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Abstract. In the paper the fundamentaì pгopeгties of discrete dynamical systems gen-
erated by an a-condensing mapping (a is the Kuratowski measure of noncompactness) 
are studied. The results extend and deepen those obtained by M. A. Krasnoseľskij and 
A. V. Lusnikov in [21]. They are aìso applied to study a mathematical rдodel for spreading 
of an infectious disease investigated by P.Takáč in [35], [36]. 
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ІNTRODUCTION 

By his woгk, M. A.Krasnoseľskij has immensely influenced the developement of 
nonlinear functional analysis. This can be seen in his books, see e.g. [18], [19], [20]. 
Among others, he investigated the problem, when an operator has a continuum of 
fixed points. This problem has been solved by several methods. Some of them have 
been developed within the theory of differentiai equations. 

The first method studied a continuum of solutions of the initial value problem for 
ordinary differential systems and was originated by H. Kneser in 1923 (see [9, p. 212]). 
There are several papers dealing with this problem, among them let us mention [12], 
The general setting of this method was given by Z.Kubáček in [22], [23] and in [38]. 

M. A.Krasnoseľskij and A.I. Perov in [17] started another method which repre-
sents a combination of the previous one with the theory of fixed point index (see 
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[17], [19] and [42, p.564]). An extension of this method was given by B.Rudolf in 
[30]. M. A. Krasnosel'skij and A. V. Lusnikov proposed a modification of this method 
in [21] and B. Rudolf completed it in [32]. 

The existence of a compact convex set of solutions of a boundary value problem 
was investigated by B.Rudolf and Z. Kubacek in [33], In a more general setting it 
was established by V. Seda, J. J. Nieto, M. Gera in [37] and in [39]. 

The last method to show the existence of a continuous curve of equilibria ap­
peared in the papers [35], [36] by P. Takac and in [16] by P. Hess on discrete dynam­
ical systems. The systems are generated by a mapping which is, roughly speaking, 
completely continuous. It is also strongly increasing. 

The aim of this paper is twofold. First, to investigate fundamental properties of 
discrete dynamical systems generated by an a-condensing mapping (a is the Kura-
towski measure of noncompactness). Secondly, to extend and to deepen the results 
by M. A. Krasnosel'skij and A. V. Lusnikov in [21]. Among the results attained it 
has been shown that in each partially ordered Banach space a compact continuous 
branch (the notion has been introduced by M. A. Krasnosel'skij and A. V. Lusnikov 
in [21]) contains a continuum (Lemma 8) and each continuum with the smallest 
and the greatest element contains a continuous curve connecting these two elements 
(Theorem 3). The results have been applied to a study of a mathematical model for 
spreading of an infectious disease (compare with [35], [36]). 

The paper is organized as follows: In the first part the condensing discrete dynam­
ical systems are studied in a complete metric space. In this space three important 
sets Mi, Mi and M3 are specified and the relations between them are studied. Then 
this study is continued in a Frechet space where a convex set C2 plays an important 
role. 

In the second part the condensing dynamical systems are studied in a partially 
ordered Banach space. The study of these systems is based on Lemma 7 and The­
orem 4. Another important result is contained in Lemma 11. Theorems 7 and 8 
guarantee the existence of a continuous curve of equilibria. 

Part 3 deals with an application of the previous results to a T-periodic Kamke 
system. The existence of a continuum of T-periodic solutions of that system depends 
on their stability. 



PART 1 

First we recall the definition of the Kuratowski measure of noncompactness and 
the definition of the a-condensing mapping. (Compare with [9, pp.41 and 69]). 

