Mathematic Bohemica

Anton Dekrét
Connections induced by (1,1)-tensor fields on cotangent bundles

Mathematica Bohemica, Vol. 123 (1998), No. 3, 317-331
Persistent URL: http://dml.cz/dmlcz/126068

Terms of use:

© Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONNECTIONS INDUCED BY (1,1)-TENSOR FIELDS ON COTANGENT BUNDLES

Anton Dekrét, Zvolen
(Received May 23, 1997)

Abstract. On cotangent bundles the Liouville field, the Liouville 1-form ε and the canonical symplectic structure d ε exist. In this paper interactions between these objects and (1,1)-tensor fields on cotangent bundles are studied. Properties of the connections induced by the above structures are investigated.

Keywords: connection, almost complex structure, tensor field
MSC 1991: 58F05, 70H35, 58A20

Introduction

We assume that all manifolds and maps in this paper are infinitely differentiable.
Let M be a manifold and $\left(x^{i}\right)$ a local chart on M. Let $\left(x^{i}, z_{i}\right)$ be the induced chart on the cotangent bundle $T^{*} M$ of all 1 -forms on M. Let us recall that the Liouville vector field $V=z_{i} \partial / \partial z_{i}$ the flow of which is formed by the homotheties on individual fibres of $T^{*} M$, the Liouville 1 -form $\varepsilon=z_{i} \mathrm{~d} x^{i}$, and the symplectic 2 -form $\omega=\mathrm{d} \varepsilon=\mathrm{d} z_{i} \wedge \mathrm{~d} x^{i}$ on $T^{*} M$ exist. Let F be a $(1,1)$-tensor field on M. It is known, [4], [7] that there is no connection on M, i.e. a linear connection on $T M$, which could be constructed by natural operators from F only. In other words no linear connection on $T^{*} M$ can be constructed from natural lifts of F on $T^{*} M$ only. We deal with the connections on the vector fibre bundle $\pi: T^{*} M \rightarrow M$ which are induced by (1,1)-tensor fields α on $T^{*} M$ that are very close to the natural lifts of F on $T^{*} M$. We favour almost complex structures α (ACS). First of all, two cases are

[^0]investigated: α preserves the vertical subbundle $V T^{*} M$ or not. In the former case we deal with connections Γ_{α} when α preserves the horizontal subbundle $H \Gamma$ and in the latter with connections Γ_{α} for which $\alpha\left(V T^{*} M\right)=H \Gamma_{\alpha}^{2}$ or $\alpha\left(H \Gamma_{\alpha}^{1}\right)=V T^{*} M$.

The main results are in the third part of the paper. We deal with symmetric (1,1)-tensor fields α when the form $\mathrm{d}^{\alpha}(X, Y)=\mathrm{d} \varepsilon(\alpha X, Y)$ is symmetric, and with symmetric connections Γ on $T^{*} M$ when $\left.\mathrm{d} \varepsilon\right|_{H \Gamma}=0$, where $H \Gamma$ is the horizontal bundle of a connection Γ.

When α does not preserve $V T^{*} M$ our investigations are concentrated on the semilinear case of α when $B=\left.T \pi \cdot \alpha\right|_{V T^{*} M}$ is a base morphism and the map $T \pi \cdot \alpha \cdot X$: $T^{*} M \rightarrow T M$ is a vector bundle morphism for any projectable linear vector field X : $T^{*} M \rightarrow T T^{*} M$ on $T^{*} M$. Propositions 5-7 determine sufficient conditions for the connection Γ_{α}^{1} to be linear, for the equality $\gamma_{\alpha}^{1}=T B\left(\Gamma_{\alpha}^{1}\right)$ and for the connection γ_{α}^{1} to be just the Levi-Civita connection determined by the pseudo-Riemannian structure B^{-1} on M, where γ_{Γ}^{1} is the connection on $T M$ induced by the linear connection Γ_{α}^{1}. Propositions 8 and 9 describe some properties of the ACS $\alpha(\Gamma, B)$ which are determined by a linear symmetric connection Γ on $T^{*} M$ and by a vector bundle morphism B.

In the case $\alpha\left(V T^{*} M\right) \subset V T M$ there are morphisms $A=T \pi \cdot \alpha: T T^{*} M \rightarrow T M$, $H=\left.\alpha\right|_{V T^{*} M}$. Remember that the complete lift $\alpha=F^{C}$ of a (1, 1)-tensor field F on M preserves $V T^{*} M, A=H$ and it is a $V B$-field, i.e. for any linear projectable vector field X on $T^{*} M$ the vector field $\alpha(X)$ is again linear and projectable. When α is symmetric then $A=-H$. Propositions 12 and 13 state sufficient conditions under which a symmetric (1,1)-tensor field α (especially an ACS) determines connections Γ_{α} on $T^{*} M$.

Our investigations are local.

Connections induced by (1,1)-And $(0,2)$-TENSOR fields on fibre bundles
Let $\pi: E \rightarrow M$ be a fibre bundle. Let $\left(x^{i}, y^{\alpha}\right)$ be a local fibre chart on Y. A connection Γ on E can be regarded as a (1,1)-tensor field h_{Γ} on E (called the horizontal form of Γ) such that $h_{\Gamma}(V E)=0, T \pi \cdot h_{\Gamma}=T \pi$, where $V E$ is the vector fibre bundle of the vertical vectors on E and $T f$ denotes the tangent prolongation of a map f. In coordinates,

$$
\begin{equation*}
h_{\Gamma}=\mathrm{d} x^{i} \varrho \partial / \partial x^{i}+\Gamma_{j}^{\alpha}(x, y) \mathrm{d} x^{j} \Theta \partial / \partial y^{\alpha} \tag{1}
\end{equation*}
$$

Denote $H \Gamma:=h_{\Gamma}(T E) \subset T E$ the vector fibre bundle of the Γ-horizontal vectors on E, i.e. such vectors $\left(x^{i}, y^{\alpha}, \mathrm{d} x^{i}, \mathrm{~d} y^{\alpha}\right)$ on E which satisfy the equation

$$
\mathrm{d} y^{\alpha}=\Gamma_{j}^{\alpha} \mathrm{d} x^{j}
$$

The functions Γ_{j}^{α} are called the local components of the connection Γ. Readers are refered to [6] for more details on connections on fibre bundles.

1. Let

$$
\alpha=\left(a_{j}^{i}(x, y) \mathrm{d} x^{j}+b_{\alpha}^{i}(x, y) \mathrm{d} y^{\alpha \alpha}\right) \otimes \partial / \partial x^{i}+\left(c_{j}^{\alpha}(x, y) \mathrm{d} x^{j}+h_{\beta}^{\alpha}(x, y) \mathrm{d} y^{\beta}\right) \otimes \partial / \partial y^{\alpha}
$$

be a (1,1)-tensor field on E. We will briefly denote by B the vector bundle morphism $\left.T \pi \cdot \alpha\right|_{V E}: V E \rightarrow T M$ over $\pi: E \rightarrow M$. It can be interpreted as a section $E \rightarrow$ $V^{*} E \otimes T M, B=b_{\alpha}^{i} \mathrm{~d} y^{\alpha} \otimes \partial / \partial x^{i}$.

We will say shortly that α is vertical if $B=0$, i.e. if $\alpha(V E) \subset V E$. We will recall some properties of connections connected with a (1,1)-tensor field α, see [2].

Let h_{Γ} be the horizontal form of a connection Γ on E given by (1). Let $Y=$ $\eta^{\alpha} \partial / \partial y^{\alpha} \in V E$ be an arbitrary vertical vector on E and let $X=\xi^{i} \partial / \partial x^{i}+\Gamma_{i}^{\alpha} \xi^{i} \partial / \partial y^{\alpha}$ be a Γ-horizontal vector. Then $\alpha(Y)=b_{\beta}^{i} \eta^{\beta} \partial / \partial x^{i}+h_{\beta}^{\alpha} \eta^{\beta} \partial / \partial y^{\alpha}$ or $\alpha(X)=\left(a_{j}^{i}+\right.$ $\left.b_{\beta}^{i} \Gamma_{j}^{\beta}\right) \xi^{j} \partial / \partial x^{i}+\left(c_{j}^{\alpha}+h_{\beta}^{\alpha} \Gamma_{j}^{\beta}\right) \xi^{j} \partial / \partial y^{\alpha}$ is Γ-horizontal for any vertical vector Y or vertical for any Γ-horizontal vector X iff

$$
\begin{equation*}
\Gamma_{k}^{\alpha} b_{\beta}^{k}=h_{\beta}^{\alpha} \quad \text { or } \quad a_{j}^{i}+b_{\beta}^{i} \Gamma_{j}^{\beta}=0 \tag{2}
\end{equation*}
$$

We have
Lemma 1. Let $\operatorname{dim} M$ be the dimension of the fibres on E. Then there is a unique comnection Γ_{α}^{1} and a unique connection Γ_{α}^{2} on E such that $\alpha\left(H \Gamma_{\alpha}^{1}\right)=$ $V E, \alpha(V E)=H \Gamma_{\alpha}^{2}$ if and only if the vector bundle morphism B is regular. Then $-\tilde{b}_{k}^{\alpha} a_{j}^{k}$ and $h_{\beta}^{\alpha} \tilde{b}_{j}^{\beta}$ are respectively the local components of Γ_{α}^{1} or Γ_{α}^{2}, and $\Gamma_{\alpha}^{1}=\Gamma_{\alpha}^{2}$ if and only if α^{2} is vertical.

