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OF FUNCTIONS AND MULTIVALUED MAPS 
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Summary. The main results presented in this paper concern multivalued maps. We 
consider the cliquishness, quasicontinuity, almost continuity and almost quasicontinuity; 
these properties of multivalued maps are characterized by the analogous properties of some 
real functions. The connections obtained are used to prove decomposition theorems for 
upper and lower quasicontinuity. 
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Throughout the paper (X, T) or simply X is a topological space, CI A, Int A are 

the closure and the interior of a set A C X, respectively. 

A set A C X is said to be 

- semi-open, if A C Cl(IntA) , [10]; 

- preopen, if A C Int(Cl A); 

- semi-preopen, if A C CI ( i n t ( C M ) ) , [1]. 

The union of any family of semi-open (preopen, semi-preopen) sets is a set of 

the same type, [1, 10]. The intersection of an open set and a semi-open (preopen, 

semi-preopen) one is again semi-open (preopen, semi-preopen). 

Let X, Y be topological spaces. A function f:X -» Y is called quasicontin-

uous (almost continuous, almost quasicontinuous) at a point x e X if for each 

neighbourhood V of f(x) we have x € CI (lntf~l(V)), (x e lnt(C\f'l(V)), x e 

CI (Int ( C 1 / _ 1 ( V ) ) ) ) , [10, 8, 2]. Equivalently, / is quasicontinuous (almost contin­

uous, almost quasicontinuous) at x 6 X if for each neighborhood V of f(x) there is a 

semi-open (preopen, semi-preopen) set A satisfying x e A C f~l(V). Let us observe 
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that the quasicontinuity of / at x is equivalent to the condition Int (Unf~1(V)) ^ 0 

for every neighbourhoods U, V of x and f(x), respectively, [9]. 

A function / is called quasicontinuous (almost continuous, almost quasicontinuous) 

if it has this property at each point. It follows from definitions that continuity implies 

quasicontinuity and almost continuity; moreover, each of these properties implies 

almost quasicontinuity but these implications cannot be replaced by equivalences, 

[14]. 

Quasicontinuity and almost continuity are independent properties. Furthermore, 

almost quasicontinuous functions need not have the Baire property. 

E x a m p l e 1. Let R be the space of real numbers with the natural topology, 

B e R a Bernstein set and / the characteristic function of B. Then / has not the 

Baire property. Nonetheless, since B and U\B are dense sets [15], the function / is 

almost continuous. 

Now let (Y, Q) be a pseudometric space. A function / : X -> Y is said to be cliquish 

at a point xo E X if 

(1) for each e > 0 and each neighbourhood U of x0 there exists a nonempty open 

set W c U with g(f(x),f(x')) < e for x, x' £ W, ([18] for metric spaces). 

By A(f) we denote the set of all points at which / is cliquish. A function / is 

called cliquish if A(f) = X. 

The symbols C(f) and E(f) are used to denote the sets of all points at which a 

function / is continuous or quasicontinuous, respectively. Then 

(2) C(f) C E(f) C A(f) = CI (A(f)); 

(3) A(f) \ C(f) is of the first category; 

(4) if X is a Baire space, then / : X -> (Y,Q) is cliquish iff X \ C(f) is of the first 

category; 

(5) a function / : X -> (Y, Q) is continuous iff it is cliquish and almost continuous. 

The statements (2)-(5) are proved in [11, 13, 6, 17] for a metric space (Y,d), but 

by the same arguments they are valid for pseudometric ones. 

In the sequel we will consider maps with values in uniform spaces. For a uniform 

space (Y, v) we denote by P„ a saturated family of pseudometrics inducing v. For 

any y ~ Y, M, Mi C Y, Q € Pv and r > 0 we denote 

B(y, Q,r) = {z'Y: e(y, z) < r}, B(M, Q, r) = \J{B(y, Q,r):ytM}, 

Q(y,M)= inf g(y,z), g(Mx,M) = sup g(y,M). 
Z^M ygMi 

It is easy to verify 

(6) if Mi is compact, then Q(MUM) < r iff M I C B(M, g, r). 
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A function / : X -+ (Y, v) is called cliquish at a point x e X if for each g e Pv the 

function / : X -> (Y, g) is cliquish at x, [3]. 

We will use the following result: 

(7) A function / : X -¥ (Y, v) is quasicontinuous if and only if it is cliquish and 

almost quasicontinuous, [5]. 

