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Abstract. On cotangent bundles the Liouville field, the Liouville 1-form e and the canon
ical symplectic structure de exist. In this paper interactions between these objects and 
(1, l)-tensor fields on cotangent bundles are studied. Properties of the connections induced 
by the above structures are investigated. 
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INTRODUCTION 

We assume that all manifolds and maps in this paper are infinitely differentiable. 

Let M be a manifold and (xl) a local chart on M. Let (xl,Zi) be the induced 

chart on the cotangent bundle T*M of all 1-forms on M. Let us recall that the 

Liouville vector field V = Zid/dzt the flow of which is formed by the homotheties 

on individual fibres of T*M, the Liouville 1-form e = Zidx', and the symplectic 

2-form tu = de = dz,A dx1 on T*M exist. Let F be a (l,l)-tensor field on M. It 

is known, [4], [7] that there is no connection on M, i.e. a linear connection on TM, 

which could be constructed by natural operators from F only. In other words no 

linear connection on T*M can be constructed from natural lifts of F on T*M only. 

We deal with the connections on the vector fibre bundle TX: T* M -» M which are 

induced by (l,l)-tensor fields a on T*M that are very close to the natural lifts of F 

on T*M. We favour almost complex structures a (ACS). First of all, two cases are 
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investigated: a preserves the vertical subbundle VT*M or not. In the former case 

we deal with connections Ta when a preserves the horizontal subbundle HT and in 

the latter with connections T a for which a(VT*M) = HTa or a(HTa) = VT*M. 

The main results are in the third part of the paper. We deal with symmetric 

(l , l)-tensor fields a when the form dea(X,Y) = de(aX, Y) is symmetric, and with 

symmetric connections T on T*M when de|flr = 0, where HT is the horizontal 

bundle of a connection T. 

When a does not preserve VT*M our investigations are concentrated on the semi-

linear case of a when B = Tn • a\VT-M is a base morphism and the map Tn • a • X: 

T*M -4 TM is a vector bundle morphism for any projectable linear vector field X: 

T*M -» TT*M on T*M. Propositions 5-7 determine sufficient conditions for the 

connection Ta to be linear, for the equality 7* = TB(Ta) and for the connection 7* to 

be just the Levi-Civita connection determined by the pseudo-Riemannian structure 

B^1 on M, where 7/. is the connection on TM induced by the linear connection 

Ta. Propositions 8 and 9 describe some properties of the ACS a(r , jB) which are 

determined by a linear symmetric connection T on T*M and by a vector bundle 

morphism B. 

In the case a(VT*M) C VTM there are morphisms A = Tn • a: TT*M -> TM, 

H = a\vT-M- Remember that the complete lift a = Fc of a (1, l)-tensor field F 

on M preserves VT* M, A = H and it is a VB-field, i.e. for any linear projectable 

vector field X on T*M the vector field a(X) is again linear and projectable. When a 

is symmetric then A = -H. Propositions 12 and 13 state sufficient conditions under 

which a symmetric (l , l)-tensor field a (especially an ACS) determines connections 

r „ on T*M. 

Our investigations are local. 

CONNECTIONS INDUCED BY ( 1 , 1 ) - A N D ( 0 , 2 ) - T E N S O R FIELDS ON FIBRE BUNDLES 

Let n: E -* M be a fibre bundle. Let (xl,ya) be a local fibre chart on Y. 

A connection T on E can be regarded as a (l,l)-tensor field hr on E (called the 

horizontal form of T) such that hr(VE) = 0, Tn • hr = Tir, where VE is the vector 

fibre bundle of the vertical vectors on E and Tf denotes the tangent prolongation 

of a map / . In coordinates, 

(1) hr = dx1 O d/dxl + Ta(x, y)dxj 0 d/dy". 

Denote HT := hr(TE) C TE the vector fibre bundle of the T-horizontal vectors 

on E, i.e. such vectors (xt,ya,dxl,dya) on E which satisfy the equation 

dya = Tadxj. 



The functions Ta are called the local components of the connection T. Readers 

are refered to [6] for more details on connections on fibre bundles. 

