Mathematic Bohemica

Svatoslav Staněk
 Periodic solutions of nonlinear second-order differential equations with parameter

Mathematica Bohemica, Vol. 117 (1992), No. 4, 337-348

Persistent URL: http: //dml.cz/dmlcz/126060

Terms of use:

(C) Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://dml.cz

PERIODIC SOLUTIONS OF NONLINEAR SECOND-ORDER differential equations with parameter

Svatoslav Staněk, Olomouc

(Received March 16, 1989)

Summary. This paper establishes effective sufficient conditions for existence and uniqueness of periodic solutions of a one-parameter differential equation $y^{\prime \prime}-q(t) y=f\left(t, y, y^{\prime}, \mu\right)$ vanishing at an arbitrary but fixed point.

Keywords: Periodic solution, nonlinear second-order differential equation with a parameter, Schauder fixed point theorem

AMS classification: 34C25, 34B15

1. Introduction

In this paper we shall consider the second-order differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=f\left(t, y, y^{\prime}, \mu\right) \tag{1}
\end{equation*}
$$

with $q \in C^{0}(R), f \in C^{0}\left(\mathbf{R}^{3} \times I\right) \omega$-periodic functions in the variable $t, q(t)>0$ for $t \in \mathbf{R}$, where $I=\langle a, b\rangle,-\infty<a<b<\infty$, containing a parameter μ. Let $t_{1} \in \mathbf{R}$ be an arbitrary but fixed number. The problem considered is to determine sufficient conditions on q, f such that it is possible to choose the parameter μ so that there exists an ω-periodic solution y of (1) satisfying

$$
\begin{equation*}
y\left(t_{1}\right)=0 \tag{2}
\end{equation*}
$$

Similarly, the problem of uniqueness of ω-periodic solutions of (1) satisfying (2) is discussed.

2. Notation, preliminary results

Let u, v be solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y \quad\left(q \in C^{0}(\mathbf{R}), q(t+\omega)=q(t)>0 \text { for } t \in \mathbf{R}\right) \tag{q}
\end{equation*}
$$

satisfying the initial conditions $u\left(t_{1}\right)=0, u^{\prime}\left(t_{1}\right)=1, v\left(t_{1}\right)=1, v^{\prime}\left(t_{1}\right)=0$, where $t_{1} \in \mathbf{R}$ is an arbitrary but fixed number. Define functions $r: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $r_{1}^{\prime}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $r(t, s):=u(t) v(s)-u(s) v(t)$ and $r_{1}^{\prime}(t, s):=u^{\prime}(t) v(s)-u(s) v^{\prime}(t)\left(=\frac{\partial r}{\partial t}(t, s)\right)$.

Lemma 1 ([2]). $r(t, s)>0$ for $t>s, r(t, s)<0$ for $t<s, r_{1}^{\prime}(t, s)>1$ for $t \neq s$ and $r_{1}^{\prime}(t, t)=1$ for $t \in \mathbf{R}$.

Lemma 2. Let a function $k:\left\langle t_{1}, t_{1}+\omega\right\rangle \rightarrow \mathbf{R}$ be defined by

$$
\begin{equation*}
k(t)=\frac{r\left(t_{1}+\omega, t\right)}{r\left(t_{1}, t_{1}+\omega\right)}\left[r_{1}^{\prime}\left(t_{1}+\omega, t_{1}\right)-1\right]+r_{1}^{\prime}\left(t_{1}+\omega, t\right) \tag{3}
\end{equation*}
$$

Then

$$
k(t)>0 \text { for } t \in\left\langle t_{1}, t_{1}+\omega\right\rangle .
$$

Proof. We may write the function k in the form

$$
\begin{aligned}
k(t)= & -\frac{1}{u\left(t_{1}+\omega\right)}\left(u^{\prime}\left(t_{1}+\omega\right)-1\right)\left(u\left(t_{1}+\omega\right) v(t)-u(t) v\left(t_{1}+\omega\right)\right) \\
& +\left(u^{\prime}\left(t_{1}+\omega\right) v(t)-u(t) v^{\prime}\left(t_{1}+\omega\right)\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
k^{\prime}(t)= & -\frac{1}{u\left(t_{1}+\omega\right)}\left(u^{\prime}\left(t_{1}+\omega\right)-1\right)\left(u\left(t_{1}+\omega\right) v^{\prime}(t)-u^{\prime}(t) v\left(t_{1}+\omega\right)\right) \\
& +\left(u^{\prime}\left(t_{1}+\omega\right) v^{\prime}(t)-u^{\prime}(t) v^{\prime}\left(t_{1}+\omega\right)\right) .
\end{aligned}
$$

