o o f . If FKX is sequential, then so it its closed subspace X. The converse 
follows from Corollary 1. • 

Recall ([16]) that a topological space is called a Ar̂ -space if it is a direct limit 
of an expanding sequence of compact (i.e. Hausdorff) subspaces. Since FQX = 
FKX whenever X is a fc^-space, Theorem 3 generalizes Theorem 3.1 in [19] stating 
that a Ar̂ -space X is sequential iff FQX is sequential. Obviously, the most natural 
generalization of Theorem 3.1 in [19] leads to the class {X\ FQX = FKX) of all 
Tychonoff fc-spaces X for which FQX and FKX coincide. It would be interesting to 
establish the basic properties of this class (cf. [2], [16]). 
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Our final topic is the sequential order in free groups. For the reader's convenience 
we start with some general remarks. 

Let X be a nonempty set equipped with an FS-convergence of sequences. Then 
to each subset A of X we can assign the set cl A of all limits of sequences ranging 
in A. The corresponding convergence closure operator cl need not be idempotent. 
For each ordinal number a not exceeding u)\ we define inductively a-c\A> A C X as 

follows: 
0-cl_4 = v4, 

a-cl ,4 = U{cl(/?-cM); /? < a } . 
Then u)\-c\A = cl(u>i-cl.A) for all A C X and u>i-cl is a closure operator satisfying 
all four axioms of Kuratowski. The sequential order of the convergence (of the 
underlying space) is the least ordinal number a such that cl(a-cljl) = a-c\A for all 
A C X. For a limit ordinal number a, a-cl is sometimes defined by a-c\A = clU{/?-
cl A; /? < a.}. Obviously, the two corresponding notions of the sequential order are 
slightly different. However, the fact that the sequential order of a convergence is u)\ 

does not depend on the way how a-cl is defined for limit ordinal numbers. 
Iterations of cl in various types of continuous groups have been investigated in, 

e.g., [15], [17], [19], [3]. P. Nyikos asked in [17] whether in a sequential topological 
group the sequential order may be anything between 1 and u)\. Since the sequential 
order of all known continuous groups is either 0, 1 orwi , it is natural to ask the 
same question in this more general setting. 

Theorem 4. Let X be a ti k -space and suppose that there is a one-to-one 

sequence (xn) converging in X to a point x. Let T be the subspace of X the 

underlying set of which is {xn ; n = 1,2,...} U {x} U {e}. Then 

(i) T is a closed compact subspace of X; 

(ii) The subgroup of FKX generated by T is FKT and it is closed in FKX; 
(iii) The sequential order of FKX is u)\. 

P r o o f , (i) Observe that T is a continuous image of a compact space. Since X 

is <2, T is a closed subspace. Consequently (cf. 2.1 in [13]), T is compact. 
(ii) The assertion follows directly from Proposition 5.3 in [18]. 

(iii) Since T is compact, we have FGT = FKT. By Corollary 3.8 in [18], FGT 
contains a closed subspace homeomorphic to the well-known sequential space 5W the 
sequential order of which is u)\. Thus the sequential order of FKX is u>\ as well. D 

Corollary 4. (i) Let X be a nondiscrete FUSH-convergence space and let FX be 

the free FLUSH -convergence group over X. Then the sequential order of FX is u)\. 

(ii) Let X be a nondiscrete sequential space with unique sequential limits. Let FX 
be the free sequential group over X. Then the sequential order of FX is u>\. 
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In [19], the proof that the sequential order of a topological group G is LJ\ is 
carried out by embedding S& into G as a closed subspace. In [3] a general inductive 
construction is used to show that the sequential order of various FUSH-convergence 
spaces and FLUSH-convergence groups is UJ\. As an illustration of the inductive 
construction we prove that the sequential order of the free commutative FLUSH-
convergence group over a nondiscrete FUSH-convergence space is u\. 

Let X be a nondiscrete FUSH-convergence space. Let (xn) be a one-to-one se
quence converging in X to a point x, xn ^ x for all n G N. Let FCX be the free 
commutative FLUSH-convergence group over X. Then for each k G N, the sequence 
(k(xn — x)) = (Sk(n)) = Sk converges in FCX to 0, but no diagonal subsequence 
converges in FCX to 0. Hence (cf. [15]) FCX fails to be a Frechet space. 

Let M be a nonempty subset of N. Denote by W(M) the set of all elements 
m 

of FCX of the form Yl Wi» where m £ N and for each f, i = 1, . . . , m, there are 

k(i) G M and n(i) G N such that iv* = Sk(i)(n(i)) = k(i)(xn^) — x). 

Lemma. Let (Mn) be a sequence of disjoint nonempty subsets ofN. Let (vn) be 

a sequence such that vn G W(Mn)} n = 1, 2, — Then no subsequence of (vn) 

converges in FCX. 

P r o o f . The assertion follows from the fact that the complexity of words vn 

(the number of occurrences of a generator in vn) tends to infinity. • 

T h e o r e m 5. The sequential order of FCX is UJ\. 

P r o o f . It suffices to prove that for each ordinal number cv, a < u\, the following 
proposition holds true: 

P(a) For each infinite set M C N there exists a set A C W(M) such that 
ft-cl.4 C W(M) \ {0} and (a + l)-clA = {0} U a-cl A 

We shall proceed by transfinite induction. Let M be an infinite subset of N. 
Let a = 0. Clearly, it suffices to choose k G M and put A = {Sk(n)\ n G N}. 

Now, let a > 0 and assume that P(/?) holds true for all ordinal numbers /? , /?< c*. 
Let cv = /? -f 1. Let (Mn) be a sequence of infinite disjoint subsets of M. By the 

inductive assumption, for each Mn , n = 1, 2, . . . , there is a set An C W(Mn) such 
that /?-cM„ C W(Mn) \ {0} and (/? + l)-cMn = {0} U /?-cMn. By Lemma, no 
subsequence of any diagonal sequence (t;n), vn G /?-cl An} n = 1, 2, . . . , converges in 
FCX. Fix m G M and let 4̂ be the union of the sets Sm(n) + Ani n€ N. It is easy 
to verify that (/? + l)-cl A C W(M) \ {0} and (/? + 2)-cI >1 = {0} U (/? + l)-cl A. 

Let a be a limit ordinal number and let (an) be a sequence of ordinal numbers 
converging to a, an < a for all n £ N. The construction of a suitable set A C W(M) 
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is similar to that for isolated a, a > 0, and it is omitted. This completes the proof. 

• 
E. T. Ordman and B. V. Smith-Thomas raised a question whether, if FQX con

tains a nontrivial convergent sequence, then also X contains a nontrivial convergent 
sequence (Question 3.11 in [19]). The following two related questions seem to be nat
ural. What happens if FQX is replaced by FKX? What is the relationship between 
compact sets in X and compact sets in FQX (or FKX)? 
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S ú hr n 

L-GRUPY VERSUS k-GRUPY 

ROMAN FRIC 

V tomto článku sú vyšetřované vofné grupy nad sekvenčnými priestorami. Je dokázané, 
že vofná k-grupa a L-grupa nad sekvenčným priestorom s jednoznačnými limitami splývajú 
a že v netriviálnom případe ich sekvenčný rád je w\. 
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