1. Let 

a = (a)(x, y)dxj + ba(x, y)dya) ® d/dx{ + (ca(x, y)dxj + ha(x, y)dy13) ® d/dya 

be a (l,l)-tensor field on E. We will briefly denote by B the vector bundle morphism 

TIT • O\VE- VE -+ TM over IT: E -> M. It can be interpreted as a section E -> 

VE ® TM, B = badya ® d/dx\ 

We will say shortly that a is vertical if B = 0, i.e. if a(VE) C V.E. We will recall 

some properties of connections connected with a (l,l)-tensor field a, see [2]. 

Let hr be the horizontal form of a connection r on E given by (1). Let Y = 

i)ad/dya £ VE be an arbitrary vertical vector on E and let X = {*d/"dx%+Ta£*3/dya 

be a T-horizontal vector. Then a(Y) = b^rfdjdx' + h^d/dy" or a(X) = (a) + 

bpT^&d/dx1 + (ca + haT?)£Jd/dya is T-horizontal for any vertical vector Y or 

vertical for any T-horizontal vector A' iff 

(2) Ta
kb

k
0 = ha

p or a} + 6^Tf = 0. 

We have 

Lemma 1. Let d imM be the dimension of the fibres on E. Then there is 

a unique connection Tl
a and a unique connection Ta on E such that a(HTa) = 

VE, a(VE) = HTa if and only if the vector bundle morphism B is regular. Then 

-6Ja* and hab? are respectively the local components ofTa or Ta, and Ta = T2
a if 

and only if a 2 is vertical. 

We will suppose that dim M is the dimension of fibres on E. 

The coordinate conditions for a to be an almost complex structure on E, i.e. 

a2 = — UTE are 

(3) al
sa) + Vpc) = -5), a*6J + bl^Kp = 0, caa) + hac] = 0, cf&£ - hahj = -Sa. 

If B is regular then the third and fourth equations of (3) are consequences of the 

first and the second ones. 

By the equalities (2) and (3) it is easy to prove 

L e m m a 2. Let T be a cojjnection on E. Let B: E -+ V"E ® TM be a vector 

bundle isomorphism VE -+ TM over n. Then there exists a unique almost complex 

structure «(T, B) on E such that Tir • O\VE = B and Tl
a = T2

V = Ta. 
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In the case of E = TM, if we choose B = U\VTM then the almost complex struc

ture a(T, B) is the canonical almost complex structure determined by the connection 

T on TM, see [5]. 

Let Q = Qfdx* ® d/dya be a section E -> T*M G VE. Denote 

a+ : Q -> Qa = (Q%akdxj + Qabk
06y0) ® d/dya, a+ : T*Af ® VE -+ T * £ ® K £ 

a" : <3 -> a Q = b^dx* ®d/d.ri + haQ0dxj®d/dya.a~: T*M®VE-*T*M®TE. 

We say that two (l,l)-tensor fields at, a-z on E are (+)-equivalent or (-)-equivalent 

if a + = a + or a ^ = a^" respectively for any Q: E -+ T"M ® VE. 

If B is regular then using (3) we get ([2] Proposition 6) 

L e m m a 3 . In every class of all (+)-equivalent ( l , l ) - tensor fields on E there 

is a unique almost complex structure on E. The same is true for the class of ( — ) -

equivalent (1,1)-tensor fields. 

In the case when a is vertical, i.e. when B = 0, denote 

A := TTT • a = a)dxj ® d/dx\ A: E -> T*M ®E TM, 

H:a\vY = hadi/®d/dya, H: E -+ V*E® VE. 

Let r , T be two connections on E and a a vertical (l.l)-tensor field. Then 

(4) Ta
ka

k = ca + haT0 

is the coordinate condition for the inclusion a(HT) C HT. 

Using (3) and (4) we get (see [2], Proposition 10) 

Lemma 4. Let A: E -> T*M ®E TM, H:E-+ VE ® VE be sections. Let T 

be a connection on E. Then there is a unique vertical (1, l)-tensor field a(A, H, T) 

such that a(HT) c HT, Tit • a = A, a\VE = H. Moreover, if A2(u) = -ldTruM for 

any u€ E and H2 = - I d v r w then a(A, H, T) is an ACS on E. 

R e m a r k . If A is regular then for any connection T there exists a unique 

conection f on E such that a(HT) C HT. 

2. Let ui = fijdxi ® dxj + fiadx' ® dya + faidya ® dxi + fapdya ® dy*3 he a 

(0,2)-tensor field on E. Recall some well known facts. 

