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Abstract. In the paper the fundamental properties of discrete dynamical systems gen-
erated by an' a-condensing mapping («’is the Kuratowski measure of noncompactness)
are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij: and
A:V. Lusnikovin {21].' They are also applied to study a mathematical model for spreading
of-an infectious disease investigated by P. Takag in [35], [36]. :
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INTRODUCTION

By his work, M. A: Krasnosel’skij has immensely influenced the developement of
nonlinear functional analysis. This can be seen in his books, see e.g. [18]; [19], [20].
‘Among others, he investigated the problem; when an operator has a continuum of
fixed points. This problem has been solved: by several methods. Some of them have
been developed within the theory of differential equations:

The first - method studied a continuum of solutions of the initial value problem for
ordinary differential systems and was originated by H. Kneser in 1923 (see [9, p. 212]).
There are several papers dealing with this problem, among them let us mention [12].
The general setting of this method was given by Z. Kubalek in [22], [23] and in [38]:

M. A. Krasnosel'skij and A.I Perov in:[17] started another method which repre-
sents. a combination of the previous one with the theory of fixed point index (see
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[17], [19] and [42, p.564]). An extension of this method was given by B.Rudolf in
{30]. M: A: Krasnosel’skij and A. V. Lusnikov proposed a modification of this method
in [21] and B. Rudolf completed it in [32].

The existence of a compact convex set of solutions of a boundary value problem
was investigated by B. Rudolf and Z. Kubégek in {33]. In a more general setting it
was established by V. Seda, J. J. Nieto, M. Gera in {37] and in [39}:

The last method to show the existence of a continuous curve of equilibria ap-
peared in the papers [35], {36] by P. Taka¢ and in {16} by P. Hess on discrete dynam-
ical systems. The systems are generated by a mapping which is, roughly speaking,
completely continuous. It is also strongly increasing.

The aim of this paper is twofold. First, to investigate fundamental properties of
discrete dynamical systems generated by an o-condensing mapping (a is the Kura-
towski measure of noncompactness). Secondly; to extend and to deepen the results
by M.A. Krasnosel'skij and A.'V. Lusnikov-in [21]. Among the results attained it
has been shown that in each partially ordered Banach space a compact continuous
branch (the notion has been introduced by M. A.Krasnosel’skij and’ A. V. Lusnikov.
in’ [21]) contains a continuum (Lemma 8) and each continuum with the smallest
and the greatest element contains a continuous curve connecting these two elements
(Theorem 3). The results have been applied to a study of a mathematical model for
spreading of an infectious disease (compare with [35], [36]).

The paper is organized as follows: In the first part the condensing discrete dynam-
ical systems are studied in a complete metric space. In this space three important
sets My, My and Mj are specified and the relations between them are studied. Then
this study is-continued in-a Fréchet space where a convex set > plays.an important
role.

In:the second part the condensing: dynamical systems are studied in a partially
ordered Banach space. The study of these systems is based on Lemma 7 and The-
orem 4. "Another important result is:contained in' Lemma 11, Theorems 7 and 8
guarantee the existence of a continuous'curve of equilibria.

Part 3 deals with -an application of the previous results to a 7-periodic Kamke
system. The existence of a continuum:of T-periodic solutions of that system depends
on their stability.
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Parr 1

First 'we recall the definition of the Kuratowski measure of noncompactness and
the definition of the o-condensing mapping. (Compare with [9, pp. 41 and 69]).

Let (E, p) be a complete metric space and B the set of all bounded subsets of E.
Then o: B — R* defined by

o[B} = inf{d > 0: B admits.a finite cover by sets of diameter < d}

is-called the Kuratowski of moncompactness.

Further, let « be the Kuratowski measure of noncompactness, § % M C E; let
T: M — E be continious and bounded; i.e.T maps: bounded subsets of M into
bounded sets. Then 7' is said to be a-condensing if

alT(B)) <.a(B]

whenever B C M is bounded and o[B] > 0.
By Lemma 1.6.11 {1, p.41] and Remark 1.6.13 [1, p. 43] we get

Proposition 1. Let (E, p) be a complete metric space, § # M a closed bounded
set in E, «a the Kuratowski measure of noncompactness and T': M- —. M an a-
condensing mapping. Then

klirgﬁ aTH(M)] = 0.

Proposition 2, ([24, pp. 6, 111]) Let (E, ) be a complete metric space and «
the Kuratowski-measure of noncompactness. -If {Fp172, is a decreasing sequence
(that is, FA' D F» D ...) of nonempty, closed sets such that

lim a[F] =0,
kron
oo
then [} Fj is a nonempty and compact set. Moreover, if all F}; are nonempty, closed
k=1
o
and connected sets, then [} F is a nonempty, compact and connected set.
k=1

Our considerations will'be based on the following assumption

(H1) Let (E,0) be a complete metric space, § # M a closed, bounded and con-
nected set-in E and
T: M -M

an a-condensing mapping.
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For x € M let.

@) = {The): k=0,1,2,.. 3, T) =0

be the positive semiorbit of z and

w(z) i={w e E: 3k — o0 such that 7% (2) — was | — oo}

the w-limit set of .
If0#AC M, then

A = U yfe), wa) = | wio):
z€A 2€A
A set 0 # A C M is called invariant (positively invariant) if T(A) = A (T(4) C
A). A point-z € M is k-periodic (k 2 2) if T*(x) = @ A set A is called a k-
cycle if A = v (z) for some k-periodic point z." Any fixed point.of T is also called
equilibrium. The set of all equilibria (the union of all cycles) will be denoted by Fj

©).

Further, for a given sequence of sets Ax C E, k= 1,2,... let

lim Ay := {z € E: Jap € Ay such that ‘lim q) =z}
k—roo

koo

be the lower limit of the sequence {Ax}ie,; and

kl‘_uﬁ Ay = {z '€ E: 3k — oo and a sequence {ax, } such that
o0
ax, € Ay, and ar, — x as ] — oo}
the upper limit of the sequence {Az}72 .
Proposition 8. ([6, p.54]). The following statements hold:
(@) lhim Ay = lim Ay, Tm A, = Tim Ay;
) k=00 k-%i_ ko0,
(ii) the sets lim Ay and Lm A, are closed;
k—roo ke
o oo oo : - o TR e
@) MAsc U MAic lim A, C lim Avc VU Ac U 4
k=1 k=1is=k PN koo k=1i=k k=1

Lemma 1. Under assumption (H1) the set

o0, -
@) My = () THOM)
has the following properties:
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(i) 8 # M1 C M and M is compact and connected;
1 — 1 k. e i ke p
(i) My = lim T+01) = T T(3);
(i)
(2) T(My) ¢ M.

Proof. Since T{M) C M and M is closed; My C M. As{THM)}2 is a
decreasing sequence of nonempty, closed and connected sets, and by Proposition 1
we have lim o[T*(M)] = lim ofT*(M)] = 0, Proposition 2 implies statement (i).

ko0 k—oc

By Proposition 3,

(3) My = lim TE(M) = Tim TH(M) = lim 7%(M) = Tm T"(M)
k—roo k—roo K 00 kro0.

and hence, (ii) is proved.
(2) follows from the inclusions

T\ THM)) ¢ () T@FO) ) TE(M)
k=1 k=1 =1
where the continuity of T has been used. 0

Definition 1. The point z € M will be called stable with respect to a set 4,
0#ACM,if z€ Aand for each ¢ >0 there exists ¢ >0 such that the implication

o(z,2) < 6 = o(THx), T*(2)) <e for each € A and for each k =0,1,..:

holds:

Stability with respect to M is simply. called’ stability.
Now we will deal with the properties of the w. limit sets. The following general
property of these sets has been given in [5, Lemma 3, p. 71].

Proposition 4. ' Let- X be a compact metric space and let- T+ X ~+ X be a
continuous map of this space into itself. If L = w(z) is'a limit set and if Sis a
non-empty proper closed subset of L, then

) SNT(INGS) #0.