We will suppose that $\operatorname{dim} M$ is the dimension of fibres on E.
The coordinate conditions for α to be an almost complex structure on E, i.e. $\alpha^{2}=-\mathrm{Id}_{T E}$ are
(3) $a_{s}^{i} a_{j}^{s}+b_{\beta}^{i} c_{j}^{\beta}=-\delta_{j}^{i}, a_{s}^{i} b_{\beta}^{s}+b_{\gamma}^{i} h_{\beta}^{\gamma}=0, c_{s}^{\alpha} a_{j}^{s}+h_{\gamma}^{\alpha} c_{j}^{\gamma}=0, c_{s}^{\alpha} b_{\beta}^{s}-h_{\gamma}^{\alpha} h_{\beta}^{\gamma}=-\delta_{\beta}^{\varrho}$.

If B is regular then the third and fourth equations of (3) are consequences of the first and the second ones.

By the equalities (2) and (3) it is easy to prove
Lemma 2. Let Γ be a conmection on E. Let $B: E \rightarrow V^{*} E \otimes T M$ be a vector bundle isomorphism $V E \rightarrow T M$ over π. Then there exists a unique almost complex structure $\alpha(\Gamma, B)$ on E such that $\left.T \pi \cdot \alpha\right|_{V E}=B$ and $\Gamma_{\alpha}^{1}=\Gamma_{4}^{2}=\Gamma_{\alpha}$.

> In the case of $E=T M$, if we choose $B=\left.\mathrm{Id}\right|_{V T M}$ then the almost complex structure $\alpha(\Gamma, B)$ is the canonical almost complex structure determined by the connection Γ on $T M$, see $[5]$.
> Let $Q=Q_{i}^{\alpha} \mathrm{d} x^{i} \otimes \partial / \partial y^{\alpha}$ be a section $E \rightarrow T^{*} M Q V E$. Denote
> $\alpha^{+}: Q \rightarrow Q \alpha=\left(Q_{k}^{\alpha} a_{j}^{k} \mathrm{~d} x^{j}+Q_{k}^{\alpha} b_{\beta}^{k} \mathrm{~d} y^{\beta}\right) \otimes \partial / \partial y^{\alpha}, \alpha^{+}: T^{*} M \otimes V E \rightarrow T^{*} E \otimes V E$ $\alpha^{-}: Q \rightarrow \alpha Q=b_{\beta}^{i} Q_{j}^{\beta} \mathrm{d} x^{j} \otimes \partial / \partial x^{i}+h_{\beta}^{\alpha} Q_{j}^{\beta} \mathrm{d} x^{j} \otimes \partial / \partial y^{\alpha} \cdot \alpha^{-}: T^{*} M \otimes V E \rightarrow T^{*} M \otimes T E$.

We say that two (1,1)-tensor fields α_{1}, α_{2} on E are (+)-equivalent or (-)-equivalent if $\alpha_{1}^{+}=\alpha_{2}^{+}$or $\alpha_{1}^{-}=\alpha_{2}^{-}$respectively for any $Q: E \rightarrow T^{*} M \otimes V E$.
If B is regular then using (3) we get ([2] Proposition 6)
Lemma 3. In every class of all (+)-equivalent (1,1)-tensor fields on E there is a unique almost complex structure on E. The same is true for the class of $(-)$ equivalent (1,1)-tensor fields.

In the case when α is vertical, i.e. when $B=0$, denote

$$
\begin{aligned}
& A:=T \pi \cdot \alpha=a_{j}^{i} \mathrm{~d} x^{j} \otimes \partial / \partial x^{i}, \quad A: E \rightarrow T^{*} M \otimes_{E} T M, \\
& H:\left.\alpha\right|_{V Y}=h_{\beta}^{\alpha} \mathrm{d} y^{3} \otimes \partial / \partial y^{\alpha}, \quad H: E \rightarrow V^{*} E \otimes V E .
\end{aligned}
$$

Let $\Gamma, \bar{\Gamma}$ be two connections on E and α a vertical (1.1)-tensor field. Then

$$
\begin{equation*}
\bar{\Gamma}_{k}^{\alpha} a_{j}^{k}=c_{j}^{\alpha}+h_{\beta}^{\alpha} \Gamma_{j}^{\beta} \tag{4}
\end{equation*}
$$

is the coordinate condition for the inclusion $\alpha(H \Gamma) \subset H \bar{\Gamma}$.
Using (3) and (4) we get (see [2], Proposition 10)
Lemma 4. Let $A: E \rightarrow T^{+} M \otimes_{E} T M, H: E \rightarrow V^{*} E \otimes V E$ be sections. Let Γ be a connection on E. Then there is a unique vertical (1,1)-tensor field $\alpha(A, H, \Gamma)$ such that $\alpha(H \Gamma) \subset H \Gamma, T \pi \cdot \alpha=A,\left.\alpha\right|_{V E}=H$. Moreover, if $A^{2}(u)=-\operatorname{Id}_{T_{\pi u} M}$ for any $u \in E$ and $H^{2}=-\mathrm{Id}_{V T M}$ then $\alpha(A, H, \Gamma)$ is an ACS on E.

Remark. If A is regular then for any connection Γ there exists a unique conection $\bar{\Gamma}$ on E such that $\alpha(H \Gamma) \subset H \bar{\Gamma}$.
2. Let $\omega=f_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}+f_{i \alpha} \mathrm{~d} x^{i} \otimes \mathrm{~d} y^{\alpha}+f_{\alpha i} \mathrm{~d} y^{\alpha} \otimes \mathrm{d} x^{i}+f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta}$ be a $(0,2)$-tensor field on E. Recall some well known facts.

Denote by ω^{t} the (0,2)-field transposed to $\omega, \omega^{t}(X, Y)=\omega(Y, X)$. Then ω is symmetric or skew-symmetric if $\omega^{t}=\omega$ or $\omega^{t}=-\omega$, respectively.

Let α be a (1,1)-tensor field on E. Denote by $\omega^{\alpha}, \omega_{\alpha}, \omega \alpha$ the following (0,2)-tensor fields:

$$
\omega^{\circ}(X, Y):=\omega(\alpha X, Y), \omega_{\alpha}(X, Y):=\omega(X, \alpha Y), \omega \alpha(X, Y):=\omega(\alpha X, \alpha Y)
$$

It is evident that

$$
\begin{equation*}
\left(\omega^{\alpha}\right)^{t}=\left(\omega^{t}\right)_{\alpha},\left(w_{\alpha}\right)^{t}=\left(\omega^{t}\right)^{\alpha},(\omega \alpha)^{t}=\omega^{t} \alpha \tag{5}
\end{equation*}
$$

in the general case and

$$
\begin{align*}
& \omega^{\alpha}= \pm \omega_{\alpha} \Leftrightarrow \omega \alpha=\mp \omega, \omega^{\alpha} \alpha=-\omega_{\alpha}, \omega_{\alpha} \alpha=-\omega^{\alpha} \tag{6}\\
& \left(\omega^{\alpha}\right)^{t}=\omega^{\alpha} \Leftrightarrow \omega \alpha=-\omega^{t},\left(\omega^{\alpha}\right)^{t}=-\omega^{\alpha} \Leftrightarrow \omega \alpha=\omega^{t}
\end{align*}
$$

in the case of an ACS α on E.
We say that a tangent subbundle $V_{2} \subset T E$ is ω-orthogonal to a subbundle $V_{1} \subset T E$. if $\omega(X, Y)=0$ for any $X \in V_{1}(u), Y \in V_{2}(u)$ at any $u \in E$. A tangent subbundle $V \subset T E$ is said to be ω-zero if $\left.\omega\right|_{V}=0$.