Let (E, e) be a complete metric space and B the set of all bounded subsets of E. 
Then a: B -> R+ defined by 

a[B] — inf {d > 0: B admits a finite cover by sets of diameter < d} 

is called the Kuratowski measure of noncompactness. 
Further, let a be the Kuratowski measure of noncompactness, 0 ^ M C E, let 

T: M -+ E be continuous and bounded, i.e.T maps bounded subsets of M into 
bounded sets. Then T is said to be a-condensing if 

a[T(B)} < a[B] 

whenever B C M is bounded and a[i3] > 0. 
By Lemma 1.6.11 [1, p. 41] and Remark 1.6.13 [1, p. 43] we get 

Proposition 1. Let (E, @) be a complete metric space, i ^ M a closed bounded 
set in E, a the Kuratowski measure of noncompactness and T: M —> M an o-
condeiising mapping. Then 

lim a[T*(M)] = 0. 
&—•CO 

Proposition 2. ([24, pp. 6, 111]) Let (E, Q) be a complete metric space and a 
the Kuratowski measure of noncompactness. If {-FJC}^ is a decreasing sequence 
(that is, F% D FzD •• •) of nonempty, closed sets such that 

lim a[Fk] - 0, 
&-4-CO 

then f) Fk is a nonempty and compact set. Moreover, if all Fk are nonempty, closed 
fc=i 

and connected sets, then f) Fk is a nonempty, compact and connected set. 
k=l 

Our considerations will be based on the following assumption 

(HI) Let (E, e) be a complete metric space, 0 ^ M a closed, bounded and con­
nected set in E and 

T-.M-+M 

an a-condensing mapping. 
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For x e M let 

j+(x):={Tk(x):k = 0,1,2,...}, T°(x) := x 

be the positive semiorbit of x and 

w(x) := {to e E: 3 fc; -> oo such that T*" (s) -» u> as Z -» 00} 

the u-limit set of x. 
If 0 # A CM, then 

7+(A) := |J 7+W, w(A) := (J w(*). 
ISA ISA 

A set 0 ^ A C M is called invariant (positively invariant) if T(A) = 4 (T(A) C 
A). A point a; £ M is k-periodic (k ^ 2) if Tk(x) = x. A set A is called a fc-
cj/cie if A — 7+(a:) for some /{-periodic point x. Any fixed point of T is also called 
equilibrium. The set of all equilibria (the union of all cycles) will be denoted by F.p 

(C). 
Further, for a given sequence of sets Ak c E, k = 1,2,... let 

lim Ak := {a; £ 2J: 3o* £ A^ such that lim a*, = s} 
fc->oo k-+oo 

be the lower limit of the sequence {Ak}kLn a nd 

lun A*, := {x e E:3kt ^> 00 and a sequence {a*,} such that 

ak, £ A*, and ak, -» a; as i -> 00} 

the upper limit o/i/ie sequence {Ak}fLi-

Proposition 3, ([6, p. 54]) The following statements hold: 
(i) lim Ak — lim Ak, Em At = lim A*; 

fc—>O0 fc->00 fc™*00 fc-tOO 

(ii) the sets lim At and lim Ak are closed; 

(hi) H 4 C U n ^ <= Km Ak C lim" AA C n U 4, C 0 Tk. 
k=\ k=l %=k k-¥cx> * _ > 0 ° k=l i=k k=l 

Lemma 1. Under assumption (HI) the set 

(1) Mi := f ] T*(M) 
fc=i 

has the following' properties: 
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(i) 0 •£ Mi C M and Mi is compact and connected; 
(ii) Mi = Urn Tk(M) = Em" Tfc(M); 

(2) T(Mi)cMx. 

Proof . Since T(M) C M and M is closed, Mi C M. As {Tk(M)}f=l is a 
decreasing sequence of nonempty, closed and connected sets, and by Proposition 1 
we have lim a[Tk(M)] = Mm a[Tfc(M)l = 0, Proposition 2 implies statement (i). 

k—»oo fc—>oo 

By Proposition 3, 

(3) Mi = lim Tk(M) = lim Tk(M) = lim Tk(M) = Van Tk(M) 

and hence, (ii) is proved. 
(2) follows from the inclusions 

T( f| THMJ) C f| T(Tk(M)) C f| Tk+HM) 
k=l k=l k=l 

where the continuity of T has been used. O 

Definition 1. The point z 6 M will be called stable with respect to a set A, 
1 / i C M , if z e A and for each e > 0 there exists <5 > 0 such that the implication 

e(x,z)< 5 => e(Tk(x),Tk(z)) <e for each x 6 A and for each k = 0 ,1 , . . . 

holds. 