This proposition ‘can be sharpened. By using a modification of ‘its proof, the
following lemma can be proved.
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Lemma 2. ' Let (X,d) be a metric space and T'::X — X a continuous map.. If
L = w(z) is a limit set, which is compact and invariant; and S is a non-empty proper
closed subset of L, then (4) is true. In particular, if I is finite, then it is either a
cycle or an equilibrium.

Proof. Suppose that S and (L \ 5) are disjoint. Since both $ and T(L\'S)

are compact, there exists an e > 0 such that the e-neighbourhoods U(S,e) and
U(T(L\ S),€) of the sets S and T(L \ ), respectively, satisfy

TS e NUTL\S)e) = 0.

Put Gy = U(S,€). Further, for each z € L'\ S there exists 6(z) >0 such that for
eachy € X, d(z,y) < 0(2) = d(T(2),T(y)) < e and hence T'(y) € U(T(L\ S),e).
Consider the set Gy = |} Ul(z,8(2)). Then T(G7) C-U(T(L\ S);¢). Thus Gy,
2€L\S

G> are open sets such that L\ S.C Gy, S C G and
(5) GNTE) =0

All terms T*(z) with sufficiently large index k belong either to G or to G and there
are subsequences belonging to each of them. Hence there is a subsequence {k;} ¢ N
such that 7% (z) € Gy and TF+ (2) € G, Ify is a limit point of {7 (z)}, then
y € Gy and T(y) € Ga, which contradicts (5). 0

Under hypothesis (H1) the properties of w(z) are given by

Lemma 3. = If assumption (H1) is fulfilled, then for each z. € M the following
statements are true:

(i) ¥ (=) is relatively compact.

(i) w(z) is a nonempty, compact subset of My and

@ Tw(z)) = wlz).

(iii) If 5 is a non-empty proper closed subset of w(z), then (4) is true with L =
wlz). Especially, if w(z) is finite, then it is either a cycle or an equilibrium.

(iv)
@) ) v cu).

yEw(z)
(v) If 2 € w(z) and 7 is stable with respect to T (M) for some ko € N, then
wiz) = wlz).
In particular, if z € w(z) is a stable equilibrium, then w(z) = {z}.
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(vi) If w(x) is finite or there exists a point z € w(x) which is stable with respect
to Tko(M) for some ko € N, then

(8) wlz) = U w(y).

YEw(z)

Proof. Letz € M be arbitrary but fixed:
(i) If v (z) were not relatively compact, then we would have

ofy" (@) = ol{z} UT (@) = oT (T (@) < el (@),

which is a contradiction.
/(i) Relative compactness of v (z) implies that w(z) # 0. By the definition of
ki;u”i T*(M) and by (3) we get that w(z) ¢ M;. By the equivalent definition of w(z)

in (5, p. 70}, w(z) = ) (U T#(z)) and hence w(z) is closed, Since w(a) C M and
=0 k=j
M, is compact, w(z) is also compact. It is clear that T'(w(z)) € w(z). To prove the
inverse inclusion, we consider an arbitrary point w = lgm T*(z) € w(z). Then the
50
sequence T%~!(z) has a subsequence Thm—1(z) which converges to 2 € w(z) and
iy o () = 1 =1 = .
w= fix—lflooT (z) = n%gnw T(T" (z)) = T(z). Hence w(z) C T{wlz)).
(iii) The statement follows from Lemma 2.
(iv):Statement (ii) implies (7).
(v) Clearly w(2) C w(z). If 2 € w(w) is stable with respect to T*o (M) for a ko &€ N
and . € w(x) is an arbitrary but fixed element, then there exist two increasing
sequences {/;} and {m} of natural numbers tending to co such that

i b = B (s s
leIIQIOT () =y, klgn;T (z) =%

Choosing a suitable subsequence of {/i} and denoting it again by {l} we can assuine
that
2my <y, k=12,
Let
N =l — my, k=12,
Then
o(T™(2),y) < 0T+ (2), T (2)) + (T (2),v)
and hence klim o(Trs(z),y) = 0. So y.€ w(z) and (8) is true.
300

(vi) If w(z) is finite, then it is a cycle or an equilibrium. Hence, (8) is true. The

rest of the proof follows from statement (v). (]
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Lemma 4. Under ‘assumption (H1) the set
©) ! My = w(M)
is-a nonempty, relatively compact subset of My such:that
(10) T(Ms) = M;.

Moreover, w(Ms) C Ms. and w(Ms): contains'all ‘equilibria and cycles: If each’point:
% of M3\ (F, U C) is stable with respect to T (M) where ko depends on z, then

w(Ms) = My,

Proof. Lemma 3implies that M3 is a nonempty subset of M1 and by Lemmal,
Mz is relatively compact. Further; (6) implies that

T(M3) = U Tlwlz)) = My,
seM
As Ms ¢ M, we have the inclusion w(M3z) C Ms. Clearly all equilibria and all
cycles belong to Mz and by (8) also to w(Ms), Again, by Lemma 3, if each point’ of
Mz \ (F, UC) is stable in the sense given above, then w(Ms) = M. a

Remark 1. By virtue of (10), the set

=53
Cpi= ﬂ (M)
k=0
called the center of T ([13, p.213]) is nonempty, M3 ¢ Cp C M; and hence Crp is
relatively compact.
Now we shall study the properties of the multifunction w determined by the rela-
tion x> w(z) for every @ € M.
Let (E, p) be a metric space (not necessarily complete) and let F:: D ¢ E — 28\
{0} be a multifunction. We recall that F(Do) = | F(z) for Do C D and the graph
2E€Dy
of Fis G(F) = {(z;y) € D x E: z € D,y € F(a)}. Further, by Definition 4/, [34,
pp.1057-1058], F is closed ot a point z € D if and only if the following implication
holds:
If {zx} and {yx} are two sequences in E such that

(11) {zitCc D, kli_)ng@:znc =z oy € Blxr) k=12, kllngoyk =Y,
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then
(12) y € F(z).

By [9, p.299], F is upper semicontinuous (usc for short) at @ point zo € D if for an
arbitrary open set V. D F(z,) there exists a neighbourhood [U(zg) of the point ay
such that V includes F(z) for each z € U(zo)ND. Fis uscin D iff F is usc at every
zo € 1. Seealso [34] and [15].

Some properties of usc multifunctions are given by

Proposition 5. (See Proposition 24.1, [9, p,300], Theorem 2.3 [8, p.381], The-
orem 7,°[34, p. 1059 and Definition 3/, {34, p. 1056]). The following statements are
true:

(a) Let F(z) be closed for.all x € D. If Fis usc in D and D is closed, then the
graph of F is closed. If F(D) is compact and D is closed, then F is usc in D if and
only if the graph of F is closed.

(b) If D is compact, F isusc in'D and F(z) is compact for all x. € D, then F(D)
is‘compact:

(c) If D is connected, F is usc'in D and F(z) is connected for all x € D; then
F(D) is connected.

(). If F(D) is compact and F:is closed at a point x € D, then F is usc:at z and
the set F(z) is compact.

Remark 2. Proposition 24.1 was formulated for Banach spaces, but the proof
works also in a metric space. Theorem 2.3 in [8] has been proved under an additional
assumption that:F(z) is compact foriall.z € D, but again this ‘assumption is not
necessary for the validity of the theorem:

Lemma 5.  (Compare with Theorem 55.1 in [25, pp. 124-125]). Suppose that
assumption (H1) is fulfilled and D. is-a non-empty. subset of M. Then the following
statement holds:

Ifz € D is stable with respect to the set D, then the multifunction:w is usc at 2.

Proof. Letz € D be stable with respect to the set D. Lemma 4 implies that
together with w(M) also w(D)) is relatively compact. Thus, Proposition 5 can be
applied and it suffices to show that for F = w the implication’ (9). = (10) holds.

Consider two sequences {zx}, {x} such that
Hm 2k = a, lim oy, =y, {ze
Jim o =a kl;r{.loyk y{ze} C D,
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and
(13) ‘ poewE), k=12,
We shall show that y € w(z).