Denote by wl the (0,2)-field transposed to w, wt(X,Y) = w(Y,X). Then w is 

symmetric or skew-symmetric if wl = w or u / = — w, respectively. 
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Let a be a (l,l)-tensor field on E. Denote by u>a,u)a,u>a the following (0,2)-tensor 
fields: 

u)a(X,Y) :=u)(aX,Y), u)a(X,Y) :=u)(X.aY). u)a(X,Y) := u)(aX,aY). 

It is evident that 

(5) (way = (u)')a, (way = (u)')a, (uia)' =u)'a 

in the general case and 

(6) u>a = ± u>a O u)a = + u), u>aa = —u)a, u>aa = —u)a 

(7) ( u ° ) ' = u)a o u>a = -u)', (u)a)' = -u)a » wa = u ' 

in the case of an ACS a on E. 
We say that a tangent subbundle V2 C TE is w-orthogonal to a subbundle V\ C TE 

if u)(X, Y) = 0 for any X e V'i(u), Y e V2(«) at any u 6 E. A tangent subbundle 
V c TE is said to be u>-zero if ui\v = 0. 

Let T i , r 2 be two connections on E. We say that T2 is uj-orthogonal to Ti if the 
r 2-horizontal subbundle HT2 is oj-orthogonal to HT%. 

If A' = fd/dx1 + Ta^d/dya is Ti-horizontal and A = ~l'd/dxi + T°f is T 2-

horizontalthenu;(A,X) = (fij + fiaT°+ fajT
a + f„pTaT0)^ f and so the connection 

r 2 is w-orthogonal to T\ if and only if 

(8) fa + /,v,r; + fajT
a + fa0T

aT0 = 0. 

Consider the following restrictions of a (0,2)-tensor field ui: 

= U\ŢEXEVE- u)i = fiadx' ® dya + }aßdya ® dyß, 

= w\vExETE, W2 = faidya ® dx' + faßdya ® dyß, 

= ш\vвxвvв, w„ = faßdya ® dy0. 

The equality (8) immediately gives 

L e m m a 5. Let Ti,T2 be two connections on a fibre bundle ir: E -> M. Let 

¥>i = fie dx* ® dya + fag dya ® dy0, <p\: E '-> T*E®E V*E, <p2 = fai dya ® dx{ + 

faB dya® dy0, <p2 : E -> V* E0ET*E be two bilinear forms such that ifi \VEXEVE = 

<P2\VEXEVE- Then there is a unique (0,2)-tensor field w(<Pi, <p2,Ty, T2) on E such 

that tt>i = tpi, u>2 = p2 and To is u)-orthogonal to Tt. 
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If T2 = Ti = r then the tensor field LJ(LPI,>P2,T) from Lemma 5 is such that the 

connection T is w-zero, i.e. u>\nr = 0. 

We can find subbundles rl, W C TE such that rl is w-orthogonal to VE and VE is 

w-orthogonal to W. Let Y = i]ad/dya be vertical and let X = dx'd/dx'+ dyad/dya 

be an arbitrary tangent vector on E. Then the equation UJ(Y, X) = 0 or u(X, Y) = 0 

is satisfied for any vertical vector Y iff 

/a idarV+ /a/jdy" = 0 or 

(8') /tads' + / ^ d / = 0. 

This immediately gives 

Lemma 6. There exist unique connections Tu, Vu such that r w is uj-orthogonal 

to VE and VE is u>-orthogonal to T'w if and only if the form u>v = u>\ VE is regular . 

Ifu> is symmetric or skew-symmetric then Tu = T'^. The vertical subbundle VE is 

Lo-zero if and only if'u:v = 0. 

In the following lemma we suppose that dim M is the dimension of fibres on E 

and that B = T-ir • a\vE is regular (so there exist connections Ta,Ta,a(HTa) = 

VE, a{VE) = HT'i on E). 

Lemma 7. Let u> be a (0,2)-tensor held and a a (1, l)-tensor field on E. Then 

1. VE is u>-zero iffVE is u>"-orthogonal to Ta or Ta is u>a-orthogonal to V or 

HTa is u>a-zero. 