Let Γ_{1}, Γ_{2} be two connections on E. We say that Γ_{2} is ω-orthogonal to Γ_{1} if the Γ_{2}-horizontal subbundle $H \Gamma_{2}$ is ω-orthogonal to $H \Gamma_{1}$.

If $X=\xi^{i} \partial / \partial x^{i}+\Gamma_{j}^{\alpha} \xi^{j} \partial / \partial y^{\alpha}$ is Γ_{1}-horizontal and $\bar{X}=\bar{\xi}^{i} \partial / \partial x^{i}+\bar{\Gamma}_{j}^{\alpha} \bar{\xi}^{j}$ is Γ_{2} horizontal then $\omega(X, \bar{X})=\left(f_{i j}+f_{i \alpha} \bar{\Gamma}_{j}^{\alpha}+f_{\alpha j} \Gamma_{i}^{\alpha}+f_{\alpha \beta} \Gamma_{i}^{\alpha} \bar{\Gamma}_{j}^{\beta}\right) \xi^{i} \bar{\xi}^{j}$ and so the connection Γ_{2} is ω-orthogonal to Γ_{1} if and only if

$$
\begin{equation*}
f_{i j}+f_{i \alpha} \bar{\Gamma}_{j}^{\alpha}+f_{\alpha j} \Gamma_{i}^{\alpha}+f_{\alpha \beta} \Gamma_{i}^{\alpha} \bar{\Gamma}_{j}^{\beta}=0 \tag{8}
\end{equation*}
$$

Consider the following restrictions of a (0,2)-tensor field ω :

$$
\begin{aligned}
& \omega_{1}:=\left.\omega\right|_{T E \times_{E} V E}, \omega_{1}=f_{i \alpha} \mathrm{~d} x^{i} \otimes \mathrm{~d} y^{\alpha}+f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta}, \\
& \omega_{2}:=\left.\omega\right|_{V E \times_{E} T E}, \omega_{2}=f_{\alpha i} \mathrm{~d} y^{\alpha} \otimes \mathrm{d} x^{i}+f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta}, \\
& \omega_{v}:=\left.\omega\right|_{V E \times_{E} V E}, \omega_{v}=f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta} .
\end{aligned}
$$

The equality (8) immediately gives
Lemma 5. Let Γ_{1}, Γ_{2} be two connections on a fibre bundle $\pi: E \rightarrow M$. Let $\varphi_{1}=f_{i \alpha} \mathrm{~d} x^{i} \otimes \mathrm{~d} y^{\alpha}+f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta}, \varphi_{1}: E \rightarrow T^{*} E \otimes_{E} V^{*} E, \varphi_{2}=f_{\alpha i} \mathrm{~d} y^{\alpha} \otimes \mathrm{d} x^{i}+$ $f_{\alpha \beta} \mathrm{d} y^{\alpha} \otimes \mathrm{d} y^{\beta}, \varphi_{2}: E \rightarrow V^{*} E \odot_{E} T^{*} E$ be two bilinear forms such that $\left.\varphi_{1}\right|_{V E \times_{E} V E}=$ $\left.\hat{\varphi}_{2}\right|_{V E X_{E} V E}$. Then there is a unique $(0,2)$-tensor field $\omega\left(\varphi_{1}, \varphi_{2}, \Gamma_{1}, \Gamma_{2}\right)$ on E such that $\omega_{1}=\varphi_{1}, \omega_{2}=\varphi_{2}$ and Γ_{2} is ω-orthogonal to Γ_{1}.

If $\Gamma_{2}=\Gamma_{1}=\Gamma$ then the tensor field $\omega\left(\varphi_{1}, \varphi_{2}, \Gamma\right)$ from Lemma 5 is such that the connection Γ is ω-zero, i.e. $\left.\omega\right|_{H \Gamma}=0$.

We can find subbundles $\mathcal{H}, \mathcal{H}^{\prime} \subset T E$ such that \mathcal{H} is ω-orthogonal to $V E$ and $V E$ is ω-orthogonal to \mathcal{H}^{\prime}. Let $Y=\eta^{\alpha} \partial / \partial y^{\alpha}$ be vertical and let $X=\mathrm{d} x^{i} \partial / \partial x^{i}+\mathrm{d} y^{\alpha} \partial / \partial y^{\alpha}$ be an arbitrary tangent vector on E. Then the equation $\omega(Y, X)=0$ or $\omega(X, Y)=0$ is satisfied for any vertical vector Y iff

$$
\begin{align*}
& f_{\alpha i} \mathrm{~d} x^{i}+f_{\alpha \beta} \mathrm{d} y^{\beta}=0 \quad \text { or } \\
& f_{i \alpha} \mathrm{~d} x^{i}+f_{\beta \alpha} \mathrm{d} y^{\beta}=0
\end{align*}
$$

This immediately gives

Lemma 6. There exist unique connections $\Gamma_{\omega}, \Gamma_{\omega}^{\prime}$ such that Γ_{ω} is ω-orthogonal to $V E$ and $V E$ is ω-orthogonal to Γ_{ω}^{\prime} if and only if the form $\omega_{v}=\left.\omega\right|_{V E}$ is regular . If ω is symmetric or skew-symmetric then $\Gamma_{\omega}=\Gamma_{\omega}^{\prime}$. The vertical subbundle $V E$ is ω-zero if and only if $\omega_{v}=0$.

In the following lemma we suppose that $\operatorname{dim} M$ is the dimension of fibres on E and that $B=\left.T \pi \cdot \alpha\right|_{V E}$ is regular (so there exist connections $\Gamma_{\alpha}^{1}, \Gamma_{\alpha}^{2}, \alpha\left(H \Gamma_{\alpha}^{1}\right)=$ $V E, \alpha(V E)=H \Gamma_{\alpha}^{2}$ on $\left.E\right)$.

Lemma 7. Let $\dot{\omega}$ be a $(0,2)$-tensor field and α a $(1,1)$-tensor field on E. Then

1. $V E$ is ω-zero iff $V E$ is ω^{α}-orthogonal to Γ_{α}^{1} or Γ_{α}^{1} is ω_{α}-orthogonal to V or $H \Gamma_{\alpha}^{1}$ is $\omega \alpha$-zero.
2. The connection Γ_{α}^{1} is ω-orthogonal to $V E$ iff Γ_{α}^{1} is ω^{α}-zero.
3. $V E$ is ω-orthogonal to the connection Γ_{α}^{1} iff Γ_{α}^{1} is ω_{α}-zero.
4. $V E$ is ω^{α}-zero (ω_{α}-zero) iff Γ_{α}^{1} is $\omega^{\alpha} \alpha$-zero ($\omega_{\alpha} \alpha$-zero).
5. $V E$ is $\omega \alpha$-zero iff the connection Γ_{α}^{2} is ω-zero or $H \Gamma_{\alpha}^{2}$ is ω^{α}-orthogonal to $V E$ or $V E$ is ω_{α}-orthogonal to $H \Gamma_{\alpha}^{2}$.
6. $V E$ is ω^{α}-zero iff $V E$ is ω-orthogonal to Γ_{α}^{2}.
7. $V E$ is ω_{α}-zero iff Γ_{α}^{2} is ω-orthogonal to $V E$.
8. The connection Γ_{α}^{2} is ω^{α}-zero iff $V E$ is $\omega \alpha$-orthogonal to Γ_{α}^{2}.
9. The connection Γ_{α}^{2} is ω_{c}-zero iff Γ_{α}^{2} is $\omega \alpha$-orthogonal to $V E$.

Connections induced by almost complex structures on $T^{*} M$

In the induced chart $\left(x^{i}, z_{i}\right)$ on $T^{*} M$ a (1,1)-tensor field α on the fibre bundle π : $T^{*} M \rightarrow M$ is of the form

$$
\alpha=\left(a_{j}^{i}(x, z) \mathrm{d} x^{j}+b^{i j} \mathrm{~d} z_{j}\right) \otimes \partial / \partial x^{i}+\left(c_{i j} \mathrm{~d} x^{j}+h_{i}^{j} \mathrm{~d} z_{j}\right) \otimes \partial / \partial z_{i}
$$

According to the identification $V T^{*} M=T^{*} M \times_{M} T^{*} M$ the vector bundle morphism $B=\left.T \pi \cdot \alpha\right|_{V T^{*} M}: V T^{*} M \rightarrow T M, B=b^{i j} \mathrm{~d} z_{j} \otimes \partial / \partial x^{i}$, can be interpreted as a vector bundle morphism $B: T^{*} M \times_{M} T^{*} M \rightarrow T^{*} M \times_{M} T M$, i.e. as a section $B: T^{*} M \rightarrow T M \otimes_{T^{*} M} T M$, i.e. as a bilinear form in $V T^{*} M$.