T h e o r e m 1. If f: X -¥ (Y,v) is an almost continuous function, then A(f) = 

E(f)-

P r o o f . Let s 0 e A(f) \ E(f). Then g e Pv, e > 0 and a neighbourhood U of 

x0 can be chosen such that each nonempty open set V C U contains a point xy with 

Q(S(xv),f(xo)) > 2e. Letting W = B(f(x0),g,e) we have x0 e Int (C\f~l(Wj). 

Since x0 e A(f) there is a nonempty open set fJi C Int (C\f~1(W)) such that 

g(f(x'),f(x")) < e for x', x" e U\. Furthermore, g(f(xi),f(x0)) > 2e for some 

Xl e Ui hence g(f(x),f(x0)) > e for x e UL On the other hand, Ux n f~l(W) / 0 

and for any x e U\ n f_1(W) we have g(f(x),f(x0)) < e; this is a contradiction 

completing the proof. D 

In a topological space (X, T) the family 

Tq = {U \ H: U e T, H is of the first category} 

is a topology on X. For a set A C X the symbols CI, A, Int , A will be used to denote 

the T,-closure and the T,-interior of A, respectively. Then 

(8) CI U = CI, U, for each set U e Tq, [7]; 

(9) the spaces (X,T) and (X,Tq) have the same families of the first category 

sets, [7]; 

(10) (X,T) is a Baire space iff (X,Tq) is a Baire space, [4]. 

T h e o r e m 2. Let (X,T) be a Baire space, (Y, v) a separable uniform one and let 

f:X-¥Y be a function with the Baire property. Then 

(a) if f if Tq-almost continuous, then it is continuous; 

(b) if f is Tq-almost quasicontinuous, then it is quasicontinuous. 

P r o o f . We fix some g e Pv and an open base {Vn: n >. 1} of the space (Y, g). 

Denoting by C(f, Tq, g) the set of all points at which the function / : (X, Tq) -> (Y, g) 

is continuous we obtain 

X\C(f,Tq,g)= \Jrl(Vn)\lntqf-'(Vn). 
n = l 
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Hence X \ C(f,T9,g) is of the first category; according to (4) it means that / is 

Tj-cliquish. Now, using (5) we have that / is T7-continuous, so—since Y is a regular 

space—the function / is continuous. 

If / is r , -almost quasicontinuous, then in virtue of (7), / : (X,Tq) -> (Y,v) is 

quasicontinuous. Thus it follows from the regularity of Y that / is quasicontinuous, 

[4, Cor. 4]. • 

Thus Theorem 2 yields decompositions of continuity and quasicontinuity of func­

tions, namely: 

Corollary 1. Let (X, T) be a Baire space, (Y, v) a separable uniform one and let 

f: X -+ Y be any function. Then 

(a) / is continuous if and only if it is Tq-almost continuous and has the Baire 

property; 

(b) / is quasicontinuous if and only if it is Tq-almost quasicontinuous and has the 

Baire property. 

Let us remark that in Theorem 2 (so also in Corollary 1) T,-almost continuity and 

T,-almost quasicontinuity cannot be replaced by almost continuity or almost quasi­

continuity, respectively. For instance, it suffices to take into account the Dirichlet 

function. 

Now we shall formulate some results concerning real functions; in the sequel they 

will be used in the study of multivalued maps. 

Let us put 

2\ = {(-oo, a ) : a € R} U {0, R} 

and 

T2 = {(a,oo): o E R} U {0, R}. 

A function / : X -> R is said to be upper quasicontinuous (almost continuous, almost 

quasicontinuous) if the function / : X —> (R,2\ ) is quasicontinuous (almost contin­

uous, almost quasicontinuous). Replacing T\ by T2 we obtain definitions of suitable 

lower forms of generalized continuity. Then for a given / : X -f R we denote by 

E+(f) and E^(f) the sets of all points at which / is upper or lower quasicontinu­

ous, respectively. 