2. The connection Ta is uj-orthogonal to VE iffTl
a is uia-zero. 

3. VE is u>-orthogonal to the connection Ta iffTa is u>a-zero. 

4. VE is u>a-zero (u>a-zero) iffTa is u>aa-zero (u>aa-zero). 

5. VE is u>a-zero iff the connection Ta is ui-zero or HTa is uia-orthogonal to 

VE or VE is u>a-orthogonal to HT2
a. 

6. VE is u>a-zero iff VE is ui-orthogonal to T'a. 

7. VE is u>a-zero iffTa is uj-orthogonal to VE. 

8. The connection Ta is Loa-zero iff VE is Loa-orthogonal to Ta. 

9. The connection Ta is u>a-zero iffTa is uia-orthogonal to VE. 
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CONNECTIONS INDUCED BY ALMOST COMPLEX STRUCTURES ON T*M 

In the induced chart (xl,zt) on T*M a (l,l)-tensor field a on the fibre bundle n: 

T*M -+ M is of the form 

a = (a)(x, z)dxj + bijdzj) ® d/dx' + (cijdxj + h{dz}) ® d/dZi. 

According to the identification VT*M = T*M x M T*M the vector bundle mor-

phism B = TIT • a\VT-M • VT*M -+ TM, B = bijdz} ® d/dxi, can be interpreted 

as a vector bundle morphism B: T*M xM T*M -+ T*M xM TM, i.e. as a section 

B: T*M -+ TM ®T-M TM, i.e. as a bilinear form in VT*M. 

Defin i t ion 1. A (l , l)-tensor field a on T*M is called u-symmetric or i)-skew 

symmetric or y-basic if the section B is symmetric or skew symmetric or if B is the 

7r-pullback of a section M -+ TM ® TM. 

Let us introduce the coordinate expression of some forms and tensor fields con

structed from the Liouville form e = Zidx*, to = de = dz, A da:' and a: 

ias = zk(a
k
jdxi +bkjdzj), 

iade = Cijdxj A dx{ + (h{ + a{)dxj A dx* + fi'Mz; A dzj, 

iade\VT-M = bijdzi A dz,-, 

where ia denotes the algebraic graded derivation determined by a, 

de" = Cijda-*' ® dxj + h{dz} ® dxi - a{dx{ ® dz} - bijdz} ® dz,-, 

de a = -Cijdx-' ® dxj + a{dxj ® dx* - h{dx' ® dzj + biidzj O dzi, 

dea = cua'jdx' A dx j + (ctib
tj - a\h{)dxl A dzj + hlbtjdzi A dz, . 

It is evident that 

(9) d e a + de a = iade, 

(10) de a - dea = (Cji + cy)da:*' ® dxj + (h{ - a{)(dxi ® dzj + dz} ® dx*') 

- (blj + V')dzi ® dx,- is symmetric, 

(11) iade is the antisymmetrization of de a , 

(12) (dea)1 = -dea, i.e. (de)a is symmetric or exterior 

iff d e a = - d e a or de a = dea. 

In coordinates (de)a is symmetric or exterior if 

Cij = Cji, h{ = —a\, 6*j = b3* or 

Cij = -cju h{ =a{, bij = - / y \ 



Propos i t ion 1. Let a be an ACS on T*M. Tlieu 

1. (ia de)a = -iade , 

2. (dea - dea)a= de" - dea, 

3. dea is symmetric or skew symmetric iff deo = de or dsa = — ds, respec

tively, 

4. deaa = de" if dea is moreover symmetric. 

P r o o f . 1 and 2 follow from (6) and (9). Assertion 3 is a consequence of (7). 

The equalities (6) and (12) imply 4. D 

Corollary. Let a be an ACS on T*M. Let, de" be symmetric, i.e. let de be 

invariant under a. Then dea is apseudo-Hermite metric on T*M and (T*M, a, de") 

is a pseudo-almost Kahler space. [7]. 

P r o o f . By Proposition 1 de°a = de" so de" is a pseudo-Hermite metric. As 

(de")" = —de is exact so (T*M, a ,de" ) is pseudo-almost Kahler. • 

Definit ion 2. A (l,l)-tensor field a on T*M is called symmetric or skew 

symmetric if de" is symmetric or skew symmetric. 

In the induced local chart (x' ,Zi) on T*M a connection T on T*M is given by the 

equations 

dzi = Tij(x,z)dxj. 