Assume to the contrary that $k(\xi)=0$ for some $\xi, \xi \in\left(t_{1}, t_{1}+\omega\right)$. If this ξ is unique then $k^{\prime}(\xi)=0$ since $k\left(t_{1}\right)=k\left(t_{1}+\omega\right)=1$. It is easily verified that $k(\xi)=0$ $\left(k^{\prime}(\xi)=0\right)$ if and only if

$$
\frac{u(\xi)}{v(\xi)}=\frac{u\left(t_{1}+\omega\right)}{v\left(t_{1}+\omega\right)-1} \quad\left(\frac{u^{\prime}(\xi)}{v^{\prime}(\xi)}=\frac{u\left(t_{1}+\omega\right)}{v\left(t_{1}+\omega\right)-1}\right) .
$$

It follows from the equality $\left(\frac{u}{v}\right)^{\prime}=\frac{1}{v^{2}}$ that $\frac{u}{v}$ is an increasing function on $\left\langle t_{1}, t_{1}+\omega\right\rangle$ and, consequently, there exists a unique ξ with above property. Then necessarily

$$
\frac{u(\xi)}{v(\xi)}=\frac{u^{\prime}(\xi)}{v^{\prime}(\xi)} \quad\left(=\frac{u\left(t_{1}+\omega\right)}{v\left(t_{1}+\omega\right)-1}\right)
$$

which contradicts $u^{\prime} v-u v^{\prime}=1$.

Lemma 3. Let $d \in R, h \in C^{0}(\mathbf{R})$. Then there exists a unique solution y of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=h(t) \tag{4}
\end{equation*}
$$

satisfying the boundary value conditions

$$
\begin{equation*}
y\left(t_{1}\right)=y\left(t_{1}+\omega\right)=d \tag{5}
\end{equation*}
$$

This solution y can be written in the form

$$
\begin{align*}
y(t)= & \frac{1}{r\left(t_{1}, t_{1}+\omega\right)}\left[d\left(r\left(t_{1}, t_{1}+\omega\right)-r\left(t, t_{1}\right)\right)\right. \tag{6}\\
& \left.+r\left(t, t_{1}\right) \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) h(s) \mathrm{d} s\right]+\int_{t_{1}}^{t} r(t, s) h(s) \mathrm{d} s, \quad t \in \mathbf{R}
\end{align*}
$$

Proof. One can easily and immediately check that the function y defined by (6) is a solution of (4) satisfying (5). The uniqueness follows from the fact that the associated homogeneous boundary value problem: $(\mathrm{q}), y\left(t_{1}\right)=y\left(t_{1}+\omega\right)=0$ has only the trivial solution.

Let r_{0}, r_{1} be positive constants, $r_{0}>0, r_{1}>0$. Now we shall assume that q, f satisfy some of the following assumptions:

$$
\begin{gather*}
\left\{\begin{aligned}
& 2 \sqrt{r_{0}} \sqrt{A+r_{0} \max _{t \in \mathbb{R}} q(t)} \leqslant r_{1}, \text { where } A:=\max _{\left(t, y_{1}, y_{2}, \mu\right) \in D}\left|f\left(t, y_{1}, y_{2}, \mu\right)\right|, \\
& D:=\langle 0, \omega\rangle \times\left\langle-r_{0}, r_{0}\right\rangle \times\left\langle-r_{1}, r_{1}\right\rangle \times I ; \\
&\left|f\left(t, y_{1}, y_{2}, \mu\right)\right| \leqslant r_{0} q(t) \text { for }\left(t, y_{1}, y_{2}, \mu\right) \in D
\end{aligned}\right. \tag{7}\\
\\
\left\{\begin{array}{l}
f\left(t, y_{1}, y_{2}, \cdot\right) \text { is an increasing function on } I \text { for every } \\
\text { fixed }\left(t, y_{1}, y_{2}\right) \in\langle 0, \omega\rangle \times\left\langle-r_{0}, r_{0}\right\rangle \times\left\langle-r_{1}, r_{1}\right\rangle=: D_{1} ; \\
f\left(t, y_{1}, y_{2}, a\right) f\left(t, y_{1}, y_{2}, b\right) \leqslant 0 \quad \text { for }\left(t, y_{1}, y_{2}\right) \in D_{1} .
\end{array}\right.
\end{gather*}
$$

Lemma 4. Suppose that assumptions (7)-(10) hold for positive constants r_{0}, r_{1}. Let $\varphi \in C^{1}(\mathbf{R})$ be an ω-periodic function, $\left|\varphi^{(i)}(t)\right| \leqslant r_{i}$ for $t \in \mathbf{R}, i=0$, 1. Then there exists a unique $\mu_{0}, \mu_{0} \in I$ such that the differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=f\left(t, \varphi(t), \varphi^{\prime}(t), \mu\right) \tag{11}
\end{equation*}
$$

with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying (2). This solution y is unique and

$$
\begin{equation*}
\left|y^{(i)}(t)\right| \leqslant r_{i} \text { for } t \in R, i=0,1 \tag{12}
\end{equation*}
$$