Lemma 1. If f: X -> R is an upper (lower) almost continuous function, then 

A(f) c E+U) ^d CI (E+(f) n EoU)) C E+(f) 

(A(f) c BoU) and CI {E+U) n E0"(/)) C E+(f)). 
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P r o o f . Let s 0 G A(f) \ E0(f); then there exist e > 0 and a neighbourhood U0 

oix0 such that each nonempty open set U' C U0 contains a point x' with f(xQ) + 2e < 

f(x'). Since / is upper almost continuous we have x0 G Int ( C l / _ 1 ( — co , / (x 0 ) + 

e)) = Ui. The condition x0 G A(f) implies a nonempty open set U C Vo PI U\ can 

be chosen with \f(x') - f(x")\ < ~E for x', x" G U. Then for some xi G U we 

have / ( x 0 ) + 2e < / ( x i ) and / (x ) > f(Xl) - \E > f(x0) + | e for each a; 6 U. But 

tr C C I / - 1 ( — oo,f(x0)+s), so there exist points x € U satisfying f(x) < f(x0) + e, 

which is a contradiction completing the proof of the first inclusion. 

Now let x0 G C\(E+(f) n £ 0 ~(/ ) ) , e > 0, W = ( - oo , / (x 0 ) + H and let 

[/ be a neighbourhood of x0 . Since / is upper almost continuous we obtain x0 G 

U n Int (CI / " ' (WO) = Ui, so fyr n £ f ( / ) n ££-( / ) 7̂  0. Assume that xr G Ui n 

£ 0
f ( / ) n £ ; 0 - ( / ) \ / - 1 ( C l i y ) . Then the condi t ions/(xi) > / ( x 0 ) + fe and xi € E(T(/) 

imply the existence of an open nonempty set U' C U\ such that f(x) > f(x0) + \s 

for x 6 U'. But V C Ux C Int ( C 1 / _ 1 ( W 0 ) ; this gives t/ ' n / - 1 ( W ) ^ 0 which 

contradicts the last inequality. Hence UiC\E+(f)r\E0(}) C / _ 1 ( C 1 w). Then there 

exists a nonempty open set ry2 c Ui with /(f /2) C ( - co,f(x0) + e), which means 

that x 0 G E+(f) and the proof is complete. D 

Corollary 2. If f: X -> R is an upper and Jower almost continuous function, 

then the set E0(f) n £o"(/) i s ciosed. 

L e m m a 2. Let / : X -> R be a cliquish function. If } is upper (lower) almost 

quasicontinuous at x0 G X, then it is upper (lower) quasicontinuous at x0-

P r o o f . Suppose xo ^ E^(}). Then there exist a neighbourhood U0 of x 0 and 

e > 0 such that each nonempty open set U' C U0 contains a point x' with / ( x 0 ) + 2 e < 

f(x'). Let us denote W= (-oo,}(x0) + e). Then x0 G CI (Int ( C I / " 1 (W))), so 

t/i = ry0 n Int ( C 1 / - 1 ( W 0 ) # 0. Since / is cliquish we can choose a nonempty open 

set U2 C U\ such that | / (x ' ) - }(x")\ < \E for x', x" G ry2. On the other hand, for 

some xi G ry2 we have / ( x 0 ) + 2e < }(x\), so j / ( x ) - / ( x i ) | < \E for x G r72. Hence 

/ ( x 0 ) + 2e < / ( x i ) < f(x) + | e f o r x G U-, i.e. f(U2) C (f(x0)+e,oo); but this is 

impossible because f y 2 n / _ 1 ( w ) ^ 0. D 

Since upper (lower) quasicontinuity of a real function implies cliquishness, 

Lemma 2 gives a decomposition of upper (lower) quasicontinuity, i.e.: 

Corollary 3 . A function f: X -> R is upper (lower) quasicontinuous if and only 

if it is cliquish and upper (lower) almost quasicontinuous. 
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L e m m a 3 . Let (X,T) be a Baire space. A function f: X - f R has the Baire 

property and is upper and iower Tq-almost quasicontinuous if and only if it is upper 

and lower quasicontinuous. 

P r o o f . As was shown in the proof of Theorem 2 a function with the Baire 

property is Tq-cliquish. Then by Lemma 2 the function / is upper and lower Tq-

quasicontinuous. Finally, since U is a regular space, it is easy to show that / is 

upper and lower quasicontinuous. The inverse implication is obvious. d 

Now let X, Y be topological spaces and F: X -> Y a, multivalued map. For any 

sets A C X, M C Y we denote F(A) = \J{F(x): x £ A}, F+(M) = {x e X: 

F(x) C M} and F~(M) = {X-X: F(x) n M # 0}. 