As the form de is symplectic, there exists a unique connection T* which is de-

orthogonal to T. By (8) its local components are T,j = Tjt. So T is de-zero iff 

T' = T. In this case we will say that T is symmetric on T*M. 

Analogously in the case when the form io.de is regular, i.e. almost-symplectic. 

Remember that if de" is symmetric then i a de = 0. 

In our futher consideration we will deal with two cases of the (l,l)-tensor field a 

on T*M. 

I . Let a be such that B = Tn • a\VT-M = bijdzj ® d/dx' is regular. Then 

by Lemma 1 there are connections Ta and T'a such that a(HTl
a) = VT*M and 

a(VT*M) = HT%. Then 

(14) rfc = - 6 * 4 , T% = hkbkj, bikb
kl=6j 

are their local components. 
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By Lemma 6 there are two connections rd e . . , T' |f „ such that rd£ . . is dea orthog

onal to VT*M and VT*M is de"-orthogonal to T'd€„. According to (8') their local 

components are respectively 

r.j = hpu, V'i) = -bua]. 

Comparing the local components of the connections Ta, r „ , r d £ » ,T'de„ we get 

P r o p o s i t i o n 2. If a is such a (1, l)-tensorfieid that B is regular then dea\vT"M 

is also regular and 

a) TQ = r d £ „ and so VT*M is dea-orthogonal to Ta, 

b) rd£ . . = ( r a ) ' , i.e. the connections Td£.. and T'a are de-orthogonai and thus 

the connection ( r a ) ' is dea-orthogonal to VT*M. 

R e m a r k . As (de a ) ' = - d e „ therefore r d £ „ = r d f „ and T'dEn = rd £ . . . So 

the connection Ta is d£a-orthogonal to VT*M and VT*M is dea-orthogonal to the 

connection ( r ' n ) f . By Lemma 7 /1 , Ta is de-zero because VT*M is de-zero. 

Propos i t ion 3. If a is such a (1, l)-tensor field that B is regular, a2 is vertical 

and dea is symmetric or skew-symmetric then the connection Ta = Ta = Fa is 

de-zero, i.e. {Ta)
1 = Ta. 

P r o o f . If d e a is symmetric then bk] = b]k, —a* = hk. When a2 is vertical then 

TQ = T'a, i.e. -bika
k = hkbkj, i.e. bkih

k = bk]h
k, i.e. rt] = Fj,-. Analogously when 

—bkj = b]k, ak = hk, i.e. when de a is skew symmetric. • 

Let us remark that if a is an ACS then a2 is vertical. 

The inverse B~l = bij{x,z)dxi ® d/dzy. T*M x M TM -> T*M x M T*M can 

be interpreted as a semibasic bilinear form btjdx* ® dx' on T*M, i.e. as a section 

T*M -+T*M®T.MT*M. 

Propos i t ion 4 . Let a be such an ACS on T*M that B is regular and let hTn 

be the horizontal form of the connection Va = Ta = Fa. Then de a / ir„ = -B~1 and 

deahr„ = ( S - 1 ) ' . 

P r o o f . hT„{Xq) = ^d/d.iJ + hfbsitfd/dzi, q = 1,2. Then using (3) we get 

dea{hr,X1,hr„X2) = (cij+h\hlbsj-a)hlbH-b"hlb,jh-bri){.iQ = -bi&Q. This 

proves the first part. The second is a consequence of the equality {duo01)1 = -duja. 

a 

R e m a r k . As B~l = bijdx1 ® d/dzj is a semibasic 1-form with values in 

VT*M then if /V is the horizontal form of a connection T on T*M then hr + B~l 

is the horizontal form of the other connection on T* M. 
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Recall that a projectable linear vector field X on T*M is such a vector field that 

TITX is a vector field on M and its flow is formed by linear maps of fibres on T* M, 

i.e. in coordinates X = t?(x)d/dxz + rr\(x)zjd/dzi. 

Definition 3. A non-vertical (l,l)-tensor field a on T*M is said to be semi-

linear if it is u-basic and for any projectable linear vector field X: T*M -> TT*M 

on T* M the map Tir • aX: T*M -+ TM is a vector bundle morphism. 

In a local chart it is easy to see that a is semi-linear iff a)(x,z) = a)k(x)zk and 

bli(x,z) = Vi(x). 