(13) means that for each natural k there exists a sequence {nx, } of natural numbers
such that lim ng; =00 and
{00

lim T zp) = ye; k=12,
oo

Hence there exists ny such that

149 AT () ) < b k=12

Without loss of generality we can assume that the sequence {nx} is increasing and
lim np = oo, Now our aim is'to prove that
koo

(15) Jim T7(e) = y.
By virtue of the inequality
o(T™ (@), 9) < o(T™ (2), T (24)) + o(T™ (zx), 1) + 0(Us, ),

the stability of z with respect to D, (14) and klim Yr =y, we have (15) and the
00
proof is complete. 0

Proposition 6. (Theorem 5, [11; p. 244]). Ifall spaces X, of an inyerse system
S = {X,, 15,5} are continua, then the limit X = im 8 of that system is also' a
continuum (a connected and compact space).

Lemmas 1, 3 and 4 will be completed by

Theorem 1. If agsumption (H1) is satisfied, My and Ms are determined by (1)
and (9), respectively; then there exists a set M, with the following properties:

@)
(16) Ms C My C My, Mo is compact and connected and T(Ms) = My

(i) The set M, with properties (16 is minimal, that is, if My has the same pro-
perties and My C My, then M = M;.
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(iii) If each z € My is stable with respect to Mo, then w(Ms) is compact. Moreover,
if also each x € My \ (F,UC) is stable with respect to T* (M) for some ky depending
on'z, then w(Mpz) = Ms and M, is.compact.

(iv)-If each = € My is stable with respect to My and for each x € My, w(z) is
connected; then w({Ms) is compact and connected:

Proof. (i), (). Let

Sy= [Fe2M: My ¢ F-c My, Fis compact and connected and T(F) C F}.
By Lemmas 1 and 4, M; € 81.:5; can be partially ordered by: the relation
an Fy<Fy ifand only ifFy ¢ Fy:

Let: U be a totally ordered subset of Sy Let Vi ﬂ F. Then by (10), M; =

T(Ms) ¢ T(V) € V.C My and V is compact. We mll show that V''is connected,
too, and thus, V' € Sy:is an upper bound of U. By the Kuratowski-Zorn lemma, this
will mean.that Sy has a maximal element. M. Mo as well as T(M>) belongto ;.
Therefore T(M3) = M, and the proof-of (i), (i) will be complete:

Cleaxly the family U is directed by the relation < defined by (17). Let us define
H Tt Fyo— F for-Fy < Fy to be the embedding of Fy in Fy. Then the system
5 = {F, H,I:;,U} where the space assigned to the element F € U'is F' itself, is an
inverse system of topological spaces. (For definition of such a system, see [11, pp.87-
88]).- An element {wr} of the Cartesian product [T F belongs to the limit of the

FEU

inverse system S if and only if 2p = 2 for every F € U and 2 € V. Therefore lim §
is homeomorphic to V. (see Example 2 in {11, p. 88]) and by Proposition 6, V is also
connected.

(iii), (iv) If-each z € M, is stable with respect to Ms, then by Lemma 5 the
multifunction wisusc in M. Proposition 5 implies that w(M>) is compact and if w(z)
is-connected for every ¥ € My, then w(M>) is also connected. If each z € Ms\(F,UC)
is stable with respect. to Tko (M) for some kg depending on:x; then by Lemma 4,
M =w(Ms) and thus M C w(My) C w(M) = Mz, which implies w(My) = Mz. T

Now we will work in a Fréchet space (E, {pm}) where the seminorms p,, define a

topology and a metric in-the usual way. We will use the following assumption

(H2) Let (B, {pm}) be a Fréchet space, §.# M o closed, bounded and convex. sel
in By and
T:M =M

an a-condensing mapping.
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Clearly (H2) implies (H1).
Let M3 have the same meaning as in Theorem 1: et a be the cardinal number of
the set

(18)  S={Pe2M:. Msc PP isa closed and convex set, T(P) C P}.

By the Cantor theorem, [14, p.16]; the cardinal number 2* > a. Let b be the
initial ordinal number of the power 2%, Then we define a transfinite sequence {£,}
of the type b with values in S in the following way. (compare with the proof:of
Theorem 1.5.11 in {1, p. 33]):

Po=M, and for v >0
€ T(Pyy), ify— 1 exists :
(19 b= { ) Ps, in the other case (7 is a limit number),
By

Here @0 A means the closed convex hull of the set 4. The sequence {P,} is decreasing
with respect to the set inclusion and there exists an ordinal number 6 < b such that
Py = P51 which, on the basis of (19), means

(20) Ps =0 T(P;).

Since the Kuratowski measure of noncompactness oo T(Fs)] = a[T(F;)] and T is
a-condensing; the set Ps is compact and convex. If (20) were not- true for any 6 < b,
the sequence { P, } would he injective and the cardinal number of S would be greater
or equal to 2%, which on the basis of the Cantor theorem is a contradiction with the
properties of cardinal numbers.

Denote

21) Ci= P
By virtue of (10), (18), (20) the following lemma holds.

Lemma 6. If assumption (H2) is satisfied, then the set Cy determined by (21)
is nonempty, convex, compact and satisfies

My CT(Cy) Cc@T(Cy) =CyC M.

Clonsider now the set

Cg = ﬂ P

PES
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Then €2 C:Cy and hence Cs is compact and-convex. . Further, Mz ¢ T(Ch). C
@0 T(Cy) € O and O is the least set in M with these properties. Hence 26 T((h) =
Oy, otherwise C3 1= 0 T(Cs) would be’a proper subset of Cy with the same prop-
erties. We can proceed further in the same way as in-the proof of statements (iii),
(iv) of Theorem 1. Thus the following theorem is true.

Theorem 2. If assumption (H2) is satisfied and Ms is determined by (9); then
there exists a set. C'y having the following properties:
®

(22) M CT(Cy) C o T(Cy)=Cy C M, Yy is compact and convex,

(i1) The set C5 is the smallest set-with the properties (22).

(ili) If each ¢ € Cy is stable with respect to Cy; then w(Cs) is compact. Moreover,
if also each z € M3\ (F,UC) is stable with respect to T (M) for some ko depending
on x, then w(Cs) = M3 and M3 is compact.

(iv) If each x € Cy iIs stable with respect to Cp and for each z € Cy, w(x) is
connected, then w(Cs) is compact and connected.

Example.  Let T:[0,1] — [0,1] be the continuous piecewise linear map de- -
fined by

@ 2z, 0Lz %,
E2@-1), igagL
Then each T%, k= 1,2,. ., has the same properties and, by mathematical induction
we get that its graph consists of 2% segments. More precisely,

Ay oA 2A+1
k
- (2l Gera
T(z)=
Atz A+1 2052
£ — L
(~29)(z - - ) Sesest -0l ol d

Clearly My = [0,1] and since M, is an invariant compact interval, we also have
M =[0,1]. T* has 2* equilibria satisfying

Top=

21 [Zl 2041

d 2tz 241 2042
kalﬁ 2k2 ok ] ana. Topre [ ],

P orsen
I=0,1,..,28t 1.

Each fixed point of T either is a fixed point of T or belongs to an l-cycle where |

ig a divisor of k. In both these cases z; as well'as 22141 belong to the set w([0,1])

and hence this set is dense in [0, 1]. By Corollary 12, {5, p. 76}, w([0,1]) 1s a closed
set and-hence Ms = [0,1].
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PART 2
Now we will work in an ordered Banach space. We will start with assumption

(H3).'Let (E, <) be d real Banach space, P.C-E a normal cone and < the partial
ordering in E defined by P. Let{o,b] = {z € E:a < ¢ < b} be a cone interval
(a < b) and let

T: fa,b] = [a; 0]

be an a-condensing mapping.

Clearly (H3) implies (H2).
For z,y € E wewrite z. <y ifz <y andz# y. I P has anonempty interior
int(P), we also write :
z <y i y=zeint(P).