A multivalued map F is said to be upper semicontinuous (quasicontinuous, almost 

continuous, almost quasicontinuous) at a point x0 G X if for each open set V C 

Y with x0 e F+(V) we have x0 e I n t F + ( V ) , (resp. x0 g Cl ( In tF+(V ) ) , x0 € 

I n t ( C l E + ( y ) ) or x0 ' Cl(Int(ClF+(V)))) , [12, 16]. 

Equivalently, F is upper semi-continuous (quasicontinuous, almost continuous, 

almost quasicontinuous) at x0 iff for each open set V C Y such that xo £ F+(V) there 

exists an open (semi-open, preopen, semi-preopen) set U C X with x0 e U C F+(V). 

A multivalued map F is called upper semi-continuous (quasicontinuous, etc.) if it 

has this property at each point. 

Replacing in the above definitions F+ by F~ we obtain suitable lower forms of 

generalized continuity. 

In a uniform space (Y, v) we denote by Z(Y) the family of all nonempty compact 

subsets of Y. Then the sets 

{ (Mi ,M 2 ) eZ(Y) xZ(Y): Mi CB(M2,Q,r) and M2 cB(M1,Q,r)}, 

Q~P„, r>0 

form a base of the uniformity P on Z(Y). 

For any pseudometric Q ' P„ the Hausdorff pseudometric Q is given by 

Q(MUM2) = max{Q(MuM2),Q(M2,M1)}, 

and then 

PP = {Q:Q€P„}. 

A multivalued map F: X —> Y with compact values is said to be cliquish at a point 

x G X if the function F: X -> (Z(Y), ~) is cliquish at x. For a multivalued map F 

the set of all cliquishness points will be denoted as A(F). 
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Let us take y eY, a finite set L C Y and Q 6 P„. If F : X -+ Y is a multivalued 

map, then by ipF,y,e< ^PF,L,Q (or simply ipy,e and <PL,Q) we denote real functions given 

by 

$y,e(x) = 6(v,F(x)) and Vt,e(x) = Q(F(X),L). 

T h e o r e m 3 . A multivalued map F: X -)• (V, J>) is iower semicontimious fqua-

sicontinuous, almost continuous, almost quasicontinuous) at a point x0 e X if and 

only if there is a dense set D C Y such that t/)y,e is upper semicontinuous (quasi-

continuous, almost continuous, almost quasicontinuous) at x0 for each Q e P„ and 

yeD. 

P r o o f . Let us take y 6 Y, Q £ P„, e > 0 and r = ipy,e(x0). Then F(x0) n 

P(!/i ff.r+e) 7̂  0 and by assumptions on F there exists an open (semi-open, preopen, 

semi-preopen) set U C X with x0eU and F(x) n B(y, e, r + e) ^ 0 for a; e U. This 

yields V>y,e(a;) < r + e for x 6 (7, so Vy,e is upper semicontinuous (quasicontinuous, 

almost continuous, almost quasicontinuous) at xo-

Conversely, let W C Y be an open set with F(x0) n W + 0. Then F(a;0) n 

P(y , e,e) r4 0 for some j / e D, e e P„ and e > 0, so ipy,e(x0) < e. The assumptions 

on ipyre imply the existence of an open (semi-open, preopen, semi-preopen) set U 

with x0 e U and ipy,e(x) < e for x e U. Hence F(x) n B(y,Q,e) jt 0 for x 6 (7, 

which completes the proof. D 

In the sequel, by C(D) we denote the family of all finite subsets of a set D C Y 

and write C instead of C(Y). 

T h e o r e m 4. Let F: X -> (Y,v) be a multivalued map with compact values. 

The map F is upper semicontinuous (quasicontinuous, almost continuous, almost 

quasicontinuous) at a point x0 e X if and only if there exists a dense set D C Y 

such that <PL,Q is upper semicontinuous (quasicontinuous, almost continuous, almost 

quasicontinuous) at x0 for each Q e Pv and L e C(D). 

P r o o f . Let L e C, Q e P„, e > 0 and r = <PL,e(x0); then we have F(x0) C 

B(L,Q,r +e). It follows from the properties of F that there exists an open (semi-

open, preopen, semi-preopen) set U such that x0 e U and F(U) C B(L,Q,r + e). 

This implies <PL,e(x) < <PL,e(xo) + £ ior x e U, so <pL,e is upper semicontinuous 

(quasicontinuous, almost continuous, almost quasicontinuous) at x0. 