Proof. If we set $h(t, \mu):=f\left(t, \varphi(t), \varphi^{\prime}(t), \mu\right)$ for $(t, \mu) \in \mathbf{R} \times I$, then h is ω periodic in t and assumptions (7)-(10) yield $|h(t, \mu)| \leqslant A$ for $(t, \mu) \in R \times I, h(t, \cdot)$ is an increasing function on I for every fixed $t \in \mathbf{R}$ and $h(t, a) \leqslant 0, h(t, b) \geqslant 0$ on \mathbf{R}. Using the definition of h we can write (11) in the form

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=h(t, \mu) . \tag{13}
\end{equation*}
$$

Let $y(t, \mu)$ be a solution of (13), $y\left(t_{1}, \mu\right)=y\left(t_{1}+\omega, \mu\right)=0$. Then (by Lemma 3)

$$
y(t, \mu)=\frac{r\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) h(s, \mu) \mathrm{d} s+\int_{t_{1}}^{t} r(t, s) h(s, \mu) \mathrm{d} s
$$

and

$$
\begin{aligned}
\left(\frac{\partial y}{\partial t}(t, \mu)=:\right) y^{\prime}(t, \mu)= & \frac{r_{1}^{\prime}\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{i_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) h(s, \mu) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r_{1}^{\prime}(t, s) h(s, \mu) \mathrm{d} s
\end{aligned}
$$

thus

$$
\begin{aligned}
y^{\prime}\left(t_{1}+\omega, \mu\right)-y^{\prime}\left(t_{1}, \mu\right)= & \frac{1}{r\left(t_{1}, t_{1}+\omega\right)}\left(r_{1}^{\prime}\left(t_{1}+\omega, t_{1}\right)-1\right) \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) h(s, \mu) \mathrm{d} s \\
& +\int_{i_{1}}^{t_{1}+\omega} r_{1}^{\prime}\left(t_{1}+\omega, s\right) h(s, \mu) \mathrm{d} s=\int_{t_{1}}^{t_{1}+\omega} k(s) h(s, \mu) \mathrm{d} s
\end{aligned}
$$

where k is defined by (3). It follows from Lemma 2 that $k(t)>0$ on $\left\langle t_{1}, t_{1}+\omega\right\rangle$ and therefore $g(\mu):=y^{\prime}\left(t_{1}+\omega, \mu\right)-y^{\prime}\left(t_{1}, \mu\right)$ is increasing on $I, g(a) \leqslant 0, g(b) \geqslant 0$. Then there evidently exists a unique $\mu_{0}, \mu_{0} \in I: g\left(\mu_{0}\right)=0$. This proves that equation (11) with $\mu=\mu_{0}$ has solution y satisfying $y^{(i)}\left(t_{1}\right)-y^{(i)}\left(t_{1}+\omega\right)=0(i=0,1)$, that is, y is an ω-periodic solution of (11) with $\mu=\mu_{0}$.

It remains to prove (12). Since $y\left(t_{1}\right)=y\left(t_{1}+\omega\right)=0$ there exists a $\xi, \xi \in\left(t_{1}, t_{1}+\omega\right)$: $|y(t)| \leqslant|y(\xi)|$ for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$. Then $y^{\prime}(\xi)=0$ and y has at $t=\xi$ an absolute extreme on $\left\langle t_{1}, t_{1}+\omega\right\rangle$. Let $|y(\xi)|>r_{0}$. If $y(\xi)>r_{0}\left(y(\xi)<-r_{0}\right)$ we get $y^{\prime \prime}(\xi)>0$ ($\left.y^{\prime \prime}(\xi)<0\right)$ by assumption (8). This, however, contradicts the fact that y has absolute maximum (minimum) at the point $t=\xi$. Hence $|y(\xi)| \leqslant r_{0}$ and $\mid y(t) \leqslant r_{0}$ on \mathbf{R}.

Integrating the equality

$$
2 y^{\prime \prime}(t) y^{\prime}(t)=2 q(t) y(t) y^{\prime}(t)+2 h\left(t, \mu_{0}\right) y^{\prime}(t), \quad t \in \mathbf{R},
$$

from η to T, where $\eta, T \in\left\langle t_{1}, t_{1}+\omega\right\rangle, y^{\prime}(\eta)=0, y^{\prime}(t) \neq 0$ on the open interval J with the end points η and T, we obtain

$$
\begin{aligned}
y^{\prime 2}(T) & =2 \int_{\eta}^{T} q(t) y(t) y^{\prime}(t) \mathrm{d} t+2 \int_{\eta}^{T} h\left(t, \mu_{0}\right) y^{\prime}(t) \mathrm{d} t \\
& =2 \int_{\eta}^{T} q(t) y(t) y^{\prime}(t) \mathrm{d} t+2 \int_{y(\eta)}^{y(t)} h\left(y^{-1}(t), \mu_{0}\right) \mathrm{d} t,
\end{aligned}
$$