According to [16; pp.8-9], we say that T is order-preserving (order-reversing) if
z<y = T(x) £ Ty (z <y = T(z) 2 T(y), strictly order-preserving (strictly
order-reversing) i © <y = T(z) < Tly) (z <y = T(z) > T(y)) and strongly
order-preserving (strongly order-reversing) if z <y = T{z) < T) z <y =
T(z) > Tly)) for z,y € [a,b].

An element o € [a,b] is called subequilibrium (supereguilibrium) provided z <
Ple)(z 2 T{z)). The subequilibrium = 15 a strict subequilibrium. (strong subequi-
librium) if 2 < T(z) (x < T(z)). The strict and the strong superequilibrium are
defined accordingly.

Two points z,y € E aré said to be related if z < ylor y < z. A set A C E is said
to be unordered if it does not contain two related points.

The following definitions are taken from [21, pp. 303-304].

Definition 2. Let z; < zs be two points from [a, b). The interval [z1, z;] will be
called singular: (for the mapping T) if T'([z1, 22]) .C [z1,22], T(z) = 21, Tz2) = 2
and for each « € [21, 23] the inequality T{z) < z or T{(z) > z implies T'(z) = z.

Definition 3. A set ¥ C E will be said to form a continuous branch connecting
points zy,zz € E- if for each bounded ‘open set B C E such that either z; € B,
23 € E\Bor 2y € E\B, 2 € B, the intersection ¢B.N F is nonempty.

Here 6B means the boundary of the set B.

Proposition 7. ([6, pp.63-64]) Let A C P, let (P,p) be a metric space and
let 64 = AN (B A) be the boundary of the set A. Then the following statements
hold:
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(i) 64 c 04,

(i) Let Q C P, AC P. Then 6o(QNA) C Qnidp(A).

(iil) (AN B) CFAUGB.

In the following theorems we will keep the notation from Theorems 1 and 2. The
hasic set M will be the interval [z, z2]. Hence M3, Cy will be defined by means of
{21, 22] and hence Ms C C5 C [71,20].

Lemma 7.  Let assumption (H3) be fulfilled, let [z, 2] C [a,b] be a positively
invariant interval for the operator T, that is, T([z1, z3]) C [z1,22), and let 71z €
Cy. Then the set F of all subequilibria and all superequilibria lying in Cy forms a
continuous branch connecting the points zi, zs.

Proof. Let B.C E be an open hounded set such that z; € B, 2, € E\B. The
case 21 € E\B, 2 € B can be dealt with similarly. By Theorem 2, 0 7(C2) = Cs
and hence s is a retract of F [9, p.45].

Consider open subsets Uy := C5 N B, Us := Co 0 (E\ B) of Cs. In the rest of the
proof the topological notions as open, closed and boundary which are referred to the
relative topology of €5 as a subspace of B will be denoted by a subscript Cs. By -
Proposition 7

(23) 36:(Can B) € G20 6B,
(24) 0c,(CyN(ENB)) € Cond(E\B) =CondB C CrnoB.

Consider two homotopies

(25) Tylz) = AT(2) + (1 — Nz,
(26) Talz) = AT @)+ (1 ~Nzn, 0<AL], zeCs

Since [21,22] is a positively invariant interval for 7', we have that
(27) z=Ti(z) (z=T\(z)) implies that ¢ < T(z) (2> T(x)).

Indeed; if z = Th(z) and ) = 0, then (27) is a consequence of z = 21 < T'{z;) and for
0'<A < 1 this follows from z; < .- Similarly we can proceed in the case ¢ = i(x).

Suppose that 6B N F = §. Then, in view of {23), (24) we have S, Ur N F =0
and 8¢, Us M F = §. Hence Ta(z) # « for each x € do,Us and Ti(z) # z for each
z € 60,Uz, 0 < A< 1. By the homotopy invariance and the normalization property
of the fixed point index #(T, U, C3) of T' over Uy with respect to C» given in Theorem
11.1 ([2, pp. 657-658]) we obtain

(28) UT, U, Cy) = i(T, T, Co) = ifT0, Uy, Co) = 1
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and similarly
(29) T, U3, o) = i(Th,Un, C) = i(To, U, Co) = 1.,

On the other hand, if R: E - Cy is.a retraction of B onto -Cy; then using the
definition of the index we get that

i(T5C, Cy) i=dps(I = TR, RHEC),0) = dps(I ~ TR, E,0) i=drs(I ~ TR, V,0)

where drs is the Leray-Schauder degree, I is the identity in Fand V. ¢ Eis a
sufficiently large ball containing (1= T'R)7*(0).C Cs and all AC> for 00 A < 1.
Then

drs(I=TR,V,0) =dis(I = ANTR,V,0) = drs(1,V,0) =1

and thus
(30) i(T,Ca,Co) = 1.

If we denote Uz := Co N 4B, then Uy, Us, Us are pairwise disjoint, U U, UUs =,
and hence, Co'\ (U1 UU3) = C> NOB. This enables us to apply the additivity of the
fixed point index. (28) and (29) then imply that

(T, Co, C) = (T, UL, Cy) + (T, Us, Ca),
which contradicts (30). Therefore §B(1F is nonempty. o
In the proof of Lemma in [32] the following proposition has been proved.

Proposition 8. ([32]) Let K be a compact subset of'a Banach space E. Then
there exists a closed separable subspace Ey of E such that

KCE.

The following proposition is a:corollary to. Michael’s selection theorem.

Proposition 9. (4, p.83]) Let G be a lower semi-continuous map from a para-
compact space X to a Banach space’Y. Let H: X' — Y be a set valued map with
open graph. If G(z)NH (z) # 0 for all z € X, then there exists a continuous selection
of GNH. '

A simple criterion for upper semicontinuity of a map is given in the following
proposition.
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Proposition 10. ([4,p-42]) Let G be a set-valued map from a Hausdorff topo-
logical space X to a compact topological space’Y: whose graph is closed. Then G is
upper semicontinuous.

The next proposition deals with a property of a compact metric space. In its
formulation we need the following definitions (see [6, pp. 140, 135]).

Let (P, p) be a metric space.

Let e >0, a € P, b€ P. An z-chain from the point a to the point b in the spice
P is any finite sequence {a;}7 | of points in P such that (i) ay = a; (i) am = b; (ii1)
olds, aia) < eforl<i€m =1,

Let-a € P, be P, Pis connected between the points a and bif for each decompo-
sition Pi= AU B with separated 4-and B the points a, b either both belong to 4 or
both belong to B,

A set ) C P is called a gquasicomponent of the space P it (1) Q # 0; (i) Pis
connected between any two pomts a € @, b€ Q; (iil) P is not connected between a,
b whenevera € Q, be P\Q.

By [6, Theorem 19.1,3, p. 140, Theorem 18.3.5, p. 136 and Theorem 19.1.5, p. 141]
the following proposition holds:

Proposition 11, Let (P, e) bea metric space. Then the following statements
hold:

(i) If P is a compact space; a € P, b € P and for each ¢ > 0 there exists an e-chain
from the point a to the point b in P, then P:is connected-between the points a-and-b:

(i) The points a. € P, b € P belong to the same quasicomponent of the space P,
if and only if P is connected between a and b.

(i) In a compact s P -the quasicomponents: coincide with components.

Hence,

(iv) if P is a compact space; a. € P, b &€ P and for each ¢ > 0 there exists an
e-chain from the point a to the point b in P, then the points a, b belong to the same
component, of B,

Now ‘we are able to prove the following lemma which describes a property of a
continuous branch.

Lemma 8. - Let assumption (H3) be satisfied and let [z1,25] C [a,b]. If a set
S C [z1, 22] is compact and forms a continuous branch connecting the points 71, 2,
then S contains a continuum Sy such that zi, z2 € Sy

Proof.  Since S is a continuous branch, there exist points €, ¥ € S such
that [[zn — 21l = e = 22l < L and hence z;, 2 € S In view of Proposition 11,
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statement (iv), we will show that for each e > 0 there exists an e-chain from the
point: z; to the point z2 in S and this will complete the proof of the lemma.
Hence, let ¢ > 0 be given. Denote the £-neighbourhood of z € S by U(z, §).
Then Us Ul(z,%5) is an open cover of the compact set S and hence there exists a
. ee

s :
finite subcover: | U(zy, §) where 2, € S, k=1,..., 5. We will deal with the case

that 2, 23 & {alccl—,l . .»Zs}. The other cases can be dealt with in a similar way. By
rearranging the indices if necessary, we can suppose that z € U(zx, 5), k= 1,...,1,
22 € U(zr, 5), k=1, ;s If 1 > r, then the searched e-chain from 21 to 22 in S is
{z1,21,22}. Suppose now that I < r.