Conversely, let W C Y be an open set with P(a;o) C W. Since F(x0) is compact 

we can choose Q e P„, L e C(D) and e > 0 such that F(x0) C B(L,Q,e) C W; 

hence <pL,e(x0) < e. By the assumptions on <pL,e there exists an open (semi-open, 

preopen, semi-preopen) set U such that x0 e U and <pL,e(x) < e for x e U. Thus 

Q(F(X), L) < e for x e U, so F(U) C B(L, Q,S) CW and the proof is complete. • 
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In a similar way the cliquishness of a multivalued map can be characterized: 

Theorem 5. Assume that a multivalued map F: X —> (Y, v) is cliquish at a point 

x0 e X. Then 

(a) for each y G Y, Q G P„ the function 4>y,e is cliquish at x0; 

(b) if F has compact values, then for each L G C, Q G P„ the function ipL<e is 

cliquish at x0. 

P r o o f . Let y G Y, Q G P„, s > 0 be fixed and let U be a neighbourhood of x0. 

Then there exists a nonempty open set U\ C U such that F(x') C B(F(X"),Q, \e) 

for x', x" G U. For x' G U\ let us put r = il>yiS(x'); hence E(:r') n B(y,Q,r + 

\e) ^ 0. Consequently, we have F(x") n B(y,Q,r + e) ^ 0 for each x" € U\, so 
ipyte(x") < r + e = 4>y,e(x') + e for each s " G f/i. This leads to the inequality 

IVwfc') ~ ^ y . e ^ " ) ! < e f° r " ' i x " e ^ i a n c l (a) ^s proved. 
Now, let F be a compact valued map; we fix L G £, £> G P„, e > 0 and a 

neighbourhood U of x0. Then we choose a nonempty open set U\ C U such that 

£i(P(x'),P(a:")) < | e for x', a:" G U\. For i ' 6 f/i we denote r = <£z,,e(:r'); then 

F(x')cB(L,Q,r+\e). Thus F(x") C B(F(X'),Q, | e ) c B(L ) < ? , r + e) for each a;" G 

J/j. This implies <PL,Q(X") < r + s = IPL,Q(X') + £ for x', x" G J7i and consequently 

|Vi,e(a; ') — Vi,e(^")l < e f° r *'i x " € £tii which completes the proof. D 

Theorem 6. Let X be a Baire space, (Y, v) a separable uniform one and let F: 

X -» Y be a multivalued map with compact values. If for each Q € P„, y G D, 

L G £(£>) ti3e functions ipv,e, <4>L,Q are cliquish, where D is a countable dense subset 

ofY, then F is cliquish. 

P r o o f . For a fixed Q G P„ we denote by Ce(F) the set of all points at which the 
function F: X -> (Z(Y),Q) is continuous. Further, let C^(<PL,Q) and C0(ipy<e) be 
the sets of upper semicontinuity points of <PL,Q and rpy,e, respectively. Then according 
to Theorem 3 and 4 we obtain 

C(F)= f| C0+(^, s)nf |c0+(^)D f| C(^L,Q)nf)c(^e). 
L€C(D) yeD L£C(D) »€D 

Since v>£,e and V</,e are cliquish functions, in virtue of (4) the set 

fl C&L,Q) n f) C(l>v,t) 
LeC(D) y£D 

is dense G$ in X, so X \ Ce(F) is of the first category. Now, using (4) once more 

we obtain that F: X -+ {3(Y),Q) is a cliquish function, which completes the proof. 

D 
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The results on decomposition of the quasicontinuity of functions obtained earlier 

permit to formulate a theorem on decomposition of the upper and lower quasiconti­

nuity of multivalued maps. 

T h e o r e m 7. Let F: X -4 (Y, v) be a cliquish multivalued map with compact 

values. Then F is lower (upper) almost quasicontinuous at x0 if and only if it is 

lower (upper) quasicontinuous at x0. 

P r o o f . Since F is cliquish, following Theorem 5 the functions <pi,e, ipy,e are 

cliquish for each y e Y, L 6 C and Q G P„. If F is lower (upper) almost quasicontinu­

ous at xo, then it follows from Theorem 3 (Theorem 4) that all functions ipy,e (<PL,Q) 

are upper almost quasicontinuous at x0. Now, applying Lemma 2 we obtain that all 

ipy,g (<PL,g) are upper quasicontinuous at x0. Finally, Theorem 3 (Theorem 4) gives 

the lower (upper) quasicontinuity of F at x0, which completes the proof. D 

Coro l l a ry 4. Let X be a Baire space, (Y,v) a separable uniform one and let 

F: X -¥ Y be a multivalued map with compact values. Then F is lower (upper) 

quasicontinuous if and only if it is cliquish and lower (upper) almost quasicontinuous. 

