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Summon/. A distributive pseudocomplemented set S [2] is called Stone if for all a 6 S 
the condition LU(a*, a**) = S holds. It is shown that in a finite case S is Stone iff the join 
of all distinct minimal prime ideals of S is equal to S. 
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First of all, let us recall some basic notions. 

If (S,s?) is an ordered set and X C S, let U(X) = {y £ S; y ^ x for all x e X} 

and L(X) = {y e S; y s$ x for all x e X}. A subset J C S is called an ideal (filter) 

if LU(a, b) C / (UL(a, b) C / ) whenever a, be I. 

An ideal (filter) / is called a w-ideal (Z-filter) if J is an up (down) directed set. An 

ideal (filter) I is called prime if L(a, b) C I (U(a, b) C / ) implies ae I or be I. It 

is well-known that the set of all ideals Id(S) forms an algebraic lattice. 

The set S is called 

distributive if Vo, b,ceS: L(U(a,b),c) = LU(L(a,c),L(b,c)), [4]; 

complemented if Va e S 3 o ' e S : LU(a,a') = UL(a,a') = S, [3]; 

boolean if it is both distributive and complemented; 

w-boolean if Vr, y, z e S: L(z,U(x,y)) C LU(x,L(y,z)) and S is comple

mented, [2]. 

In [3] it was shown that the notions of boolean and w-boolean sets coincide. In 

[2], the concept of a pseudocomplement was introduced and studied. The set S with 

the least element 0 and the greatest one 1 is called pseudocomplemented if for every 

a e S there exists the greatest element a* with L(a,a*) = {0}. Then the element a* 
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is called a pseudocomplement of a. In [2] it was shown that the set B(S) = {x e S; 

x = x**} is a w-boolean ordered set and V(S) = {x e S; x* = 0} is a filter in S 

(see [2]). 

In Fig. 1, a distributive and pseudocomplemented set is visu

alized for which the set {a, b, 0} is an ideal but not a u-ideal. 

A distributive and pseudocomplemented ordered set is called 

Stone if LU(a*,a**) = S holds for every a € S. There exists a 

Stone set which is not a lattice, e.g. every boolean ordered set 

which is not a lattice. 

In [1] Gratzer and E.T. Schmidt proved that a distributive and 

pseudocomplemented lattice S is Stone iff P V Q = S holds for 

every two minimal prime ideals P, Q, P ^ Q. The aim of this 

note is to show an analogous characterization in the case of finite Fig. i 

Stone sets. 

T h e o r e m . Let S be a finite distributive and pseudocomplemented ordered set. 

Then S is Stone iff P V Q = S holds for every two different minimal prime ideals 

P,Q ofS. 

P r o o f . Let S be a Stone set, P, Q minimal prime ideals, P ^ Q. Then there 

exists a £ P\Q and L(a,a*) C Q. Since Q is prime, a* G Q. Let us show that S\P 

is a maximal element in the set of all /-filters of S. To this aim, let o, b e S \ P, 

i.e. a, b $ P. If there exists z € UL(a,b), z e P, then z ^ y for every y e L(a,b) 

and since P is an ideal, L(a, b) C P. Since P is prime, we have a € P or b e P, a 

contradiction, so S \ P is a filter. Further, L(a, b) g P, so there exists z e L(a, b), 

z f P and S \ P is an /-filter. 

Now, since S is finite, each /-filter has to be contained in some maximal /-filter. 

Since S is finite, each maximal /-filter in a finite set has to have the least element 

o, so it is in the form U(q) where g >- 0. We conclude that S \ P C U(q) for some 

g y 0. Now, if S \ P ^ U(q), we have S \ [/(g) C P and S \ (7(g) # P . 

We shall show that U(q) is a prime filter. To this end, let U(a,b) C U(q), i.e. 

L(g) C LU(a,b). By distributivity we have 

L(q) = L(q,U(a,b)) = LU(L(q,a),L(q,b)). 