where y^{-1} denotes the inverse function to y on J. Then

$$
\begin{aligned}
y^{\prime 2}(T) & \leqslant 2 r_{0} \max _{t \in \mathbb{R}} q(t)\left|\int_{\eta}^{T} y^{\prime}(t) \mathrm{d} t\right|+2 A\left|\int_{y(\eta)}^{y(T)} \mathrm{d} t\right| \\
& \leqslant 2 r_{0} \max _{t \in \mathbb{R}} q(t)|y(T)-y(\eta)|+2 A|y(T)-y(\eta)| \\
& \leqslant 4 r_{0}^{2} \max _{t \in \mathbb{R}} q(t)+4 A r_{0},
\end{aligned}
$$

consequently

$$
\left|y^{\prime}(T)\right| \leqslant 2 \sqrt{r_{0}} \sqrt{A+r_{0} \max _{t \in \mathbb{R}} q(t)} \leqslant r_{1}
$$

and

$$
\left|y^{\prime}(t)\right| \leqslant r_{1} \text { for } t \in \mathbf{R} .
$$

The uniqueness of the ω-periodic solution y of equation (13) with $\mu=\mu_{0}$ follows from the fact that the associated homogeneous equation $y^{\prime \prime}-q(t) y=0$ to equation (13) has only the trivial ω-periodic solution satisfying (2).

3. Results

Theorem 1. Assume that assumptions (7)-(10) hold for positive constants r_{0}, r_{1}. Then there exists $\mu_{0}, \mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying (2) and (12).

Proof. Let X be the Banach space of ω-periodic C^{1}-functions on \mathbf{R} with the norm $\|y\|=\max _{t \in \mathbb{R}}\left(|y(t)|+\left|y^{\prime}(t)\right|\right)$ for $y \in X$ and let $K:=\left\{y: y \in X: y\left(t_{1}\right)=\right.$ $0,\left|y^{(i)}(t)\right| \leqslant r_{i}$ for $\left.t \in \mathbf{R}, i=0,1\right\} . K$ is a closed bounded convex subset of X, $K \subset X$. Let $\varphi \in K$. By Lemma 4 there exists a unique $\mu_{0}, \mu_{0} \in I$ such that
equation (11) with $\mu=\mu_{0}$ has a unique ω-periodic solution y satisfying (2) and (12), and thus $y \in K$. We may write this solution y in the form

$$
\begin{aligned}
y(t)= & \frac{r\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, \varphi(s), \varphi^{\prime}(s), \mu_{0}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r(t, s) f\left(s, \varphi(s), \varphi^{\prime}(s), \mu_{0}\right) \mathrm{d} s, \quad t \in \mathbf{R}
\end{aligned}
$$

by Lemma 3. Setting $T(\varphi)=y$ we obtain an operator $T: K \rightarrow K$. We will prove that T is a completely continuous operator.

Let $\left\{y_{n}\right\}, y_{n} \in K$ be a convergent sequence, $\lim _{n \rightarrow \infty} y_{n}=y$ and $z_{n}=T\left(y_{n}\right), z=$ $T(y)$. Then there exists $\left\{\mu_{n}\right\}, \mu_{n} \in I$ and $\mu_{0} \in I$ such that

$$
\begin{align*}
z_{n}(t)= & \frac{r\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y_{n}(s), y_{n}^{\prime}(s), \mu_{n}\right) \mathrm{d} s \tag{14}\\
& +\int_{t_{1}}^{t} r(t, s) f\left(s, y_{n}(s), y_{n}^{\prime}(s), \mu_{n}\right) \mathrm{d} s, \quad t \in \mathbf{R}
\end{align*}
$$

and

$$
\begin{aligned}
z(t)= & \frac{r\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s) \mu_{0}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r(t, s) f\left(s, y(s), y^{\prime}(s), \mu_{0}\right) \mathrm{d} s, \quad t \in \mathbf{R}
\end{aligned}
$$

Differentiating (14) we get

$$
\begin{align*}
z_{n}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y_{n}(s), y_{n}^{\prime}(s), \mu_{n}\right) \mathrm{d} s \tag{15}\\
& +\int_{t_{1}}^{t} r_{1}^{\prime}(t, s) f\left(s, y_{n}(s), y_{n}^{\prime}(s), \mu_{n}\right) \mathrm{d} s, \quad t \in \mathbf{R}
\end{align*}
$$