Stability with respect to M is simply called stability. 
Now we will deal with the properties of the w limit sets. The following general 

property of these sets has been given in [5, Lemma 3, p. 71]. 

Proposition 4. Let X be a compact metric space and let T: X -)• X be a 
continuous map of this space into itself. If L = w(x) is a limit set and if S is a 
non-empty proper closed subset of L, then 

(4) S n T(L \ S) ^ 0. 

This proposition can be sharpened. By using a modification of its proof, the 
following lemma can be proved. 



Lemma 2. Let (X,d) be a metric space and T: X ->• X a continuous map. If 
L = w(x) is a limit set, which is compact and invariant, and S is a non-empty proper 
closed subset of L, then (A) is true. In particular, if L is finite, then it is either a 
cycle or an equilibrium. 

Proof . Suppose that S and T(L\S) are disjoint. Since both S and T(L\S) 
are compact, there exists an e > 0 such that the e-neighbourhoods U(S,e) and 
U(fjL\S),e) of the sets S and T(L\S), respectively, satisfy 

U(S,e)nU(T(L\S),e)=0. 

Put G2 = U(S,e). Further, for each z G L \ S there exists S(z) > 0 such that for 
each y G X, d(z,y) < S(z) =$> d(T(z),T(y)) < s and hence T(y) e U(T(L\ S),e). 

Consider the set Gt = (J U(z,S(z)). Then T'(GT) C U(T(L\S),e). Thus Gj, 
zeL\s 

G2 are open sets such that L \ S C G%, S C G2 and 

(5) Glnr(GT)==0. 

All terms Tk(x) with sufficiently large index k belong either to Gj. or to G2 and there 
axe subsequences belonging to each of them. Hence there is a subsequence {ki} C W 
such that Tk,(x) G Gj, and Tk'+1(x) G G2. If y is a limit point of {Tk'(x)}, then 
y G "G[ and Tfe) € G ,̂ which contradicts (5). D 

Under hypothesis (HI) the properties of UJ(X) are given by 

Lemma 3. If assumption (HI) is fulfilled, then for each x 6 M the following 
statements are true: 

(i) f+(x) is relatively compact. 
(ii) UJ(X) is a nonempty, compact subset of Mi and 

(6) T(LO(X))=W(X). 

(iii) If S is a non-empty proper closed subset of u(x), then (4) is true with L = 
w(x). Especially, ifw(x) is finite, then it is either a cycle or an equiJibrium. 

(iv) 

(7) | J W(V)CLO(X). 

yGw(x) 

(v) If z € w(ir) and z is stable with respect to Tk«(M) for some k0 G N, then 

u(x)=ui(z). 

In particular, if z G u(x) is a stable equilibrium, then UJ(X) = {«}. 
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(vi) If w(x) is .finite or there exists a point z 6 u>(x) which is stable with respect 

to Tk°~(M) for some &Q € M, then 

(8) w(x)= U "(v)-
S/6«(x) 

P r o o f , Let x € M be arbitrary but fixed. 

(i) If j+(x) were not relatively compact, then we would have 

a [ 7
+ ( x ) ] = a[{;r} U T( 7

+( : r ))] = a[T(7+(a;))] < a [ 7
+ (*)], 

which is a contradiction. 

(ii) Relative compactness of j+(x) implies that w(x) ^ 0. By the definition of 

lim Tk(M) and by (3) we get that w(x) c Mi- By the, equivalent definition of w(x) 

in [5, p. 70], w(a-) = fl ( U Tk(x)) and hence u(x) is closed. Since ui(x) C M% and 
3=0 k=j 

Mi is compact, u>(x) is also compact. It is clear that T(ui(x)) C UJ(X). TO prove the 

inverse inclusion, we consider an arbitrary point w = lim Tk'(x) e u(x). Then the 

sequence Tk'~1(x) has a subsequence Tfc" l-1(a;) which converges to z e w(x) and 

w = lim Tk'«(x) = J i m T ^ ' " " 1 ^ ) ) = T(z). Hence w(z) C T(w(x)). 