Obviously, L(q,a) ^ {0} or L(q, b) ^ {0}, since in the opposite case L(q) = L(0) 

which implies g = 0, a contradiction. However, g covers 0 and, therefore, L(a, q) = 

L(q) or L(b,q) = L(q), i.e. a 2 Q o r b > Q, U(a) C /7(g) or U(b) C [/(g). Now, 

because U(l) is a prime filter, S \ U(q) is an ideal. Moreover, we shall show that 
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S \ U(q) is prime: if o, 6 £ S \ U(q), i.e. a, b e U(q), then q e L(a, b), q e U(q), so 

we have L(a, b) g S \ £/(g) and S \ [/(g) is prime. 

Further, we have proved that S \ U(q) is a prime ideal for which S \ U(q) C P, 

a contradiction with minimality of P . Consequently, S \ P is a maximal /-filter, so 

S\P = [/(g) for an element q y 0. If a g S \ P , then a ^ q, so L(a,q) = {0}. 

Then UL(a, g) = S C S \ P V / / (a) , S \ P V U(a) = S. Since L(a, g) = {0}, we have 

a* ^ q e S\P, a* £ P. However, then a* e Q\P. Similarly, a** e P\ Q, hence 

S = LU(a* V o**) CPvQ,PvQ = S. 
Conversely, let U(a*,a**) ^ {1} for an element a e S. Since S is finite, there 

exists q 6 U(a*,a**) such that 1 y q. The ideal L(g) is maximal u-ideal, so it is a 

prime ideal and S\L(q) is an /-filter. Hence we have S\L(q) = U(b) for some b e S. 

It is evident that S \ L(g) V U(a*) = U(b) V U(a*) = UL(a*,b). We can show that 

UL(a*,b) ^ S. If not, then 0 £ UL(a*,b), so L(o*,6) = {0} and a** ^ 6. But then 

a** e S \ L(q), a** ^ q, a contradiction. 

So we have proved that 

S \ L ( g ) yU(a*)^S 

and, analogously, 

S \ L ( g ) v [ / ( o * * ) ^ S 

Further, we can prove that the filter S\L(q)VU(a*) = UL(a*,b) is contained in some 

maximal /-filter U(z), z y 0: since UL(a*,b) ^ S, there exists z e S such that z y0 

and L(.z) C L(a*,b). Consequently, we have U(z) D UL(a*,b) and U(z) is a maximal 

/-filter. Analogously, there exists y e S such that y y 0 and S\L(q)vU(a**) C U(y). 

Let us put P = S \ r / ( « ) , Q = S\U(y). Because [/(*), [%) are prime /-filters, both 

P , Q are prime ideals. We show that P , Q are moreover minimal ones: if not, then 

there exists a prime ideal R C P, R ^ P . But then S\R D S\P = [/(z). It 

can be proved that S \ R is a filter and s € [/(z) for some s e S \ R. Since z >- 0, 

L(s, z) = {0} and UL(s, z) = S C S \ P , we have P = 0, a contradiction. So P , Q 

are minimal prime ideals. Moreover, a* e U(z), a** e U(y), a* £ P, a** £ Q. This 

means P # Q. Finally, S \ L(g) C £/(«), U(y), so we have L(g) D S \ U(z) = P , 

L(g) J S \ t % ) = Q, hence P V Q C L(g), PvQjtS. D 

E x a m p l e 1. Let us consider an ordered set whose diagram is in Fig. 1. This set 

is distributive and pseudocomplemented, moreover, o* = b, b* = o, 0* = 1, c* = d* = 

1* = 0. Nonetheless, it is not Stone, since LU(a*,a**) = LU(b,a) = {a,6,0} ^ S. 

The set of all prime ideals is equal to {L(a),L(b),L(c),L(d),S} and there are just 

two minimal ones, namely L(a), L(b). However, L(a) V L(b) = LU(a,b) ^ S. 

E x a m p l e 2. The set depicted in Fig. 2 is a Stone set with a* = y, b* = x, 

x* = y, y* = x, c* = d* = 1* = 0, 0* = 1. It is neither a lattice nor a boolean 
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ordered set and has just two minimal prime ideals: L(x), L(y). Their join is equal 

to L(x)VL(y) = LU(x,y) = S. 
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