If Uz, 5) 0 Uy, 5) # 0 for 1< 4,4 < s, 4 # g,then lzs — 2l < e (|}
is the norm in E) and we call U(z;, §), U(z;,5) adjacent. Now we consider all
subsequences {U(zx,,, 5) 0. (the so called adrnissible subsequences) such that ky €
{1;...,1}, the sequence {k, 1P, is injective, U(zx,, ), U(k,.s: 5) are adjacent
and 1 < p £ s. If there is an admissible subsequence which contains the term
with the index k, € {r,...,s}, then the searched e-chain is {z1, %85+, k,, 22}
Otherwise we would have two disjoint open bounded sets Oy = \U{U(zx,., $) 10y
where the union is taken over all admissible subsequences; and Oy = C[ Uzk, 5)\O1,

B=1
ko Ulzy,5) € O2 # 0. Thus z2 € O, 7 € E\O and since S is a continuous branch,
we have 6050 S # 0, which contradicts the fact that S ¢ Oy UQy and Oy N 05 =
(open disjoint sets are separated, see [11; p, 242]). ]

The last result can be stregthened by the following continugus selection theorem
which asserts that each continuum 5y with the smallest z; and the greatest element
z2 in a partially ordered Banach space contains a continuous curve connecting 21,
Z2.

Theorem 3. Let (E, <) be a partially ordered Banach space with a normal cone
P and let Sy C E be a continuum with the smallest element z; and the greatest
element zp. Then there exists an interval {ay, o0) C R and a continuous function
si{ay, ap] =Sy such that

(31) s(an) = 2, s(as) =20,

Proof. By Proposition 8, there exists a closed separable subspace Fy of the
Banach space F such that 51 C Fy. When the norm and ordering in ) are induced
by the norm and ordering, respectively, from F, then F, is a partially ordered Banach
space with the normal cone P = PN Ei. By Proposition 19.3 in [9, p.222], in the

292



separable Banach space Ei there exists a strictly positive linear continuious functional
a* from the dual cone Py,

Denote z*(z) = @i, ¢ = 1,2. Then oq < o9, oy < 2%(2) < ap for each z €
S1\{z1,22} and 2*(81) = [0;, p]. Consider the multifunction z*7* (the inverse
of the functional'z*). By Example 24.1 in [9, p.301], 2*7* is lower-semicontinuous.
Further, z* 7 () .51 # 0. We shall show that the multifunction

(52) Sife) =2 He)N S, w<agaos,

has a continuous selection.
Let Vi={w€ Bt |zl <}, k=1,2,.... Consider the multifunction

(33) Si@) =2z n(Si+ V),  ar<a

N

Qo

Since Hi(a) = 1+ Vi, a1 < @ < ao, has an open graph, by Proposition 9 there
exists a continuous selection s; of 5;. Now we consider the multifunction

i) =2 ") n(Si+ )N (s1{a) £ V), ar<a<oan

Again the multifunction Hy(e) = (Sy + Vi) 0 (s1(a) + Va), oy < o € oy, has an
open graph and Hy(a) # 0. Therefore, by Proposition 9, there exists a continuous
selection &5 of Sy on [a1, sl

Suppose that we already have continuous functions s3,..., s; with the property

(34) si(e) €25 oINS+ Ve )N (@) +V4), v <a<as, k=24
Then there exists a continuous function s; ;1 on [ag, @] such that
si1(e) € @ Ha) 0 (S + Vi) 0 (si(@) + Vo).

By mathematical induction there exists a sequence {sx}72; of continuous functions
with property (34). Since spy1(a) € (sx(a)+Viq1), {sk} is a Cauchy sequence which
converges uniformly on [ay, o] to a continuous function s. As s(a) € 227 o) N
oo, i
[V {5i + V), we have that s{a) € :z:"‘l(a) NS, 0 €00 Thissisa
h=l
continuous curve lying in Sy and connecting the points z;, 25, |
Remark 3. The multifunction Sy defined by (32) has a closed graph. Indeed, if
s — aand T, = 2, T, € S1(a,), then the points z,, as well as z belong to S and
2 {@,) = o, — 2%(a). Thus 2 € Si(e) and (o, z) belongs to the graph of 5;. By
Proposition 10,:51 ig upper semicontinuous,. Nevertheless, ;- contains a continuous
selection.
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Now let us go back to Lemma 7. Keeping the notation from that lemma, the set
F ¢ O, is closed and since C is compact, Fis also compact. By Lemma 7, F'forms
a-continuous branch connecting the points zy, zs. Then Lemma 8 implies that F
contains a continuum’ Fy such that 21, z» € Fr. By Theorem 3 we get-the following
theorem.

Theorem 4. Let assumption (H3) be fulfilled, let-[z1, 20} C [a,b] be-a positively.
invariant interval for the operator T and let z, 2o € Cs, Then the set F of all
subequilibria and all superequilibrialyingin C'y formis a continuous branch connecting
the points z1, 7o and containg a continuous curve s connecting zy, z,.

Remark 4. By Theorem 2, éach equilibrium belongs to Co. Further, if z-= s(a)
is a subequilibrium (superequilibrium) and there is a sequence ar — @ such that
2 = §(ay) are superequilibria (subequilibria), then z, = z and z is an equilibrium.
We also have that the set of all equilibria lying on the curve s is closed and thus, the
set of all sub- and superequilibria on that curve is open (with respect to that curve).
By the continuity of s, the corresponding values of the parameter o form a closed
and an open subset of (a1, a3), respectively.

On the basis of Remark 4, Theorem 4 implies the following theorem and lemma.

Theorem 5. If assumption (H3). is satisfied and [z1,22] C [a,b] is a singular
interval for the mapping T, then the set F, of all equilibria lying in [z1, z2] forms
a continuous branch connecting the points zy, z3 and contains a continuous curve's.
connecting 2y, za.

Lemma 9.  Let assumption (H3) be fulfilled, let |21, 22] C [a,b] be a positively
invariant interval for T-and let 21, 2o be twoequilibria. Then the following alternative
holds: Either.

(a) there exists a further equilibrium in [z1, 22,
or

(b) there exists a continuous curve s in [z, %] connecting 1, 2, such that all
points of the curve except z1, zy are strict subequilibria,
or

(c) there exists a continuous curve s in [z1,%] connecting z, z such that all
points of the curve except zy; z5 are strict superequilibria.

The following lemma is a little modification of Lemma 1.1.in [16, p. 9]
Lemma 10.  Let assumption (H3) be satisfied. Let [z1,22] C [a,b] and let

T [z1, 23} = [21, 23] be an order-preserving mapping. Let x € [z1, 23] be a subequi-
librium (y € |21, 23] a superequilibrium). Then the following statements hold:
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1. The sequence
(35) Tpiy o= T(xg) foreach b €N, g = o

is an.increasing sequence converging to the least equilibrium v 'in [z, z2], while the
sequence
Yri1 1= Tlyy) foreachk €N, yo =y

is-a decreasing sequence converging to the greatest equilibrium v in:[z1,y]. Hence
wlz) = {v}, wly) = {u}.

2. The elements zy and yy, are again sub- and superequilibria, respectively. If T
is strictly order-preserving and x:is a strict subequilibrium (y Is a strict superequi-
librium), then also ) (yi) is a strict subequilibrium (a strict superequilibrium).