Suppose that $\left\{\mu_{n}\right\}$ is not convergent. Then there exist convergent subsequences $\left\{\mu_{k_{n}}\right\},\left\{\mu_{r_{n}}\right\}, \lim _{n \rightarrow \infty} \mu_{k_{n}}=\lambda_{1}, \lim _{n \rightarrow \infty} \mu_{r_{n}}=\lambda_{2}, \lambda_{1}<\lambda_{2}$. Inserting k_{n} and r_{n} instead of n in (15) and taking limits on both sides of these equalities, we obtain

$$
\begin{align*}
\lim _{n \rightarrow \infty} z_{k_{n}}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{i_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right) \mathrm{d} s \tag{16}\\
& +\int_{t_{1}}^{t} r_{1}^{\prime}(t, s) f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right) \mathrm{d} s, \quad t \in \mathbf{R}
\end{align*}
$$

and

$$
\begin{align*}
\lim _{n \rightarrow \infty} z_{r_{n}}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right) \mathrm{d} s \tag{17}\\
& +\int_{t_{1}}^{t} r_{1}^{\prime}(t, s) f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right) \mathrm{d} s, \quad t \in R
\end{align*}
$$

uniformly on R, respectively. Relations (16) and (17) yield

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(z_{k_{n}}^{\prime}\left(t_{1}+\omega\right)-z_{k_{n}}^{\prime}\left(t_{1}\right)\right)= & \frac{r_{1}^{\prime}\left(t+\omega, t_{1}\right)-1}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r_{1}^{\prime}\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right) \mathrm{d} s \\
\lim _{n \rightarrow \infty}\left(z_{r_{n}}^{\prime}\left(t_{1}+\omega\right)-z_{r_{n}}^{\prime}\left(t_{1}\right)\right)= & \frac{r_{1}^{\prime}\left(t+\omega, t_{1}\right)-1}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r_{1}^{\prime}\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right) \mathrm{d} s .
\end{aligned}
$$

Since the function z_{n} is ω-periodic for all $n \in N$, we have $z_{n}^{\prime}\left(t_{1}+\omega\right)-z_{n}^{\prime}\left(t_{1}\right)=0$ and thus

$$
\begin{aligned}
0= & \frac{r_{1}^{\prime}\left(t+\omega, t_{1}\right)-1}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right)\left(f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right)-f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right)\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r_{1}^{\prime}\left(t_{1}+\omega, s\right)\left(f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right)-f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right)\right) \mathrm{d} s \\
= & \int_{i_{1}}^{t_{1}+\omega} k(s)\left(f\left(s, y(s), y^{\prime}(s), \lambda_{1}\right)-f\left(s, y(s), y^{\prime}(s), \lambda_{2}\right)\right) \mathrm{d} s
\end{aligned}
$$

where k is the function defined by (3). This, however, contradicts the facts that $k(t)>0$ (by Lemma 2) and $f\left(t, y(t), y^{\prime}(t), \lambda_{1}\right)-f\left(t, y(t), y^{\prime}(t), \lambda_{2}\right)<0$ (by assumption (9)) for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$. Consequently, $\left\{\mu_{n}\right\}$ is a convergent sequence and $\lim _{n \rightarrow \infty} \mu_{n}=\mu^{*}$. If we take limits for $n \rightarrow \infty$ in (14) and (15) we get

$$
\begin{aligned}
\left(z^{*}(t):=\right) \lim _{n \rightarrow \infty} z_{n}(t)= & \frac{r\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \mu^{*}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r(t, s) f\left(s, y(s), y^{\prime}(s), \mu^{*}\right) \mathrm{d} s
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{n}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{1}\right)}{r\left(t_{1}, t_{1}+\omega\right)} \int_{t_{1}}^{t_{1}+\omega} r\left(t_{1}+\omega, s\right) f\left(s, y(s), y^{\prime}(s), \mu^{*}\right) \mathrm{d} s \\
& +\int_{t_{1}}^{t} r_{1}^{\prime}(t, s) f\left(s, y(s), y^{\prime}(s), \mu^{*}\right) \mathrm{d} s \quad\left(=z^{*^{\prime}}(t)\right)
\end{aligned}
$$

uniformly on R. Then z^{*} is a (then necessarily unique) ω-periodic solution of the equation

$$
x^{\prime \prime}-q(t) x=f\left(t, y(t), y^{\prime}(t), \mu^{*}\right)
$$

satisfying (2) and $z^{*} \in K$. Consequently, Lemma 4 implies $z=z^{*}$ and $\mu_{0}=\mu^{*}$. Since $\lim _{n \rightarrow \infty} z_{n}^{\prime}(t)=z^{\prime}(t)$ uniformly on R we obtain $\lim _{n \rightarrow \infty} z_{n}=z$ and therefore T is a continuous operator on K.

Let $y \in K$ and $z=T(y)$. Then $z^{\prime \prime}(t)=q(t) z(t)+f\left(t, z(t), z^{\prime}(t), \mu_{0}\right)$ for $t \in \mathbf{R}$, where $\mu_{0} \in I$ is an appropriate number, and therefore $\left|z^{\prime \prime}(t)\right| \leqslant r_{0} \max _{t \in \mathbb{R}} q(t)+A=: B$ on \mathbf{R} and $T(K) \subset L:=\left\{y ; y \in C^{2}(\mathbf{R}) \cap K,\left|y^{\prime \prime}(t)\right| \leqslant B\right.$ for $\left.t \in \mathbf{R}\right\} \subset K$. Since L is a compact subset of $X, T(K)$ is a relative compact subset of X. By Schauder's fixed point theorem there exists $y, y \in K$ such that $T(y)=y$, that is, there exists $\mu_{0}, \mu_{0} \in I$ such that y is an ω-periodic solution of (1) with $\mu=\mu_{0}$ satisfying (2) and (12). This completes the proof.