Proposi t ion 5. If a (1, l)-tensor field a on T*M is semi-linear and such that B 

is regular then the connection Ta is linear. 

P r o o f . The local components of Ta are r , j = -bisa
Sj = -bis(x)a!)k(x)zk, i.e. 

T„ is linear. • 

Let us recall that every linear connection T,Tij = ThjZk, on T*M is induced 

by the linear connection 7 on the tangent bundle TM with the local components 

1k = — Tjix{. The connection T is symmetric if and only if 7 is symmetric. 

So, if a is semi-linear and B is regular then the connection ra is induced by the 

connection 7* on TM with the local components 7J = 7Jfc3,'*, ~t)k = bksaf. As 

B: T*M -> TM, x1 = xi, x\ = b'j(x)zj, is a vector bundle isomorphism therefore 

TB(Ta) is a connection on TM. We find its functions. 

TB:xi = x\ x\ = bij(x)zj, dxl = d x \ dx\ = b^Zjdxh + bijdzj, 

hrt = dx{ ® d/dx* - bisafzkdxj ® d/dz{, 

TB • hFl = dxl ® d/dxl + (b*k
j - bHtsal^Zjdx1* ® d/dx{. 

Then T] = (b)s - ay)bskXk establish the components of the connection TB(ra). 

Therefore -ya = TB(Ta) if and only if 

(15) bksaf = (bf -af)bsk, i.e. bkuafbks = bf - af. 

Proposi t ion 6. Let a be such a semilinear (1, l)-tensor rieid on T*M that B 

is regular and symmetric, i.e. a is v-symmetric. Then 7^ = TB(Ta) if and only if 

z v d( i ae) = 0. 

P r o o f . 

£ = zkdxk, iae = akizkztdxj + bkj zkdZj 

diae = afiZkZtdx1 A dxj + af(ztdzk - zkdzt) A dxj + bkjz^ A dzj + bkjdzk A d^-
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where we use the notation / ; := Jj£, /* := J £ . Then 

iv diQ£ = {af + af - bf)zkztdxj + {bk3 - b>k)zkdz} 

= {af + af - bf )zkztdxi = 0 

if and only if bf = af + af. When B is symmetric then (15) reads af = bf - af. 

This completes our proof. D 

If B: T*M -> TM is regular and symmetric then B~x = bij{x)dxl cg> dx3 deter

mines a pseudo-Riemannian structure on M the Levi-Civita connection 71, of which 

is given by the local components C)k = -\bu{bskj + bsjk - bjks). 

Propos i t ion 7. Let a be such a semi-Jinear (1, l)-tensor Geld a on T*M that B 

is regular, dea is symmetric, a2 is vertical and iv d(iae) = 0. Then the connection 

7 a determined on TM by Ta is just the Levi-Civita connection 75 of the pseudo-

Riemannian structure on M induced by B~l. 

P r o o f . By supposition bij = b3i, h) = -afzk, as
3bsk = bisakj or buaf = a.fbsj 

and bf = af +af. Then 

C\k = -\bis{bski + bsjk - bjks) = \bfbsk + \bubsj - \bisbjtbTbuk 

= \{af + af)bsk + \{au + d?)b,) - |6' ' s6 j t(o«u + auf)buk 

= \afb,k + | 6 i s o | * + \a?k
sbsi + \bk,af - \afbuk - ^ b j t 

= \bjsa
s
k
l + \bk,af = \afb,k + \bksaf = bk,af = -y'jk. 

This completes our proof. D 

Recall in the sense of Lemma 2 that by a{T, B) we denote the almost complex 

structure a on T*M determined uniquely by a connection T on T*M and by a vector 

bundle isomorphism B: VT*M -> TM over n: T*M -> M. 

P r o p o s i t i o n 8. Let T be a symmetric connection on T*M, i.e. Fl = T. Let 

B: VT*M -» TM be a symmetric vector bundle isomorphism. Then the almost 

complex structure a(T,B) is symmetric. 

P r o o f . Let B = b%3dzj ® d/dx\, blj = fr", and r , j = V}i be the components of 

T. Let a be such a ACS on T*M that Tira\vT'M = B and T,1, = F. Using (14) we 

get a) = —bisrsj. Then by the second equality of (3) 

h) = -bjta'sb
si = bj,btuTusb

si = bisVsj = -a). 