Proof. We only prove the éonverg;ence of the sequence {zx}ren . The other
statements can be easily proved. By Lemma 3, w(z) # 0. Assume that there exist
two subsequences {zi, hien and {2g;, bmen Of the sequence (35) such that

lm a2y, =w, lHm oz =z
l=co m—roo 1

Then we proceed as it the proof of Lemma 1.1 in [16, p. 9] and obtain that w = 2. [J
In the sequel we will use the following definition. (Compare with [16, p. 10]).

Definition 4. A sequence {zx Yrez in S C [a,b] with
Ty = Llar), kel

will be called an entire orbit of the discrete dynamical system {T*}ien in S (shortly
an entire orbit in S). The entire orbit {#x}sez in S is connecling points z; € 5,
25.€ S (in this order) if

m zy=n and lim 2y = 29
k=00 ko0

The entire orbit {z)}xez connecting points z1, 2> is positively finite if there exists
an integer ! such that :
Ty =72 forall k> 1.

The next lemma gives another sufficient condition for the curve s from Theorem 4
to-contain only equilibria. .

Lemma-11.  Let tion (H3) be satisfied, let z;, z» be two equilibria such
that o € z1 < 2z < b and let T be order-preserving in [21,2s]: Further, let all
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equilibria in [z1, 2] be stable. Then there is a continuous curve of equilibria in
[#1, 23] connecting z1, z2.

Proof. Clearly [z1,2] is a positively invariant interval for T, If there were a
strict subequilibrium on the curve s; then by Remark 4 there would exist an interval
(a3, ) such that s(cs), s(as) are equilibria and s(a) are strict subequilibria for all
a € (a3, a4). On the basis of Lemma 10, this contradicts the stability of s(ag). O

The following theorem extends the statement of Proposition 2.1 in [16, p. 10} to
order-preserving condensing mappings. Its proof is similar to that of the proposition
mentioned. For the sake of completeness it is given here.

Theorem 6. ' Let assumption (H3) be fulfilled, let 2 < z3, 21, %2 € [a,b] be two
equilibria and let T be order-preserving in [z1,2;]. Then the following statement
holds: Either

(a) there exists another equilibrium in [z1, 23],
or

(b) there exists an entire orbit {zx}rez in Cy connecting the points zy and z; such
that either all terms of the orbit are strict subequilibria or this orbit is positively.
finite and the terms of the orbit different from zz are strict subequilibria,
or :

(¢) there exists an entire orbit {2x}rez in s connecting the points z; and z1 such
that either all terms of the orbit are strict superequilibria or this orbit is positively
finite and the terms of the orbit different from z) are strict superequilibria.

Proof. Clearly [z, 22] is a positively invariant interval for T and hence Lemma 9
can be applied: Let B(a, ¢) denote the open ball in € with center a € Cj and radius
£ > 0. The subscript €y will have the same meaning as in the proof of Lemma 7.

Suppose that there is no further equilibrium in [z1,22] Then, by Lemma 9, we
have two cases:

(i) There exist strict subequilibria in C5 as close to zy as we wish:

(it} In each neighbourhood of z; there exists a strict superequilibrium in Cs.

In the first case we will derive alternative (b). Dealing with the case (i) we wounld
come to statement (c).

Let 0o > 0. be such that z, ¢ B, (21, do). By continuity of T at z1 there exists 4y,
0 < 61 < 8y such that || T(z) — 21 < & for each z € B (21,61) and there is a strict
subequilibrium vy : vy € 8¢, B(21,01), 21 < vy < T(v1).

Further, there exists §,: 0 < s < §; < o such that [|[T{z) — 71([ &y for each
2 € Be,(21,02) and there exists a strict subequilibrium s, vz € e, B(z1,0,). Hence
2 < vz < T{v) < T%vy) < ... and; by Lemma 9, kl'grelo T*(wy) = 2, since there
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is no further equilibrium in [z, 2] Then there exists an index n(2) such that
5 S [T (v;) — 21| < bo, whereby n(2) 2 1.

In this way we get a sequence {T"")(v;,)}22, of strict subequilibria such that
S TP vp) — 2] < 6 and (k) 2 k- 1.

Since T(C?). is compact, there exists a subsequence {T7*)(vy)} converging in
Cy to some Zp. Clearly §; < [|lzo = 21| € do. Then the sequence {TP*)~1(y,)}
contains a subsequence (index ") converging to some z_;. Since T2E)=1(y, .y <
™) (v ), we have Jim THEN (i) = 2y < wo = k’l,iian"(’“")(vku) and
T(z_ 1) =zp. But v.1 # 2, since ||ze = 21}l 2 61. As z1, 2, are the only equilibria
in (21, z2), we have z_; < mo and 7.1 is a strict subequilibrium.

By induction we get a negative semiorbit {z_;}en of strict subequilibria. - As
22p € Cy for each p € N, the decreasing semiorbit {z ,},cn converges to some
7 € Cy with T(x) = o < 2o < 23. Since z; is the only equilibrium in [z, 2] smaller
than 25, we have z = z;. By Lemma 9; 23y := T'(zs); k € N, are subequilibria
and either all of them are strict subequilibria or there is the smallest integer I such
that z; =T (m[)‘,and hence the entire orbit {Zx}rez is positively finite, z; is an
equilibrium ‘greater than z; and hence x; =2,. All terms 2z, k < I, of the orbit are
strict subequilibria. (]

Remark 5. If the entire orbit'is positively finite; z;-1 < z; and zx. = z for all
k21, then T(z) = 7o for all z € [217, 25]: Hence the following corollary holds.

Corollary 1. ' If all assumptions of Theorem 6 are satisfied and T' is not. constant
on any of subintervals [z1,z3] and [24, 23] of (71, 22) where z1 < 23 < 24 < 2o (in par-
ticular if T is strictly order-preserving in {21, z2}), then in alternative (b) (alternative
(¢)) all terms of the entire orbit connecting the points z; and z (the points z and
z1) are strict subequilibria (strict superequilibria).

If T is order-preserving, then Theorem 5 can be strengthened.

Theorem 7. If assumption (H3) is satisfied, 21 < 29 are two equilibria in [a,b],
T is order-preserving in [z1, 22}, and either

(1) [#1, z2] is a singular interval for the mapping T,
or
* (i) each equilibrium in [z1, 2] is stable,
then the set F, of all.equilibria in [21,z3] has the following two properties:

(a) If 25 is an equilibrium satisfying 2y < z3 < 7, then the set F, contains a
continuous curve

(36) G={zeCrz=pt), 0<t<1, 00 =2z, (1) =2}
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such that zy € G and G is strictly increasing in the following sense: Tf. 0 <ty < 1y <
1, then o(t1) < p(ts).
(b) F, is a continuum.

Proof. . Case (i). Since C- is-compact; similarly as in the proof of Theorem 3
we get: the existence of a separable partially ordered Banach space (B, <) and of a
strictly positive linear continuous functional @* such that the norm and ordering in
Iy are induced from E, Cy ¢ Ey and z* is from the dual cone P where Py = PN E;.

Fy, is a subset of C and is closed, hence it is compact. Further, I, is a partially
ordered set by the ordering induced from Ei:

Let 25 € F, be an arbitrary but fixed element such that z1 < 23 < 23, -Denote
2%(z) =iy =1,2,3. Then oy < a3 < Qo 71570574 form a chain in F,. By the
Hausdorff maximal-chain theorem [14, p. 65]; there exists a maximal chain U C F,
containing z1, 22, zs. We shall show that the set U is closed. If ay € U, 'y — a0 as
k —:00 and y. € Uis an arbitrary element, then in case that there exists asubsequence
{zk, } of {zy} such that ), <y (2, 2 y) we have v <y (z 2 y) and thus, ¢ € F,
is-comparable with each element y € U. Maximality of U implies that o € U.
Therefore U7 is a closed subset of F, and hence compact. Then o*(U) = A C [ay, o]
is'compact, a1, az € A and hence [a, o] \ A is an open subset of R,

Suppose that {aq; 03]\ 4 # § and let the open interval (oy, @5) be a component
of o1, as] \ A Then there exist two points z4 < z5 of U such that 2*(z4) = o,
2*(25) = as. Again; by Theorem 5, there exists another point zs € FE, such that
zs. < 26 < z5. Then, in view of maximality of U/, z5 € U and o4 < z*(z¢) < 0,
which contradicts the fact that (a4, a5) contains no points from-A4. Therefore A =
[a1,05] and 2% U — [0y, 2] is continuous and bijective. Then its inverse mapping
@i [, 09] — U is contimious; too. By using a strictly increasing homeomorphic
mapping of [0, 1] onto [ay, @] we may assume that ¢ is defined-on {0, 1] and ¢ (0) =z,
w(1) = 2. Clearly ¢ is strictly increasing and there is'an'a@ € (0,1) such that
(@) = 2.