Corollary 1. Assume that assumption (9) and (10) are satisfied for positive constants r_{0}, r_{1}. Let A be defined as in (7) and let $2 r_{0} \sqrt{\max _{t \in R} q(t)}<r_{1}$. Then there is ∂, $\partial>0$ such that for each $\varepsilon, 0<\varepsilon \leqslant \partial$ there exists $\mu_{\varepsilon}, \mu_{\varepsilon} \in I$ such that the equation $y^{\prime \prime}-q(t) y=\varepsilon f\left(t, y, y^{\prime}, \mu\right)$ with $\mu=\mu_{\varepsilon}$ has an ω-periodic solution y satisfying (2) and (12).

Proof. Let $\partial=\min \left\{\frac{r_{0}}{A} \min _{t \in \mathbb{R}} q(t), \frac{1}{A}\left(\frac{r_{1}^{2}}{4 r_{0}}-r_{0} \max _{t \in R} q(t)\right)\right\}$. Then εf satisfies for $0<\varepsilon \leqslant \partial$ the same assumptions as f in Theorem 1 and thus Corollary 1 follows immediately from Theorem 1.

Lemma 5. Let r_{0}, r_{1} be positive constants and let S be the set of ω-periodic functions $y, y \in C^{2}(\mathbf{R}), y\left(t_{1}\right)=0,\left|y^{(i)}(t)\right| \leqslant r_{i}$ for $t \in R, i=0,1$. Assume that

$$
\begin{align*}
& \left|f\left(t, y_{1}, y_{2}, \mu\right)-f\left(t, z_{1}, z_{2}, \mu\right)\right| \leqslant h_{1}(t)\left|y_{1}-z_{1}\right|+h_{2}(t)\left|y_{2}-y_{2}\right| \tag{18}\\
& \text { for }\left(t, y_{1}, y_{2}, \mu\right),\left(t, z_{1}, z_{2}, \mu\right) \in R \times\left\langle-r_{0}, r_{0}\right\rangle \times\left\langle-r_{1}, r_{1}\right\rangle \times I
\end{align*}
$$

where $h_{1}, h_{2} \in C^{0}(\mathbf{R})$ are ω-periodic functions, and let at least one of the following four conditions

$$
\begin{equation*}
\int_{i_{1}}^{t_{1}+\omega}\left[\left(\exp \int_{t_{1}}^{s} h_{2}(\tau) \mathrm{d} \tau\right) \int_{t_{1}}^{s}\left(q(\tau)+h_{1}(\tau)\right) \mathrm{d} \tau\right] \mathrm{d} s \leqslant 1 \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}+\omega}\left[\left(q(s)+h_{1}(s)\right)\left(s-t_{1}\right)+h_{2}(s)\right] \mathrm{d} s \leqslant 1 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}+\omega}\left[\left(\exp \int_{s}^{t_{1}+\omega} h_{2}(\tau) \mathrm{d} \tau\right) \int_{s}^{t_{1}+\omega}\left(q(\tau)+h_{1}(\tau)\right) \mathrm{d} \tau\right] \mathrm{d} s \leqslant 1 \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}+\omega}\left[\left(q(s)+h_{1}(s)\right)\left(t_{1}+\omega-s\right)+h_{2}(s)\right] \mathrm{d} s \leqslant 1 \tag{22}
\end{equation*}
$$

holds. Then equation (1) has at most one solution y in the set S for every $\mu, \mu \in I$.
Proof. The method of the proof is very similar to that of the proof of Lemma 6 ([2]). Assume that $y_{1}, y_{2} \in S, y_{1} \neq y_{2}$ are solutions of (1) with some $\mu=\mu_{0}, \mu_{0} \in I$ and define $w:=y_{1}-y_{2}$. Since $w\left(t_{1}\right)=w\left(t_{1}+\omega\right)=0$ there exists a $\xi \in\left(t_{1}, t_{1}+\omega\right)$ such that $|w(t)| \leqslant|w(\xi)|$ for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$, and $w^{\prime}(\xi)=0$.