Definition 1. A (1,1)-tensor field α on $T^{*} M$ is called v-symmetric or v-skew symmetric or v-basic if the section B is symmetric or skew symmetric or if B is the π-pullback of a section $M \rightarrow T M \otimes T M$.

Let us introduce the coordinate expression of some forms and tensor fields constructed from the Liouville form $\varepsilon=z_{i} \mathrm{~d} x^{i}, \omega \equiv \mathrm{~d} \varepsilon=\mathrm{d} z_{i} \wedge \mathrm{~d} x^{i}$ and α :

$$
\begin{aligned}
i_{\alpha} \varepsilon & =z_{k}\left(a_{j}^{k} \mathrm{~d} x^{j}+b^{k j} \mathrm{~d} z_{j}\right) \\
i_{\alpha} \mathrm{d} \varepsilon & =c_{i j} \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{i}+\left(h_{i}^{j}+a_{i}^{j}\right) \mathrm{d} x_{j} \wedge \mathrm{~d} x^{i}+b^{i j} \mathrm{~d} z_{i} \wedge \mathrm{~d} z_{j} \\
\left.i_{\alpha} \mathrm{d} \varepsilon\right|_{V T^{*} M} & =b^{i j} \mathrm{~d} z_{i} \wedge \mathrm{~d} z_{j}
\end{aligned}
$$

where i_{α} denotes the algebraic graded derivation determined by α,

$$
\begin{aligned}
& \mathrm{d} \varepsilon^{\alpha}=c_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}+h_{i}^{j} \mathrm{~d} z_{j} \otimes \mathrm{~d} x^{i}-a_{i}^{j} \mathrm{~d} x^{i} \otimes \mathrm{~d} z_{j}-b^{i j} \mathrm{~d} z_{j} \otimes \mathrm{~d} z_{i} \\
& \mathrm{~d} \varepsilon_{\alpha}=-c_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}+a_{i}^{j} \mathrm{~d} x_{j} \otimes \mathrm{~d} x^{i}-h_{i}^{j} \mathrm{~d} x^{i} \otimes \mathrm{~d} z_{j}+b^{j i} \mathrm{~d} z_{j} \otimes \mathrm{~d} z_{i} \\
& \mathrm{~d} \varepsilon \alpha=c_{t i} a_{j}^{t} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j}+\left(c_{t i} b^{t j}-a_{i}^{t} h_{t}^{j}\right) \mathrm{d} x^{i} \wedge \mathrm{~d} z_{j}+h_{t}^{i} b^{t j} \mathrm{~d} z_{i} \wedge \mathrm{~d} z_{j}
\end{aligned}
$$

It is evident that
(9) $\mathrm{d} \varepsilon^{\alpha}+\mathrm{d} \varepsilon_{\alpha}=i_{\alpha} \mathrm{d} \varepsilon$,
(10) $\quad \mathrm{d} \varepsilon^{\alpha}-\mathrm{d} \varepsilon_{\alpha}=\left(c_{j i}+c_{i j}\right) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}+\left(h_{i}^{j}-a_{i}^{j}\right)\left(\mathrm{d} x^{i} \otimes \mathrm{~d} z_{j}+\mathrm{d} z_{j} \otimes \mathrm{~d} x^{i}\right)$

$$
-\left(b^{i j}+b^{j i}\right) \mathrm{d} z_{i} \otimes \mathrm{~d} x_{j} \text { is symmetric, }
$$

(11) $i_{\alpha} \mathrm{d} \varepsilon$ is the antisymmetrization of $\mathrm{d} \varepsilon^{\alpha}$,
(12) $\quad\left(\mathrm{d} \varepsilon^{\alpha}\right)^{t}=-\mathrm{d} \varepsilon_{\alpha}$, i.e. $(\mathrm{d} \varepsilon)^{\alpha}$ is symmetric or exterior

$$
\text { iff } \mathrm{d} \varepsilon^{\alpha}=-\mathrm{d} \varepsilon_{\alpha} \text { or } \mathrm{d} \varepsilon^{\alpha}=\mathrm{d} \varepsilon_{\alpha} .
$$

In coordinates $(\mathrm{d} \varepsilon)^{\alpha}$ is symmetric or exterior if

$$
\begin{aligned}
& c_{i j}=c_{j i}, h_{i}^{j}=-a_{i}^{j}, b^{i j}=b^{j i} \quad \text { or } \\
& c_{i j}=-c_{j i}, h_{i}^{j}=a_{i}^{j}, b^{i j}=-b^{j i} .
\end{aligned}
$$

Proposition 1. Let α be an $A C S$ on $T^{*} M$. Then

1. $\left(i_{\alpha} \mathrm{d} \varepsilon\right) \alpha=-i_{\alpha} \mathrm{d} \varepsilon$,
2. $\left(\mathrm{d} \varepsilon^{\alpha}-\mathrm{d} \varepsilon_{\alpha}\right) \alpha=\mathrm{d} \varepsilon^{\alpha}-\mathrm{d} \varepsilon_{\alpha}$,
3. $\mathrm{d} \varepsilon^{\alpha \alpha}$ is symmetric or skew symmetric iff $\mathrm{d} \varepsilon \alpha=\mathrm{d} \varepsilon$ or $\mathrm{d} \varepsilon \alpha=-\mathrm{d} \varepsilon$, respectively,
4. $\mathrm{d} \xi^{\alpha} \alpha=\mathrm{d} \varepsilon^{\alpha}$ if $\mathrm{d} \varepsilon^{\alpha}$ is moreover symmetric.

Proof. 1 and 2 follow from (6) and (9). Assertion 3 is a consequence of (7). The equalities (6) and (12) imply 4.

Corollary. Let α be an $A C S$ on $T^{*} M$. Let $\mathrm{d} \varepsilon^{*}$ be symmetric, i.e. let $\mathrm{d} \varepsilon$ be invariant under α. Then $\mathrm{d} \varepsilon^{\alpha}$ is a pseudo-Hermite metric on $T^{*} M$ and ($\left.T^{*} M, \alpha, \mathrm{~d} \varepsilon^{\alpha}\right)$ is a pseudo-almost Kähler space, [7].

Proof. By Proposition $1 \mathrm{~d} \varepsilon^{\alpha} \alpha=\mathrm{d} \varepsilon^{\alpha}$ so $\mathrm{d} \varepsilon^{\alpha}$ is a pseudo-Hermite metric. As $\left(\mathrm{d} \varepsilon^{\alpha}\right)^{\alpha}=-\mathrm{d} \varepsilon$ is exact so $\left(T^{*} M, \alpha, \mathrm{~d} \varepsilon^{\alpha}\right)$ is pseudo-almost Kähler.

Definition 2. A (1,1)-tensor field α on $T^{*} M$ is called symmetric or skew symmetric if $\mathrm{d} \varepsilon^{\alpha}$ is symmetric or skew symmetric.

In the induced local chart $\left(x^{i}, z_{i}\right)$ on $T^{*} M$ a connection Γ on $T^{*} M$ is given by the equations

$$
\mathrm{d} z_{i}=\Gamma_{i j}(x, z) \mathrm{d} x^{j}
$$

As the form $\mathrm{d} \varepsilon$ is symplectic, there exists a unique connection Γ^{t} which is dsorthogonal to Γ. By (8) its local components are $\bar{\Gamma}_{i j}=\Gamma_{j i}$. So Γ is d ε-zero iff $\Gamma^{t}=\Gamma$. In this case we will say that Γ is symmetric on $T^{*} M$.

Analogously in the case when the form $i_{\alpha} \mathrm{d} \varepsilon$ is regular, i.e. almost-symplectic. Remember that if $\mathrm{d} \varepsilon^{\alpha}$ is symmetric then $i_{\alpha} \mathrm{d} \varepsilon=0$.