Case (ii). We proceed in the same way as before. The only difference is that
instead of Theorem 5 we apply Lemma 11; (5]

Theorem 8. . Let assumption (H3)-be fulfilled, let-the cone P have a nonempty in-
terior int(P), let 21 < #; be two equilibria in [a,b); let T be strongly order-preserying.
in [z1, 22} and let either

(i) [21, 2] be a singular interval for T,
or

(ii) each equilibrium in [z1, 2] be stable.

Then the set F, of all equilibria is a continuous curve G given by (36).
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Proof: = Case (1). We will show that F, is totally ordered. Consider any
nontrivial positive linear continuous functional x:1% € P’ (not necessarily strictly
positive): Since T’ is strongly order-preserving; if 7 < y are two equilibria; then
% < y and, by Proposition 19.3:in [9, p. 222); 21*(x) < 51*(y). If 2:%(z) = 0 € R,
then -z will be denoted briefly by z, Hence 2% (@,) = o

‘Assume that v and @ are not order-related elements of Fy,. Since F, € My C:Co, F,
is-compact: Let vo'be a minimal equilibrium above u, @. Its-existence can be proved
by the Kuratowski-Zorn lemma. Indeed, denote Fyop = {o € Fyiz 2 u; © 2 4}
Clearly Fua 7 0. Let Gp be a totally ordered subset of F, 5. Let the sequence
@y € @1 7(Gh) be such that ap >, infz1%(G3) as k — oo As F, is compact and
{zq,} C Gy is a decreasing sequence; similarly as in' Lemma 10 we get that there
exists v € I, such’ that Ic}inéo 2o, = v Clearly v € F.a and v is a lower hound
of Ga,Then, by the Kuratowski-Zorn lemma, F, 5 has a minimal element vz > 4,
2y > 11, By the strong monotonicity of T, u. & ¥a; @ < vg. This implies that vs is'an
clement of F, which'is isolated from below. Otherwise, there would exist a sequence
{ur} C F, such that u, < vp and 13329 U=y Then u < up < s, 1 < Uk <.y for

large &, contradicting the minimality of va.

Let v, be a maximal fixed point of T below s which exists again by the
Kuratowski-Zorn lemma.  To prove this, denote F,, = {z € F,: = < vp}. Then
71 € Fy,. Let Gybe a totally ordered subset of F,; and let the'sequence avi be such
that op A supz1%(Gy) as k — co. Then there exists v € Fp such that Icll\ﬂolo oy =0
and v € F,, due to the fact that v, is isolated from below. Thus, v is an upper
bound' of G and, by the Kuratowski-Zorn lemma, there exists a maximal point
21 € F,; below vy This'contradicts Theorem 5 with 21 =01, 23 = 1. Hence the set
F, of all equilibria in [z1, 23] is totally ordered.

Similarly as in the proof of Theorem 7 we get that:for each a € {a@s; @) there
exists an x, € Fj. F,is compact. Thus 2% F, — [0y, a9) is an increasing home-
omorphism of K, onto a1, ap].” Therefore F, is a continuous curve which can be
written in the form (36). ‘

Case (ii), differs from the previous one only by using Lemma 11 instead of Theo-
rem 5. (]

Remark 6; Theorems 5, 7, 8 represent an extension of Theorem 5in [21, p. 304]
to a-condensing operators. Theorems 7 and & contain a new sufficient condition for
the existence of ‘a continuous curve of equilibria. They also complete Theorem 1.51n
[36, p. 229]. Similarly Theorem 4 in [32] is extended and sharpened by the theorems
mentioned. Theorem 8 is similar to Theorem 3.3 in [16, p.12].

299



Let, ~ 7 heaie- -1 mi, 0< ' <

1
i iboejlij

, 6 ¢ R". The eiidide&B naiaiia {'* will -
"*M \ ' iUBO

Pj, j*i.

1> > MLa) < /.(i.aa /cr a», ¢ yaeanto

and id), systém < <« will [ called a i ,>
91 [ =] 1!. Kurt] r. Co!l and (<I) miply rlie

ie)  fiitl-i,,,.,bi.-u®,bi-n. M S 0 forearh 0 " ¥ < -c. 0~ & C .,%. k =-
1 ,«, i / /' and hence, tiie systém represents a luatbematical mode] for
«i i i ifiiectiuns disease (see [35, Ex. 3.2. p. -10], ;iG. Kx. 4.2. p. 241]). In

this niodol we iiave fi disjoini populat.ion chasses. ;y is the uumlxa oi individuals

in class i and a, is t.hc number of infecied ones m class ;. / ~- 1 ti, In view
of (a), we also hdve that
(f) / is unifonnly tontiuaous and bounded (by a eonslant .1/ > 0; on [0. x,) x [0. ;>/

Denote :r(f, ij,.r,), x, — (1 r»,\ the rei<-,,. ajmdn< r<i the rijyht soiuiion
>f systém (37) satisfying the initial condition .rdit. i — <+ ; - i aa
On the basis of Theoreni 10 m [7, p.29a (i)). icj and Mi imply :iie iolknviny

daiteinent:
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() 0 < 2(t,40,¢) €, t being from the maximal to the right interval of existence,
0 < to < 00, ¢ € [0,p]; and hence, z(t,to, ¢) is defined in [to, 00).
Further,
() 2(t,ty;¢) € z(tyto,d) for to <t < 00,0 <ty < oo and forany ¢, d € R?,
0gcegdsy
By (a), we have
(i) (¢t + k7, to,¢) = z(t, o, z(to + k1, t0,¢)) for to <t < oo, k€N, 0 < tg' < oo,
c €10,
In particular, if z(to + 7,10, ¢) = 2(to, %o, ¢), then z(t + 7,t0,¢) = (¢, to,¢), to <
<00, 0ty <o, 0Legp
Statement (i) allows to define the period mapping Ty, [0,p] — [0,p] for each
0 <t <ooby
T le) = z(to + 7,10,0).
By virtue of the uniqueness of the initial value problems for (37), T}, is continuous

and hence, a compact mapping. Further, by (i) and (iii),
(iv) Ty, is order-preserving and T,’; (e) = x(to + kT, to,c) for k € N, c€ [0,p] and

0 €t < co.
(v) T () = ¢ iff z(t; 10, ¢) is a 7-periodic function (in [tg,00)) for each admissible
1o. : .

Since w(t,to,c) = &t + k7, t0 + k7,c), the following equality holds:
(V1) Typkr (€) =Ty, (c) for each 0 < tg < 00, k €N, c.€ [0,p].
Further,
(vil) Ty, (e) = ciff Ty (cr) = ¢y for e = zftrito, €)ito St S to+ 1, 0 < g <€ 00,
ce[0,p].
(iv) implies the first part of the statement
(viii) If the solution z(,7p,¢) is Lyapunov stable (0 < fo < co), then the point
¢ € [0,p] is stable with respect to [0,p] (and the mapping T3,). Conversely,
if Ty,(c) = c is stable (with respect to [0,p] and the mapping T%,), then the
periodic solution (%, o, ¢) is Lyapunov stable. Hence the Lyapunov stability of
7-periodic solutions of (37) is equivalent to the stability of equilibria (of T3, ).
Proof of the second part of the statement. . Let e > 0 be arbitrary. Then there
exists 6> 0 such that

(38) |2t t0,0) =zt to, cr)] <e forto SE<to+T le—al<é

Further, by (iv), there'is & > 0 implying |¢ — 2(to + kr, to,¢1)| <8 for e — a1} <01,
ke N: Letlc—e| <8, let k € N bearbitrary but fixed. Then, by (ili) and in view
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of (38);
2t + k7 to,0) =zt +krito, o) = el to, o) — 2 to, 2(te + ki torcr))| < &

for to +kr S t+kr <to+ (k+1)T. ]

Burther, by an w-limit point of the solution x(t, 1y, ¢)-we understand a point ¢ €
[0, p] such that there exists a sequence to <t <ty < ...~ oo and

Hm 2(ty, o, ¢) = q.
hroo

The set of all w-limit points of (¢, %0, ¢) will be denoted by w(x(t, 10, ¢)). Denote by

wy,(c) the w-limit set of ¢ under Ty, Then the following statement holds:

(ix). W, le) C wlz(t to,c)) and for each g € w(z(t, 1, ¢c)) there exists £ € {0,7] and
d € wyy(c) such'that z(t + t'. 0, d) = q.