The first equality of (3) reads cy = — 6y — bita
l
sa.s = —6y - bsrr,iTrj- So c y = cji. 

This completes our proof. D 
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Propos i t ion 9 . Let b = &,;_,• dx{ ® dxj be a symmetric and regular bilinear form 

on TM. Let Tb be the connection induced on T*M by the Levi-Civita connection -yb 

on TM established by the pseudo-Riemannian structure b. Let B = blj dzj ® d/dx% 

be the inverse of b. Then the almost complex structure a(Fb,B) is symmetric and 

ivd(iae) = 0. 

P r o o f . The symmetry of a(Vb,B) is a consequence of Proposition 7 and the 

equality iv d(iae) = 0 follows, according to Proposition 5, from the well known fact 

that Tb(-yb) = Tb, where 6 is interpreted as a map b: TM -» T*M. • 

It is easy to prove 

Corollary . Let J = dxt®d/dx\ be the almost tangent structure on TM (which 

can be identified with UVTM)• Then the vector bundle isomorphism b: TM -¥ T*M 

is an almost complex map of the almost complex structures a(jb, J) and a(Tb, B) 

where we use the notation from Proposition 9. 

We turn to the second case when B vanishes. 

I I . Let a be such a (l,l)-tensor field that B = T-K • a\VT-M = 0. 

Now, 

A := T-K • a = a)dxj ® d/dx': TT*M -¥ TM, 

H := a\vT-M = Kdzj ® d/dzi: VT*M -> VT*M. 

So A and H can be interpreted as sections A: T*M -> TM*®r.MTM, H: T*M - • 

TM ®T-M T*M. If a is a KB-(l , l)-tensor field on T*M, i.e. a(X) is a linear and 

projectable vector field on T*M for any projectable and linear vector field X on 

T*M, then A and H are the 7r-pull-backs of the sections A: M -> TM* ®TM, A = 

a)(x)dx> ® d/dx*: TM -> TM and H: M -y TM O T*M, H = hj
i(x)d/dxi ® dx': 

T*M -> T*M. It is easy to see that in the VB-c&se Cij(x,z) = cfj(x)zk, see [1]. 

Let A : T*M —> T*M,z~i = a\zj, denote the transposed vector bundle morphism 

to a vector bundle morphism A: TM -> TM over M M , A (e)(X) = e(AX). If a 

VB-(l , l )- tensor fie!d on T*M is symmetric or skew symmetric then H = —A or 

H — A , respectively. 

Let T, dzi = r „ ( x . z)dxj, be a connection on T*M. It is dea-zero, i.e. de" | / / r = 0 

if and only if 

(i6) c,i = r«a ,--ryh? . 

Propos i t ion 10 . Let T be a symmetric connection on T*M. Then T is dsa-zero 

if and only if a(HT) C HT. 



P r o o f . The equalities (4) read 

(4') Cij=Tita
t
j-h\Tij. 

Comparing (16) with (4') we get our assertion. D 

P r o p o s i t i o n 1 1 . Let a be such a vertical ( l , l ) - tensor held that A is regular. 

Let a connection V be de"-zeio and a(HT) C HT. Then T is symmetric. 

P r o o f . It follows from (16) and (4) that ( r i t — r ( i)a'- = 0, which completes our 

proof. D 

In the case of a vertical almost complex structure a on T*M the formulas (3) read 

(3') a'saj = -5), Cua] + h\ctj = 0, h'Jij = -8]. 

We suppose that A is the 7r-pull-back of a (l,l)-tensor A on M. Denote by o> the 

exterior derivative of the form ias = zka,^(x)dx], i.e. u> := diae = akdzk A dx] + 

zka^dx' Adx]. Then 

ui" = (aljCti + zka
k
ta\ - z ^ a - J c k ' * ® dx] + ftja^dz, ® dx] - a ' a jd i" ® dzj. 

Let T, dzi = Vijdx] be a connection on T*M. Then 

ua\nr = (a'jCti + (ak
t - ak

tj)zka\ + hs
ta

ljTsi - a\as
tTsj)dxi ® dx]. 

If a is symmetric, A is an almost complex structure on M and T is symmetric, then 

u}a | HT = 0 if and only if 

(17) a^u + (ak
t - ak

tj)zka\ + 2r i ; i = 0. 