In our futher consideration we will deal with two cases of the (1,1)-tensor field α on $T^{*} M$.
I. Let α be such that $B=\left.T \pi \cdot a\right|_{V T * M}=b^{i j} \mathrm{~d} z_{j} \otimes \partial / \partial x^{i}$ is regular. Then by Lemma 1 there are connections Γ_{α}^{1} and $\Gamma_{\alpha \gamma}^{2}$ such that $\alpha\left(H \Gamma_{\alpha}^{1}\right)=V T^{*} M$ and $\alpha\left(V T^{*} M\right)=H \Gamma_{\alpha}^{2}$. Then

$$
\begin{equation*}
\Gamma_{i j}^{1}=-b_{i k} a_{j}^{k}, \quad \Gamma_{i j}^{2}=h_{i}^{k} b_{k j}, \quad b_{i k} b^{k j}=\delta_{i}^{j} \tag{14}
\end{equation*}
$$

are their local components.

By Lemma 6 there are two connections $\Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}, \Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}^{\prime}$ such that $\Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}$ is $\mathrm{d} \varepsilon^{\alpha}$ orthogonal to $V T^{*} M$ and $V T^{*} M$ is $d \varepsilon^{\alpha}$-orthogonal to $\Gamma_{d \varepsilon^{\prime \prime}}^{\prime}$. According to (8^{\prime}) their local components are respectively

$$
\Gamma_{i j}=h_{j}^{t} b_{t i}, \quad \Gamma_{i j}^{\prime}=-b_{i t} a_{j}^{t} .
$$

Comparing the local components of the connections $\Gamma_{\alpha}^{1}, \Gamma_{\alpha}^{2}, \Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}, \Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}^{\prime}$ we get
Proposition 2. If α is such a $(1,1)$-tensor field that B is regular then $\left.\mathrm{d} \varepsilon^{\alpha}\right|_{V T^{*} M}$ is also regular and
a) $\Gamma_{\alpha}^{1}=\Gamma_{\mathrm{d} \mathrm{\varepsilon} \varepsilon^{n}}^{\prime}$ and so $V T^{*} M$ is $\mathrm{d} \varepsilon^{\alpha}$-orthogonal to Γ_{α}^{1},
b) $\Gamma_{\mathrm{d} \varepsilon^{*}}=\left(\Gamma_{\alpha}^{2}\right)^{t}$, i.e. the connections $\Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}$ and Γ_{α}^{2} are ds-orthogonal and thus the comnection $\left(\Gamma_{\alpha}^{2}\right)^{t}$ is $d \varepsilon^{\alpha}$-orthogonal to $V T^{*} M$.

Remark. As $\left(\mathrm{d} \varepsilon^{\alpha}\right)^{t}=-\mathrm{d} \varepsilon_{\alpha}$ therefore $\Gamma_{\mathrm{d} \varepsilon_{,},}=\Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}^{\prime}$ and $\Gamma_{\mathrm{d} \varepsilon_{\mathrm{a}}}^{\prime}=\Gamma_{\mathrm{d} \varepsilon^{\prime \prime}}$. So the connection Γ_{α}^{1} is $\mathrm{d} \varepsilon_{\alpha}$-orthogonal to $V T^{*} M$ and $V T^{*} M$ is $\mathrm{d} \varepsilon_{\alpha}$-orthogonal to the connection $\left(\Gamma_{\alpha}^{2}\right)^{t}$. By Lemma $7 / 1, \Gamma_{\alpha}^{1}$ is $\mathrm{d} \varepsilon$-zero because $V T^{*} M$ is d ε-zero.

Proposition 3. If α is such a $(1,1)$-tensor field that B is regular, α^{2} is vertical and $d \varepsilon^{\alpha}$ is symmetric or skew-symmetric then the connection $\Gamma_{\alpha}=\Gamma_{\alpha}^{1}=\Gamma_{\alpha}^{2}$ is $\mathrm{d} \varepsilon$-zero, i.e. $\left(\Gamma_{\alpha}\right)^{t}=\Gamma_{\alpha}$

Proof. If $\mathrm{d} \varepsilon^{\alpha}$ is symmetric then $b_{k j}=b_{j k},-a_{j}^{k}=h_{j}^{k}$. When α^{2} is vertical then $\Gamma_{\alpha}^{1}=\Gamma_{\alpha}^{2}$, i.e. $-b_{i k} a_{j}^{k}=h_{i}^{k} b_{k j}$, i.e. $b_{k i} h_{j}^{k}=b_{k j} h_{i}^{k}$, i.e. $\Gamma_{i j}=\Gamma_{j i}$. Analogously when $-b_{k j}=b_{j k}, a_{j}^{k}=h_{j}^{k}$, i.e. when d ε^{α} is skew symmetric.

Let us remark that if α is an ACS then α^{2} is vertical.
The inverse $B^{-1}=b_{i j}(x, z) \mathrm{d} x^{i} \otimes \partial / \partial z_{j}: T^{*} M \times_{M} T M \rightarrow T^{*} M \times_{M} T^{*} M$ can be interpreted as a semibasic bilinear form $b_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}$ on $T^{*} M$, i.e. as a section $T^{*} M \rightarrow T^{*} M \otimes_{T^{*} M} T^{*} M$.

Proposition 4. Let α be such an $A C S$ on $T^{*} M$ that B is regular and let $h_{\Gamma_{\alpha}}$ be the horizontal form of the connection $\Gamma_{\alpha}=\Gamma_{\alpha}^{1}=\Gamma_{\alpha}^{2}$. Then $\mathrm{d} \varepsilon^{\alpha} h_{\Gamma_{,}}=-B^{-1}$ and $\mathrm{d} \varepsilon_{\alpha} h_{\Gamma, .,}=\left(B^{-1}\right)^{t}$.

Proof. $\quad h_{\Gamma_{n}}\left(X_{q}\right)=\xi_{q}^{i} \partial / \partial x^{i}+h_{i}^{s} \tilde{b}_{s i} \xi_{q}^{j} \partial / \partial z_{i}, q=1,2$. Then using (3) we get $\mathrm{d} \varepsilon^{\alpha}\left(h_{\Gamma_{,}} X_{1}, h_{\Gamma_{,}} X_{2}\right)=\left(c_{i j}+h_{i}^{t} h_{t}^{s} b_{s j}-a_{j}^{t} h_{t}^{s} b_{s i}-b^{u t} h_{t}^{s} b_{s j} h_{u}^{r} b_{r i}\right) \xi_{1}^{j} \xi_{2}^{i}=-b_{i j} \xi_{1}^{j} \xi_{2}^{i}$. This proves the first part. The second is a consequence of the equality $\left(d \omega^{\alpha}\right)^{t}=-d \omega_{\alpha}$.

Remark. As $B^{-1}=b_{i j} \mathrm{~d} x^{i} \otimes \partial / \partial z_{j}$ is a semibasic 1 -form with values in $V T^{*} M$ then if h_{Γ} is the horizontal form of a connection Γ on $T^{*} M$ then $h_{\Gamma}+B^{-1}$ is the horizontal form of the other connection on $T^{*} M$

Recall that a projectable linear vector field X on $T^{*} M$ is such a vector field that $T \pi X$ is a vector field on M and its flow is formed by linear maps of fibres on $T^{*} M$, i.e. in coordinates $X=\xi^{i}(x) \partial / \partial x^{i}+\eta_{i}^{j}(x) z_{j} \partial / \partial z_{i}$.

Definition 3. A non-vertical (1,1)-tensor field α on $T^{*} M$ is said to be semilinear if it is v-basic and for any projectable linear vector field $X: T^{*} M \rightarrow T T^{*} M$ on $T^{*} M$ the map $T \pi \cdot \alpha X: T^{*} M \rightarrow T M$ is a vector bundle morphism.

In a local chart it is easy to see that α is semi-linear iff $a_{j}^{i}(x, z)=a_{j}^{i k}(x) z_{k}$ and $b^{i j}(x, z)=b^{i j}(x)$.

Proposition 5. If a (1,1)-tensor field α on $T^{*} M$ is semi-linear and such that B is regular then the connection Γ_{α}^{1} is linear.

Proof. The local components of Γ_{α}^{1} are $\Gamma_{i j}=-b_{i s} a_{j}^{s}=-b_{i s}(x) a_{j}^{s k}(x) z_{k}$, i.e. Γ_{α}^{1} is linear.

Let us recall that every linear connection $\Gamma, \Gamma_{i j}=\Gamma_{i j}^{k} z_{k}$, on $T^{*} M$ is induced by the linear connection γ on the tangent bundle $T M$ with the local components $\gamma_{i}^{k}=-\Gamma_{j i}^{k} x_{1}^{j}$. The connection Γ is symmetric if and only if γ is symmetric.