P r o o f . Let g G P„ be fixed. By C+(F) and C~(F) we denote the sets of 

all points at which the map F: X -4 (Y, (?) is upper or lower semicontinuous, re­

spectively. If F is lower (upper) quasicontinuous, then according to [3, Cor. 3] 

both X \ C+(F) and X \ C~(F) are of the first category. This means that F: 

X -4 (Z(Y), g) is a cliquish function; consequently F: X -4 Y is cliquish. 

The converse is a consequence of Theorem 7. D 

A multivalued map F: X -4 Y is said to have the Baire property if for each open 

set V C Y the set F+(V) has the Baire property. 

T h e o r e m 8. Let X be a Baire space, (Y, v) a separable uniform one and let F: 

X -4 Y be a multivalued map with compact values. Then 

(a) the map F is upper and lower semicontinuous if and only if F is upper and 

lower Tq-almost continuous and has the Baire property; 

(b) F is upper and lower quasicontinuous if and only if F is upper and lower 

T„-almost quasicontinuous and has the Baire property. 

P r o o f . If F is upper and lower semicontinuous (quasicontinuous), then the 

conclusion is evident. 

Let D be a countable dense subset of Y, L e C(D), y 6 D and g 6 Pj. For 

any r > 0 we will denote Bc(y,g,r) = {z e Y: g(z,y) < r}. Then, because F(x) 

is compact, for every numbers o, 6 with 0 <. o < b the conditions <fiL,g(x) >. a and 

ii>y,g(x) ^ b imply F(x) n [Y \ B(L, g, a)} ^ 0 and F(x) n Bc(y, g, b) ? 0, respectively. 
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Thus by simple calculus we obtain 

<Pl«(K 6)) = F- (y \ B(L, e,a)) n F+ (B(L, e,b)), 

ip-Q((a,b}) = F-(Bc(y,Q,b))nF+(Y\Bc(y,e,a)), 

so all functions tpL,e and ipy,e have the Baire property. Now, using arguments 

analogous to those in the proof of Theorem 2, we have that functions <PL,Q, i>y,Q'-

(X,Tq) ->• U are cliquish; thus Theorem 6 implies the cliquishness of the map F: 

(X,Tq)^Y. 
Assume that F is not upper T,-semicontinuous at x0 6 X. We can choose e G 

Pu, e > 0 such that each T,-neighbourhood of x0 contains a point x with F(x) <f. 

B(F(x0),e,5s). Let us put Wl = B(F(x0),B,e) and W2 = {y e Y: e(y,F(x0)) > 

3e}. Then from the upper T,-almost continuity we have x0 e Int , (CI , F+(Wi)); 

furthermore F(xi)nW2 ^ 0 for some Xi e Int , (CI , F+(W1)). The lower T,-almost 

continuity gives xi e Int , (CI , F~(W2)). Since the multivalued map F is T,-cliquish 

there is a nonempty set U e T, with J7 C Int, ( C l ? F + ( W i ) ) n Int , (CI , F'(W2)) 

and F(iB') C B(F(x"),e,e) for a;', s " e U, so r / n F + ( W i ) ?- 0 and UnF~(W2) ± 0. 

Hence we can choose points x2, x3 e U with F(x2) C W\ and F ( z 3 ) r\W2^9. It 

means that F(^3) <£ B(F(x2),e,e) which is a contradiction. Thus we have shown 

that F is upper T,-semicontinuous. In the similar way it can be proved that F 

is lower T,-semicontinuous. Then, since Y is a regular space, the map F is upper 

and lower semicontinuous. Finally, we suppose that F is upper and lower T,-almost 

quasicontinuous. In virtue of Theorem 7 it is upper and lower T,-quasicontinuous. 

Then, according to [4, Th. 2], F is upper and lower semicontinuous, which completes 

the proof. D 

We remark that Theorem 8 is not a consequence of Theorem 2 applied to the 

function F: X -» (Z(Y),i>) since the upper and lower almost continuity (almost 

quasicontinuity) of a multivalued map F do not imply the almost continuity (almost 

quasicontinuity) of the function F: X -» (Z(Y),i>). 

fie/. 
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