Proof. - In view of (iv), the first part of the statement is clear. "Let g €
w(z(t, to,c)) and'let @ (tx, 10, ¢) = ¢ as k — oo, Then &y = to-+Ix7+1} where {ix} isa
nondecreasing subsequence of N tending to co and 0 <t} < 7is uniquely determined.
Choosing a subsequence if necessary, we may assume that klim 1y, =t €[0,7]. By

: 400
®)s
totlimt]

|w(to + I + tr tosc) — a(to + kT + 1 0, 0)] = ' / fltsz(t o, c))dt
totleT !

<Mty —t]—0ask = 00
and hence, (ii) and (iv) yield

g= lm z(to+ L+t to,0)= lim 2(to +hrt + ¥ ke, 0
k0o koo
+ klim [2(to =+ L + 1), t0, ¢) = 2ty + LT -t/ o, )]
39 =
@9 = lim z(to + %0, x{to + L7, fo, C))
k—roo

= )}520 olto +1, 15, T/ (0).

From the sequence {74 (c)} we can extract a convergent subsequence. Denoting it
again by {ng (c)} we get that there exists d € w;, (c) such that T;"} () =dask— co.
The relation lim z(to+1',to, T (c)) = x(t+1',10,d) together with (39) implies the
second part gf_;ﬁe statement. ]
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Two cases for the 7-periodic Kamke system (37) may occur, Either it has only
one 7-periodic solution, namely the trivial one; or it has also a nontrivial T-periodic
solution. In the former case the following theorem is true.

Theorem 9.  Let assumption (H4) be fulfilled: Suppose that'z(t) =0, 0<t <
00,-is theonly T-periodic-solution of (37). Then this solution is stable and

(40) Jim 2(t,to,c) = 0for each 0 <ty < oo and eachc € [0,p].

Proof. Let0 <ty < ooandlet e €0,p] be arbitrary but fixed. By:(v), 0is the
only equilibrium and p is a superequilibrium (under T, ). By Lemma 10; {TF (p)} 1s
decreasing and klingo Tt};(p) =0.Since 0°< Tt’z () £ Tt'f,(p) for:each k€ N, we have
klgroxo T (c) = 0. and hence wy,(c) = {0} Let g € w(a(tito,c)). By (ix), there exists
'€ [0, 7] such that g = z(to + 1’ 10,0) = 0. Hence (40) is true:

On the basis of Theorem 7.5 ([40, pp. 50-51]) and Temma 7.1 ([ 40, p. 49]), stability
of the trivial solution will be proved if we show that to any & > 0.and o = 0 there
exists a (o) > 0 and a T ({;£) 2= 0 such that |¢| < 6{to) implies |z{t,1g;¢)] <e for
all t-> to + T'{to;e). Hence, let € > 0, tg = 0 be arbitrary but fixed. By (i) we have -
z(t to, ) Sa(t to,p), to St < oo foreach ¢ €[0,p] and since Ll‘i_polo:t(t,to,p) =0,
there exists'a T(to,€) 2 0 such that

lzlt,to. o) Szt to,p) <& forall t > tq +T(ty,2).

The proof-of the theorem is complete: 0

Remark 8 Inview of Definition 7.1 in [26, p.93], under the assumptions of
Theorem 9 system {37) has the property of convergence.

Further, by Definition 9.1, p. 77, and Theorem 9.3, p. 78 in [40], we get
Corollary 2. Under the assumptions of Theorem 9 the zero solution of (37) is
uniformly asymptotically stable in the large.

Remark 9. Corollary 2 can be partially reversed. By Remark 23.2 in {3, p. 343},
any asymptotically stable T-periodic solution z(t) of (37).in [to, 00) is isolated; which
‘means that there exists an &> 0 such that for any: other 7-periodic solution y(t) of
(37) in [to, c0) we have |y(t) —x(t)| > e forall t > iy, This implies that a nonconstant
T-periodic solution of the autonomous equation

(4n z' = f(z),
where f is continuous in [0, p], cannot be asymptotically stable ([3, p.345]).
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Suppose, now, that there exists a nontrivial 7-periodic solution (%, t1,¢;) of (37).
Denote by Sy, the set of all r-periodic solutions z(t, ¢1,c). Then S, is a nonempty
subset of the Banach space X = C([t1,4; + 7], R*) equipped with the norm

llyll = sup
g

|y(t)| for each y € X.
St T

X can be partially ordered by the natural ordering ¢ < y (in X) iff () < y(t) (in
R%) for all ¢ < ¢/t + 7. By this definition the cone K = {z € X:z 2 0}in X is
normal.

Theorem 10. Let assumption (H4) be satisfied and let there exist a nontrivial
T-periodic solution z{t,t1,¢r). Then S, contains the greatest T-periodic solution
z(t, 11, c2) and either Sy, contains an unstable solution or'S;, Is a continuum in the
space X. In the latter case, if (1,11, cs) Is an arbitrary T-periodic solution such that
0 < c3 <o, then the set S;; contains a continuous curve

H={zeSy:z=9(), 0<t<1, 9(0)=a2(t,t:,0) =0, v(1) = alt,f1,c2)}

such that z(t,ti;¢3) € H and H-is strictly increasing in the following sense: If
0Kt <tp <1, then (1) < ¥(t2) (in X).

Proof.  Consider the mapping T3,. By (iv) and (v), Ty, : [0,p] — [0,p] is
order-preserving and ¢ is an equilibrium (in notation ¢ € F,) it z(%,%1,¢) € Sy, Let
5: Fp — Sy, be defined by S(c) = z(t,t1,¢), ¢ € F,. Then S is continuous and;
by (i), order-preserving. By Lemma 10, there exists the greatest equilibrium c¢s in
[0, p] which is defined by ¢z = lim TL‘j (p); and the solution S(cy) = z(t, t1,c2) is the
greatest T-periodic solution in X—).wWhen all 7-periodic solutions in ¢, are Lyapunov
stable, then (viil) implies that all ¢ € F, are stable, and by Theorem 6, there exists
another equilibrium in {0, cp]. Theorem 7 gives that F, is a continuum and hence,
Sy, is also a continuum. Further, for any ¢z € F), there exists a continuous curve
G in F, which contains ¢z and is strictly increasing. Then the image of thig curve
under S is the curve H with the properties mentioned in Theorem 10. ]

On the basis of Remark 9, we get from the last theorem the following corollary.

Corollary 3. ' Let both the assumptions of Theorem 10 be satisfied. Then the
following implication holds:

If there exists an asymptotically stable T-periodic solution of (37), or more gene-
rally, an isolated T-periodic solution of (37) (in Si, ), then there is another T-periodic
solution of the equation (in Sy, ) which is ungtable.
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Remark 10. A criterion for the stability of a nonconstant r-periodic solution
of an autonomous differential system is given by the Andronov-Witt theorem ({10,
p- 312]). Further results on the stability of a 7-periodic solution can be found in [28],

[29]:

Remark 11. Theorem 10 and its corollary completes the statement from [27]
dealing with the strongly cooperative 7-periodic: differential system.
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