So, if α is semi-linear and B is regular then the connection Γ_{α}^{1} is induced by the connection γ_{α}^{1} on $T M$ with the local components $\gamma_{j}^{i}=\gamma_{j k}^{i} x_{1}^{k}, \gamma_{j k}^{i}=b_{k s} a_{j}^{s i}$. As $B: T^{*} M \rightarrow T M, \bar{x}^{i}=x^{i}, \bar{x}_{1}^{i}=b^{i j}(x) z_{j}$, is a vector bundle isomorphism therefore $T B\left(\Gamma_{\alpha}^{1}\right)$ is a connection on $T M$. We find its functions.

$$
\begin{gathered}
T B: \bar{x}^{i}=x^{i}, \quad x_{1}^{i}=b^{i j}(x) z_{j}, \mathrm{~d} \bar{x}^{i}=\mathrm{d} x^{i}, \quad \mathrm{~d} x_{1}^{i}=b_{k}^{i j} z_{j} \mathrm{~d} x^{k}+b^{i j} \mathrm{~d} z_{j} \\
h_{\Gamma_{\mu}^{1}}=\mathrm{d} x^{i} \otimes \partial / \partial x^{i}-b_{i s} a_{j}^{s k} z_{k} \mathrm{~d} x^{j} \otimes \partial / \partial z_{i} \\
T B \cdot h_{\Gamma_{1}}=\mathrm{d} x^{i} \otimes \partial / \partial x^{i}+\left(b_{k}^{i j}-b^{i t} b_{t s} a_{k}^{s j}\right) z_{j} \mathrm{~d} x^{k} \otimes \partial / \partial x^{i}
\end{gathered}
$$

Then $\Gamma_{j}^{i}=\left(b_{j}^{i s}-a_{j}^{i s}\right) b_{s k} x_{1}^{k}$ establish the components of the connection $T B\left(\Gamma_{\alpha}^{1}\right)$. Therefore $\gamma_{\alpha}^{1}=T B\left(\Gamma_{\alpha}^{1}\right)$ if and only if

$$
\begin{equation*}
b_{k s} a_{j}^{s i}=\left(b_{j}^{i s}-a_{j}^{i s}\right) b_{s k}, \quad \text { i.e. } \quad b_{k u} a_{j}^{u i} b^{k s}=b_{j}^{i s}-a_{j}^{i s} \tag{15}
\end{equation*}
$$

Proposition 6. Let α be such a semilinear (1,1)-tensor field on $T^{*} M$ that B is regular and symmetric, i.e. α is v-symmetric. Then $\gamma_{\alpha}^{1}=T B\left(\Gamma_{\alpha}^{1}\right)$ if and only if $i_{V} \mathrm{~d}\left(i_{\alpha} \varepsilon\right)=0$.

Proof.

$$
\varepsilon=z_{k} \mathrm{~d} x^{k}, \quad i_{\alpha} \varepsilon=a_{j}^{k t} z_{k} z_{t} \mathrm{~d} x^{j}+b^{k j} z_{k} \mathrm{~d} z_{j}
$$

$\mathrm{d} i_{\alpha} \varepsilon=a_{j i}^{k t} z_{k} z_{t} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j}+a_{j}^{k t}\left(z_{t} \mathrm{~d} z_{k}-z_{k} \mathrm{~d} z_{t}\right) \wedge \mathrm{d} x^{j}+b_{i}^{k j} z_{k} \mathrm{~d} x^{i} \wedge \mathrm{~d} z_{j}+b^{k j} \mathrm{~d} z_{k} \wedge \mathrm{~d} z_{j}$
where we use the notation $f_{i}:=\frac{\partial f}{\partial x^{i}}, f^{i}:=\frac{\partial f}{\partial z_{i}}$. Then

$$
\begin{aligned}
i_{V} \mathrm{~d} i_{\alpha} \varepsilon & =\left(a_{j}^{k t}+a_{j}^{t k}-b_{j}^{k t}\right) z_{k} z_{t} \mathrm{~d} x^{j}+\left(b^{k j}-b^{j k}\right) z_{k} \mathrm{~d} z_{j} \\
& =\left(a_{j}^{k t}+a_{j}^{t k}-b_{j}^{k t}\right) z_{k} z_{t} \mathrm{~d} x^{j}=0
\end{aligned}
$$

if and only if $b_{j}^{k t}=a_{j}^{k t}+a_{j}^{t k}$. When B is symmetric then (15) reads $a_{j}^{s i}=b_{j}^{i s}-a_{j}^{i s}$. This completes our proof.

If $B: T^{*} M \rightarrow T M$ is regular and symmetric then $B^{-1}=b_{i j}(x) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}$ determines a pseudo-Riemannian structure on M the Levi-Civita connection γ_{b} of which is given by the local components $C_{j k}^{i}=-\frac{1}{2} b^{i s}\left(b_{s k j}+b_{s j k}-b_{j k s}\right)$.

Proposition 7. Let α be such a semi-linear (1,1)-tensor field α on $T^{*} M$ that B is regular, $\mathrm{d} \varepsilon^{\alpha}$ is symmetric, α^{2} is vertical and $i_{V} \mathrm{~d}\left(i_{\alpha} \varepsilon\right)=0$. Then the connection γ_{α} determined on $T M$ by Γ_{α} is just the Levi-Civita connection γ_{b} of the pseudoRiemannian structure on M induced by B^{-1}.

Proof. By supposition $b^{i j}=b^{j i}, h_{j}^{i}=-a_{j}^{i k} z_{k}, a_{s}^{i j} b^{s k}=b^{i s} a_{s}^{k j}$ or $b_{i s} a_{j}^{s t}=a_{i}^{s t} b_{s j}$ and $b_{j}^{k t}=a_{j}^{k t}+a_{j}^{t k}$. Then

$$
\begin{aligned}
C_{j k}^{i} & =-\frac{1}{2} b^{i s}\left(b_{s k j}+b_{s j k}-b_{j k s}\right)=\frac{1}{2} b_{j}^{i s} b_{s k}+\frac{1}{2} b_{k}^{i s} b_{s j}-\frac{1}{2} b^{i s} b_{j t} b_{s}^{t u} b_{u k} \\
& =\frac{1}{2}\left(a_{j}^{i s}+a_{j}^{s i}\right) b_{s k}+\frac{1}{2}\left(a_{k}^{i s}+a_{k}^{s i}\right) b_{s j}-\frac{1}{2} b^{i s} b_{j t}\left(a_{s}^{t u}+a_{s}^{u t}\right) b_{u k} \\
& =\frac{1}{2} a_{j}^{i s} b_{s k}+\frac{1}{2} b_{j s} a_{k}^{s i}+\frac{1}{2} a_{k}^{i s} b_{s j}+\frac{1}{2} b_{k s} a_{j}^{s i}-\frac{1}{2} a_{j}^{i u} b_{u k}-\frac{1}{2} a_{k}^{i t} b_{j t} \\
& =\frac{1}{2} b_{j s} a_{k}^{s i}+\frac{1}{2} b_{k s} a_{j}^{s i}=\frac{1}{2} a_{j}^{s i} b_{s k}+\frac{1}{2} b_{k s} a_{j}^{s i}=b_{k s} a_{j}^{s i}=\gamma_{j k}^{i} .
\end{aligned}
$$

This completes our proof.
Recall in the sense of Lemma 2 that by $\alpha(\Gamma, B)$ we denote the almost complex structure α on $T^{*} M$ determined uniquely by a connection Γ on $T^{*} M$ and by a vector bundle isomorphism $B: V T^{*} M \rightarrow T M$ over $\pi: T^{*} M \rightarrow M$.

Proposition 8. Let Γ be a symmetric connection on $T^{*} M$, i.e. $\Gamma^{t}=\Gamma$. Let $B: V T^{*} M \rightarrow T M$ be a symmetric vector bundle isomorphism. Then the almost complex structure $\alpha(\Gamma, B)$ is symmetric.

Proof. Let $B=b^{i j} \mathrm{~d} z_{j} \otimes \partial / \partial x_{1}^{i}, b^{i j}=b^{j i}$, and $\Gamma_{i j}=\Gamma_{j i}$ be the components of Γ. Let α be such a ACS on $T^{*} M$ that $\left.T \pi \alpha\right|_{V_{T^{*}} M}=B$ and $\Gamma_{\gamma}^{1}=\Gamma$. Using (14) we get $a_{j}^{i}=-b^{i s} \Gamma_{s j}$. Then by the second equality of (3)

$$
h_{j}^{i}=-b_{j t} a_{s}^{t} b^{s i}=b_{j t} b^{t u} \Gamma_{u s} b^{s i}=b^{i s} \Gamma_{s j}=-a_{j}^{i}
$$

The first equality of (3) reads $c_{i j}=-b_{i j}-b_{i t} a_{s}^{t} a_{j}^{s}=-b_{i j}-b^{s r} \Gamma_{s i} \Gamma_{r j}$. So $c_{i j}=c_{j i}$. This completes our proof.