Let assumption (19) be satisfied. Using Gronwall's lemma we obtain from the inequality

$$
\begin{equation*}
\left|w^{\prime}(t)\right| \leqslant\left|\int_{\xi}^{t}\left[\left(q(s)+h_{1}(s)\right)|w(s)|+h_{2}(s)\left|w^{\prime}(s)\right|\right] \mathrm{d} s\right|, \quad t \in\left\langle t_{1}, t_{1}+\omega\right\rangle \tag{23}
\end{equation*}
$$

the estimate

$$
\left|w^{\prime}(t)\right| \leqslant\left(\exp \int_{\xi}^{t} h_{2}(s) \mathrm{d} s\right) \int_{\xi}^{t}\left(q(s)+h_{1}(s)\right)|w(s)| \mathrm{d} s, \quad t \in\left\langle\xi, t_{1}+\omega\right\rangle
$$

and thus

$$
\begin{aligned}
|w(\xi)| & =\left|w\left(t_{1}+\omega\right)-w(\xi)\right|=\left|\int_{\xi}^{t_{1}+\omega} w^{\prime}(s) \mathrm{d} s\right| \\
& \leqslant \int_{\xi}^{t_{1}+\omega}\left[\left(\exp \int_{\xi}^{s} h_{2}(\tau) \mathrm{d} \tau\right) \int_{\xi}^{s}\left(q(\tau)+h_{1}(\tau)\right)|w(\tau)| \mathrm{d} \tau\right] \mathrm{d} s \\
& <\mid w\left(\xi \mid \int_{t_{1}}^{t_{1}+\omega}\left[\left(\exp \int_{i_{1}}^{s} h_{2}(\tau) \mathrm{d} \tau\right) \int_{t_{1}}^{s}\left(q(\tau)+h_{1}(\tau)\right) \mathrm{d} \tau\right] \mathrm{d} s\right.
\end{aligned}
$$

Then (since $w(\xi) \neq 0)$

$$
1<\int_{t_{1}}^{t_{1}+\omega}\left[\left(\exp \int_{t_{1}}^{s} h_{2}(\tau) \mathrm{d} \tau\right) \int_{t_{1}}^{s}\left(q(\tau)+h_{1}(\tau)\right) \mathrm{d} \tau\right] \mathrm{d} s
$$

which contradicts assumption (19).
Let assumption (20) be satisfied. From (23) and the inequality $|w(t)| \leqslant \int_{t_{1}}^{t}\left|w^{\prime}(s)\right| \mathrm{d} s$ for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$ we obtain

$$
\left|w^{\prime}(t)\right| \leqslant \int_{t_{1}}^{t}\left[\left(q(s)+h_{1}(s)\right) \int_{t_{1}}^{s}\left|w^{\prime}(\tau)\right| \mathrm{d} \tau+h_{2}(s)\left|w^{\prime}(s)\right|\right] \mathrm{d} s, \quad t \in\left\langle t_{1}, t_{1}+\omega\right\rangle .
$$

If we put $X(t):=\max _{t_{1} \leqslant t \leqslant t}\left|w^{\prime}(s)\right|$ for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$, then if $X\left(t_{1}+\omega\right)>0$ we get

$$
\left|w^{\prime}(t)\right|<X\left(t_{1}+\omega\right) \int_{i_{1}}^{t_{1}+\omega}\left[\left(q(s)+h_{1}(s)\right)\left(s-t_{1}\right)+h_{2}(s)\right] \mathrm{d} s, \quad t \in\left\langle t_{1}, t_{1}+\omega\right\rangle .
$$

Consequently

$$
X\left(t_{1}+\omega\right)<X\left(t_{1}+\omega\right) \int_{t_{1}}^{t_{1}+\omega}\left[\left(q(s)+h_{1}(s)\right)\left(s-t_{1}\right)+h_{2}(s)\right] \mathrm{d} s
$$

and

$$
1<\int_{t_{1}}^{t_{1}+\omega}\left[\left(q(s)+h_{1}(s)\right)\left(s-t_{1}\right)+h_{2}(s)\right] \mathrm{d} s,
$$

which contradicts (20). Therefore $X\left(t_{1}+\omega\right)=0$, that is, w is a constant function on the interval $\left\langle t_{1}, t_{1}+\omega\right\rangle$ and since $w\left(t_{1}\right)=0$ we obtain $w(t)=0$ for $t \in\left\langle t_{1}, t_{1}+\omega\right\rangle$ which is a contradiction again.

If assumption (21) or (22) is satisfied, the proof is very similar to the above and therefore is omitted.

Lemma 6. Assume that assumption (9) is satisfied with positive constants $\boldsymbol{r}_{\mathbf{0}}$, r_{1}, the functions $\frac{\partial f}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right), \frac{\partial f}{\partial y_{2}}\left(t, y_{1}, y_{2}, \mu\right)$ are continuous on $D(=\langle 0, \omega\rangle \times$ $\left.\left\langle-r_{0}, r_{0}\right\rangle \times\left(-r_{1}, r_{1}\right\rangle \times I\right)$ and

$$
\begin{equation*}
q(t)+\frac{\partial f}{\partial y_{1}}\left(t, y_{1}, y_{2}, \mu\right) \geqslant 0 \text { for }\left(t, y_{1}, y_{2}, \mu\right) \in D . \tag{24}
\end{equation*}
$$

Let the set S be defined as in Lemma 5.
Then there exists at most one $\mu_{0}, \mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has a solution $y, y \in S$. In this case the solution y is unique.