Let us recall the Nijenhuis-Frolicher bracket, see for example [7], 

[A, A] = (ak
t - ak

tj)a\dxj A da:' © d/dxk. 

We conclude 

Proposi t ion 12. Let a be such a symmetric almost complex structure that A 

is an integrable almost complex structure on M, i.e. [A, A] = 0. Then there is a 

unique symmetric connection I \ on T*M such that u;° |#ri = 0 . If a moreover is a 

Kfl-tensor field then Ti is linear. 
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Let H: T*M —> T*M be a vector bundle isomorphism and F a linear connection 

on T*M,H = hiWd/dx^dxj, dz ; = Tk
j(x)zkdx^. Then 

TH: TT*M -+ TT*M; x* = x\ z{ = h{zh dx1 = dx\ dz,- = ht
ijztdxj + h\dzh 

TH • hr = dx1' ® d/dxi + (hljZt + hlTk
tjzk)dxj ® d/dz{. 

Therefore TH(HT) C HV at any (x\zi = h\zt) if and only if 

(17') r y f t* = hkj + r y / i j . 

Let a be such a symmetric (l,l)-tensor field on T*M that A = Tn-a is the 7r-pull-

back of a regular (l,l)-tensor field A on M. Then H — —A . Let T be an arbitrary 

connection on T*M. Denote 0 := H*de = deTH = hyZtdx* A dx' + h\dzj A dx' . 

Then d\m = (h\jZt + hlTtj)dxJ A dx' and 0\Hr = 0 if and only if 

(18) (h\j-h'ji)zt + ht
irtj~h)Tti = G. 

The equalities (16) and (18), using a] = - / l j , give 

(19) dj + (h\ - h%)z, + 2h',rtj = 0, i.e. r« = -\h\(c t j + (ft* - hk
t)zk). 

These functions T y satisfy (16) and (18). 

We conclude 

P r o p o s i t i o n 13. Let a be such a symmetric (1, l)-tensor field on T*M that 

A = Tira is the ir-pull-back of a regular (1, l)-tensor field A on M. Then there 

exists a unique connection Fa such that (deTH)\Hr„ = 0 and ds°\Hr = 0. If 

moreover 

1. a is a VB-tensor Geld then Fa is linear, 

2. a is such a VB-almost complex structure that the almost complex structure 

A on M is integrable then Ta = Ti. 

P r o o f . The first part of Proposition 13 is evident. The equality of the functions 

of the connections T i , r a follows from the equalities (17), (19), (3') and [A, A] = 0. 

D 

Corol la ry . If a is such a symmetric VB-almost complex structure that [A, A] = 

0 then by Proposition 10, a(HTa) = HTa. 

R e m a r k . The connections r a , F i cannot be constructed when H = A , for 

example when a is skew symmetric. Let us recall that if a is the so-called complete 

lift of a (l,l)-tensor field F on M then it is skew symmetric, see [8]. In a more 

general case when a is the first order natural lift of F then H = A*, see [3], and so 

the connections T Q , r i do not exist. 
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P r o p o s i t o n 14. Let a be such a symmetric VB-almost complex structure that 

[A, A] = 0. Then TH(HTa) C HTa if and only if the Nijenhuis tensor [a, a] is 

semibasic with values in VT*M. 

P r o o f . By virtue of [A, A] = 0 we get | [ a , a ] = (B^dzk A dx '̂ + Di
kjdxk A 

dz-0 ® d/dzi, where B * = cV./iJ + hfhkj + /^/ i* 1 - hfc^. Using (3') we obtain 

B% = (c$ - htyh-l + ( / 4 - c j j h j . The relation TH(HTa) C HVa is true iff the 

functions Ty established by (19) satisfy the equality (17'). Putting Tjj. in (17') and 

using (3') we get (c% - /.$)/.* = ft.J(c£, - / & ) . So TH(HTa) C OTa if and only if 

Bkj = 0, i.e. iff [a, a] is semibasic with values in VT'M. The proof is complete. D 

R e m a r k . It is easy to show that the condition TH(HTa) C HTa is equivalent 

to the one that V 7 A = 0, i.e. the (l,l)-tensor field A on M is constant with respect 

to the covariant derivative established by the linear connection 7 a on TM which 

induces the connection T a on T*M. 
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