Proposition 9. Let $b=b_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}$ be a symmetric and regular bilinear form on $T M$. Let Γ_{b} be the connection induced on $T^{*} M$ by the Levi-Civita connection γ_{b} on $T M$ established by the pseudo-Riemannian structure b. Let $B=b^{i j} \mathrm{~d} z_{j} \otimes \partial / \partial x^{i}$ be the inverse of b. Then the almost complex structure $\alpha\left(\Gamma_{b}, B\right)$ is symmetric and $i_{V} \mathrm{~d}\left(i_{\alpha \alpha} \varepsilon\right)=0$.

Proof. The symmetry of $\alpha\left(\Gamma_{b}, B\right)$ is a consequence of Proposition 7 and the equality $i_{V} \mathrm{~d}\left(i_{\alpha} \varepsilon\right)=0$ follows, according to Proposition 5 , from the well known fact that $T b\left(\gamma_{b}\right)=\Gamma_{b}$, where b is interpreted as a map $b: T M \rightarrow T^{*} M$.

It is easy to prove
Corollary. Let $J=\mathrm{d} x^{i} Q \partial / \partial x_{1}^{i}$ be the almost tangent structure on $T M$ (which can be identified with $\mathrm{Id}_{V T M}$). Then the vector bundle isomorphism b: $T M \rightarrow T^{*} M$ is an almost complex map of the almost complex structures $\alpha\left(\gamma_{b}, J\right)$ and $\alpha\left(\Gamma_{b}, B\right)$ where we use the notation from Proposition 9.

We turn to the second case when B vanishes.
II. Let α be such a (1,1)-tensor field that $B=\left.T \pi \cdot \alpha\right|_{V T^{*} M}=0$.

Now,

$$
\begin{aligned}
& A:=T \pi \cdot \alpha=a_{j}^{i} \mathrm{~d} x^{i} \otimes \partial / \partial x^{i}: T T^{*} M \rightarrow T M \\
& H:=\left.\alpha\right|_{V T * M}=h_{i}^{j} \mathrm{~d} z_{j} \otimes \partial / \partial z_{i}: V T^{*} M \rightarrow V T^{*} M
\end{aligned}
$$

So A and H can be interpreted as sections $A: T^{*} M \rightarrow T M^{*} \otimes_{T^{*} M} T M, H: T^{*} M \rightarrow$ $T M \otimes_{T^{*} M} T^{*} M$. If α is a $V B-(1,1)$-tensor field on $T^{*} M$, i.e. $\alpha(X)$ is a linear and projectable vector field on $T^{*} M$ for any projectable and linear vector field X on $T^{*} M$, then A and H are the π-pull-backs of the sections $\bar{A}: M \rightarrow T M^{*} \otimes T M, \bar{A}=$ $a_{j}^{i}(x) \mathrm{d} x^{j} \otimes \partial / \partial x^{i}: T M \rightarrow T M$ and $\bar{H}: M \rightarrow T M \otimes T^{*} M, \bar{H}=h_{i}^{j}(x) \partial / \partial x^{j} \otimes \mathrm{~d} x^{i}:$ $T^{*} M \rightarrow T^{*} M$. It is easy to see that in the $V B$-case $c_{i j}(x, z)=c_{i j}^{k}(x) z_{k}$, see [1].

Let $\bar{A}^{*}: T^{*} M \rightarrow T^{*} M, \bar{z}_{i}=a_{i}^{j} z_{j}$, denote the transposed vector bundle morphism to a vector bundle morphism $\bar{A}: T M \rightarrow T M$ over $\operatorname{Id}_{M}, \bar{A}^{*}(\varepsilon)(X)=\varepsilon(\bar{A} X)$. If a $V B$-(1,1)-tensor field on $T^{*} M$ is symmetric or skew symmetric then $\bar{H}=-\bar{A}^{*}$ or $\bar{H}=\bar{A}^{*}$, respectively.

Let $\Gamma, \mathrm{d} z_{i}=\Gamma_{i j}(x, z) \mathrm{d} x^{j}$, be a connection on $T^{*} M$. It is $\mathrm{d} \varepsilon^{\alpha}$-zero, i.e. $\left.\mathrm{d} \varepsilon^{\alpha}\right|_{H \Gamma}=0$ if and only if

$$
\begin{equation*}
c_{i j}=\Gamma_{t i} a_{j}^{t}-\Gamma_{t j} h_{i}^{t} \tag{16}
\end{equation*}
$$

Proposition 10. Let Γ be a symmetric commection on $T^{*} M$. Then Γ is $\mathrm{d} \varepsilon^{\alpha}$-zero if and only if $\alpha(H \Gamma) \subset H \Gamma$.

Proof. The equalities (4) read

$$
c_{i j}=\Gamma_{i t} a_{j}^{t}-h_{i}^{t} \Gamma_{i j}
$$

Comparing (16) with (4') we get our assertion.

Proposition 11. Let α be such a vertical (1,1)-tensor field that A is regular. Let a connection Γ be $d \varepsilon^{\alpha}$-zero and $\alpha(H \Gamma) \subset H \Gamma$. Then Γ is symmetric.

Proof. It follows from (16) and (4) that $\left(\Gamma_{i t}-\Gamma_{t i}\right) a_{j}^{t}=0$, which completes our proof.

In the case of a vertical almost complex structure α on $T^{*} M$ the formulas (3) read

$$
a_{s}^{i} a_{j}^{s}=-\delta_{j}^{i}, \quad c_{i t} a_{j}^{t}+h_{i}^{t} c_{t j}=0, \quad h_{s}^{i} h_{j}^{s}=-\delta_{j}^{i}
$$

We suppose that A is the π-pull-back of a (1,1)-tensor \bar{A} on M. Denote by ω the exterior derivative of the form $i_{\alpha} \varepsilon=z_{k} a_{j}^{k}(x) \mathrm{d} x^{j}$, i.e. $\omega:=\mathrm{d} i_{\alpha} \varepsilon=a_{j}^{k} \mathrm{~d} z_{k} \wedge \mathrm{~d} x^{j}+$ $z_{k} a_{j i}^{k} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j}$. Then

$$
\omega^{\alpha x}=\left(a_{j}^{t} c_{t i}+z_{k} a_{j t}^{k} t_{i}^{t}-z_{k} a_{t j}^{k} a_{i}^{t}\right) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}+h_{t}^{i} a_{j}^{t} \mathrm{~d} z_{i} \otimes \mathrm{~d} x^{j}-a_{i}^{t} a_{t}^{j} \mathrm{~d} x^{i} \otimes \mathrm{~d} z_{j}
$$

Let $\Gamma, \mathrm{d} z_{i}=\Gamma_{i j} \mathrm{~d} x^{j}$ be a connection on $T^{*} M$. Then

$$
\left.\omega^{\alpha}\right|_{H \Gamma}=\left(a_{j}^{t} c_{t i}+\left(a_{j t}^{k}-a_{t j}^{k}\right) z_{k} a_{i}^{t}+h_{t}^{s} a_{j}^{t} \Gamma_{s i}-a_{i}^{t} a_{t}^{s} \Gamma_{s j}\right) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}
$$

If α is symmetric, A is an almost complex structure on M and Γ is symmetric, then $\left.\omega^{\alpha}\right|_{H \Gamma}=0$ if and only if

$$
\begin{equation*}
a_{j}^{t} c_{t i}+\left(a_{j t}^{k}-a_{t j}^{k}\right) z_{k} a_{i}^{t}+2 \Gamma_{i j}=0 \tag{17}
\end{equation*}
$$

Let us recall the Nijenhuis-Frölicher bracket, see for example [7],

$$
[A, A]=\left(a_{j t}^{k}-a_{t j}^{k}\right) a_{i}^{t} \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{i} Q \partial / \partial x^{k}
$$

We conclude
Proposition 12. Let α be such a symmetric almost complex structure that A is an integrable almost complex structure on M, i.e. $[A, A]=0$. Then there is a unique symmetric connection Γ_{1} on $T^{*} M$ such that $\left.\omega^{\alpha}\right|_{H \Gamma_{1}}=0$. If α moreover is a $V B$-tensor field then Γ_{1} is linear.