Proof. Let y_{1} and y_{2} be solutions of (1) with $\mu=\mu_{1}$ and $\mu=\mu_{2}$, respectively, $\mu_{1}, \mu_{2} \in I, \mu_{1} \leqslant \mu_{2} ; y_{1}, y_{2} \in S, y_{1} \neq y_{2}$. Using assumptions (9), (24) and Taylor's formula we get

$$
\begin{align*}
& f\left(t, y_{1}(t), y_{1}^{\prime}(t), \mu_{1}\right)-f\left(t, y_{2}(t), y_{2}^{\prime}(t), \mu_{2}\right) \tag{25}\\
& \leqslant g(t)\left(y_{1}(t)-y_{2}(t)\right)+h(t)\left(y_{1}(t)-y_{2}(t)\right)^{\prime}, \quad t \in \mathbf{R},
\end{align*}
$$

where g, h are ω-periodic continuous functions, $q(t)+g(t) \geqslant 0$ on \mathbf{R} and if $\mu_{1}<$ $\mu_{2}\left(\mu_{1}=\mu_{2}\right)$ then (25) holds with the strict inequality (equality). For $w:=y_{1}-y_{2}$ we then obtain the inequality

$$
\begin{equation*}
w^{\prime \prime}(t) \leqslant(q(t)+g(t)) w(t)+h(t) w^{\prime}(t), \quad t \in \mathbf{R}, \tag{26}
\end{equation*}
$$

$w\left(t_{1}\right)=w\left(t_{1}+\omega\right)=0$.
Let $\mu_{1}<\mu_{2}$. If $w^{\prime}\left(t_{1}\right) \leqslant 0$ then, using (26) and Tschaplygin's lemma ([1]), we get $w(t)<0$ on $\left(t_{1}, t_{1}+\omega\right)$ which contradicts $w\left(t_{1}+\omega\right)=0$. If $w^{\prime}\left(t_{1}\right)>0$ then there exists $\eta, \eta \in\left(t_{1}, t_{1}+\omega\right)$ such that $w(t)>0$ for $t \in\left(t_{1}, \eta\right), w(\eta)=0$ and $w^{\prime}(\eta) \leqslant 0$. Therefore $w(t)<0$ on $\left(\eta, t_{1}+\omega\right)$ which again contradicts $w\left(t_{1}+\omega\right)$.

Let $\mu_{1}=\mu_{2}$. Since $q(t)+g(t) \leqslant 0$ on \mathbf{R}, the equation $y^{\prime \prime}=(q(t)+g(t)) y+h(t) y^{\prime}$ is disconjugate on \mathbf{R} which contradicts $w\left(t_{1}\right)=w\left(t_{1}+\omega\right)=0$.

Theorem 2. Assume that assumptions (7)-(10) are satisfied for positive constants r_{0}, r_{1}. Let $\frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial y_{2}} \in C^{0}(D)$ and let assumption (24) be satisfied.

Then there exists a unique $\mu_{0}, \mu_{0} \in I$, such that equation (1) with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying (2) and (12). This solution y is unique.

The proof follows from Theorem 1 and Lemma 6.
Example 1. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-3(\exp (2+\sin t)) y=\sin t \cos y^{\prime} \mathrm{e}^{y^{3}}+\mu \tag{27}
\end{equation*}
$$

where $\mu \in I_{1}:=\langle-\mathrm{e}, \mathrm{e}\rangle$. Let $t_{1} \in \mathbf{R}$ be a number. Assumptions (7)-(10) are satisfied with $r_{0}=1, r_{1}=2 \sqrt{\mathrm{e}} \sqrt{2+3 \mathrm{e}^{2}}$ and

$$
3 \exp (2+\sin t)+\frac{\partial}{\partial y_{1}}\left(\sin t \cos y_{2} \mathrm{e}^{y_{1}^{3}}+\mu\right) \geqslant 0
$$

for $\left(t, y_{1}, y_{2}, \mu\right) \in \mathbf{R} \times\langle-1,1\rangle \times\left\langle-2 \sqrt{\mathrm{e}} \sqrt{2+3 \mathrm{e}^{2}}, 2 \sqrt{\mathrm{e}} \sqrt{2+3 \mathrm{e}^{2}}\right\rangle \times I_{1}$. By Theorem 2 there exists a unique $\mu_{0}, \mu_{0} \in I_{1}$ such that equation (27) with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying $y\left(t_{1}\right)=0,|y(t)| \leqslant 1$ and $\left|y^{\prime}(t)\right| \leqslant 2 \sqrt{\mathrm{e}} \sqrt{2+3 \mathrm{e}^{2}}$ for $t \in \mathbf{R}$. This solution y is unique.

References

[1] E. F. Beckenbach and R. Bellman: Inequalities, Moscow, 1965. (In Russian.)
[2] S. Staněk: Three-point boundary value problem of nonlinear second order differential equation with parameter, Crechoslovak Math. J. 42(117) (1992), 241-256.

Author's address: Katedra matematické analýzy Pıf UP, tř. Svobody 26, 77146 Olomouc.