Let $\bar{H}: T^{*} M \rightarrow T^{*} M$ be a vector bundle isomorphism and Γ a linear connection on $T^{*} M, \bar{H}=h_{i}^{j}(x) \partial / \partial x^{i} \otimes \mathrm{~d} x_{j}, \mathrm{~d} z_{i}=\Gamma_{i j}^{k}(x) z_{k} \mathrm{~d} x^{j}$. Then
$T \bar{H}: T T^{*} M \rightarrow T T^{*} M ; \bar{x}^{i}=x^{i}, \bar{z}_{i}=h_{i}^{j} z_{j}, \mathrm{~d} \bar{x}^{i}=\mathrm{d} x^{i}, \mathrm{~d} \bar{z}_{i}=h_{i j}^{t} z_{t} \mathrm{~d} x^{j}+h_{i}^{j} \mathrm{~d} z_{j}$,
$T \bar{H} \cdot h_{\Gamma}=\mathrm{d} x^{i} \otimes \partial / \partial x^{i}+\left(h_{i j}^{t} z_{t}+h_{i}^{t} \Gamma_{t j}^{k} z_{k}\right) \mathrm{d} x^{j} \otimes \partial / \partial z_{i}$.
Therefore $T \bar{H}(H \Gamma) \subset H \Gamma$ at any $\left(x^{i}, \bar{z}_{i}=h_{i}^{t} z_{t}\right)$ if and only if

$$
\Gamma_{i j}^{t} h_{t}^{k}=h_{i j}^{k}+\Gamma_{t j}^{k} h_{i}^{t}
$$

Let α be such a symmetric (1,1)-tensor field on $T^{*} M$ that $A=T \pi \cdot \alpha$ is the π-pullback of a regular (1,1)-tensor field \bar{A} on M. Then $\bar{H}=-\bar{A}^{*}$. Let Γ be an arbitrary connection on $T^{*} M$. Denote $\beta:=\bar{H}^{*} \mathrm{~d} \varepsilon=\mathrm{d} \varepsilon T \bar{H}=h_{i j}^{t} z_{t} \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{i}+h_{i}^{j} \mathrm{~d} z_{j} \wedge \mathrm{~d} x^{i}$. Then $\left.\beta\right|_{H \Gamma}=\left(h_{i j}^{t} z_{t}+h_{i}^{t} \Gamma_{t j}\right) \mathrm{d} x^{j} \wedge \mathrm{~d} x^{i}$ and $\left.\beta\right|_{H \Gamma}=0$ if and only if

$$
\begin{equation*}
\left(h_{i j}^{t}-h_{j i}^{t}\right) z_{t}+h_{i}^{t} \Gamma_{t j}-h_{j}^{t} \Gamma_{t i}=0 \tag{18}
\end{equation*}
$$

The equalities (16) and (18), using $a_{j}^{i}=-h_{j}^{i}$, give
(19) $c_{i j}+\left(h_{i j}^{t}-h_{j i}^{t}\right) z_{t}+2 h_{i}^{t} \Gamma_{t j}=0$, i.e. $\Gamma_{i j}=-\frac{1}{2} \tilde{h}_{i}^{t}\left(c_{t j}+\left(h_{t j}^{k}-h_{j t}^{k}\right) z_{k}\right)$.

These functions $\Gamma_{i j}$ satisfy (16) and (18).
We conclude
Proposition 13. Let α be such a symmetric (1,1)-tensor field on $T^{*} M$ that $A=T \pi \alpha$ is the π-pull-back of a regular (1,1)-tensor field \bar{A} on M. Then there exists a unique connection Γ_{o} such that $\left.(\mathrm{d} \varepsilon T H)\right|_{H \Gamma,}=0$ and $\left.\mathrm{d} \varepsilon^{\alpha}\right|_{H \Gamma}=0$. If moreover

1. α is a $V B$-tensor field then Γ_{α} is linear,
2. α is such a $V B$-almost complex structure that the almost complex structure \bar{A} on M is integrable then $\Gamma_{\alpha}=\Gamma_{1}$.

Proof. The first part of Proposition 13 is evident. The equality of the functions of the connections $\Gamma_{1}, \Gamma_{\alpha}$ follows from the equalities (17), (19), (3') and $[\bar{A}, \bar{A}]=0$.

Corollary. If α is such a symmetric $V B$-almost complex structure that $[\bar{A}, \bar{A}]=$ 0 then by Proposition 10, $\alpha\left(H \Gamma_{\alpha}\right)=H \Gamma_{\alpha}$.

Remark. The connections $\Gamma_{\alpha}, \Gamma_{1}$ cannot be constructed when $\bar{H}=\bar{A}^{*}$, for example when α is skew symmetric. Let us recall that if α is the so-called complete lift of a (1,1)-tensor field F on M then it is skew symmetric, see [8]. In a more general case when α is the first order natural lift of F then $\bar{H}=\bar{A}^{*}$, see [3], and so the connections $\Gamma_{\alpha}, \Gamma_{1}$ do not exist.

Propositon 14. Let α be such a symmetric VB-almost complex structure that $[\bar{A}, \bar{A}]=0$. Then $T \bar{H}\left(H \Gamma_{\alpha}\right) \subset H \Gamma_{\alpha}$ if and only if the Nijenhuis tensor $[\alpha, \alpha]$ is semibasic with values in $V T^{*} M$.

Proof. By virtue of $[\bar{A}, \bar{A}]=0$ we get $\frac{1}{2}[\alpha, \alpha]=\left(B_{i j}^{k} \mathrm{~d} z_{k} \wedge \mathrm{~d} x^{j}+D_{k j}^{i} \mathrm{~d} x^{k} \wedge\right.$ $\left.\mathrm{d} x^{j}\right) \otimes \partial / \partial z_{i}$, where $B_{i j}^{k}=c_{i j}^{u} h_{u}^{k}+h_{i}^{u} h_{u j}^{k}+h_{i u}^{k} h_{j}^{u}-h_{i}^{u} c_{u j}^{k}$. Using (3^{\prime}) we obtain $B_{i j}^{k}=\left(c_{i j}^{u}-h_{i j}^{u}\right) h_{u}^{k}+\left(h_{i u}^{k}-c_{i u k}^{k}\right) h_{j}^{u}$. The relation $T \bar{H}\left(H \Gamma_{\alpha}\right) \subset H \Gamma_{\alpha}$ is true iff the functions $\Gamma_{i j}^{k}$ established by (19) satisfy the equality (17). Putting $\Gamma_{i j}^{k}$ in (17) and using (3^{\prime}) we get $\left(c_{i j}^{u}-h_{i j}^{u}\right) h_{u}^{k}=h_{j}^{u}\left(c_{i u}^{k}-h_{i u}^{k}\right)$. So $T \bar{H}\left(H \Gamma_{\alpha}\right) \subset H \Gamma_{\alpha}$ if and only if $B_{i j}^{k}=0$, i.e. iff $[\alpha, \alpha]$ is semibasic with values in $V T^{*} M$. The proof is complete.

Remark. It is easy to show that the condition $T \bar{H}\left(H \Gamma_{\alpha}\right) \subset H \Gamma_{\alpha}$ is equivalent to the one that $\nabla_{\gamma} A=0$, i.e. the (1,1)-tensor field A on M is constant with respect to the covariant derivative established by the linear connection γ_{α} on $T M$ which induces the connection Γ_{α} on $T^{*} M$.

References

[1] Cabras, A., Kolář, I.: Special tangent valued forms and the Frölicher-Nijenhuis bracket. Arch. Math. (Brno) 29 (1993). 71-82.
[2] Dekrét, A.: On almost complex structures on fibre bundles. Acta Univ. M. Belii Math 3 (1995), 3-8.
[3] Doupovec, M., Kurek, J.: Liftings of tensor fields to the cotangent bundle. Proc. Conf. Diff. Geometry Brno 1995. Masaryk University, Brno, 1996, p. 141-150.
[4] Janyškia, J.: Remarks on the Nijenhuis tensor and almost complex connections. Arch Math. (Brno) 26 (1990), 229-240.
[5] Klein, J.: On variational second order differential equations Polynomial case. Proc. Conf. Diff. Geometry and its Applications 1992. Silesian University, Opava, 1993, p. 449-459.
[6] Koláă, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993.
[7] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, New York, 1965.
[8] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. M. Dekker Inc., New York, 1973.

Author's address: Anton Dekrét, Department of Mathematics, TU Zvolen, Masarykova 24, 96053 Zvolen, Slovakia, e-mail: dekret@vsld.tuzvo.sk.

[^0]: Supported by the VEGA SR No. 1/1466/94