(iii) The statement follows from Lemma 2. 

(iv) Statement (ii) implies (7), 

(v) Clearly u(z) Cu(x). If z 6 w(x) is stable with respect to Tka (M) for a f e e N 

and y e w(x) is an arbitrary but fixed element, then there exist two increasing 

sequences {lk} and {m*} of natural numbers tending to oo such that 

lim Tlk(x) = y, lim Tmk(x) = 2. 

Choosing a suitable subsequence of {lk} and denoting it again by {lk} we can assume 

that 

2mk<lk, k = 1,2,.... 

Let 

nk = lk -mk, k—1,2,— 

Then 

Q(Tnk(z),y) < Q(T-k(z),Tnk(Tmk(x))) + 8(T
lk(x),y) 

and hence lim e(Tnk(z),y) = 0. So y.e w(z) and (8) is true, 

(vi) If UJ(X) is finite, then it is a cycle or an equilibrium. Hence, (8) is true. The 

rest of the proof follows from statement (v). • 
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Lemma 4, Under assumption (HI) tie set 

(9) ' M3 := u(M) 

is a nonempty, relatively compact subset of Mi such that 

(10) T(M3) = M3. 

Moreover, u)(M3) C M3 and ui(M3) contains all equilibria and cycles. If each point 
x of M3 \ (Fp U C) is stable with respect to Tka(M) where ko depends on x, then 

u(M3) = M3. 

Proof. Lemma 3 implies that M3 is a nonempty subset of M\ and by Lemma 1, 
M3 is relatively compact. Further, (6) implies that 

T(M3) = IJ T(w(x)) = M3. 
xeM 

As M3 c M, we have the inclusion u>(M3) C M3. Clearly all equilibria and ail 
cycles belong to M3 and by (8) also to u(M3). Again, by Lemma 3, if each point of 
M3 \ (Fp U C) is stable in the sense given above, then UJ(M3) = M3. D 

R e m a r k 1. By virtue of (10), the set 

CT := f | Tk(M) 
k=o 

called the center of T ([13, p. 213]) is nonempty, M3 c CT C Mi and hence CT is 
relatively compact. 

Now we shall study the properties of the multifunction w determined by the rela­
tion xy-*u(x) for every x € M. 

Let (E, Q) be a metric space (not necessarily complete) and let F: D C E -* 2B \ 
{$} be a multifunction. We recall that F(D0) = (J F(x) for D0 C D and the graph 

16 A) 

of F is G(F) = {(x,y) 6 D xE: x £ D,y £ F(x)}. Further, by Definition 4', [34, 
pp. 1057-1058], F is closed at a point x G D if and only if the following implication 
holds: 

If {xk} and {yk} are two sequences in E such that 

(11) {xk} C D, lira xk=x,yk e F(xk), k = 1,2,..., lim yk = y, 
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then 

(12) y e F(x). 

By [9, p. 299], F is upper semicontinuous (use for short) at a point x0 e D if for an 

arbitrary open set V O F(x0) there exists a neighbourhood U(x0) of the point x0 

such that V includes F(x) for each x 6 f ( i o ) n D . D is use in D iff F is use at every 

x0 e D. See also [34] and [15]. 

Some properties of use multifunctions are given by 

P r o p o s i t i o n 5. (See Proposition 24.1, [9, p. 300], Theorem 2.3 [8, p. 381], The­

orem 7, [34, p. 1059] and Definition 3', [34, p. 1056]). T i e following statements are 

true: 

(a) Let F(x) be closed for all x e D. If F is use in D and D is closed, then the 

graph of F is closed. If F(D) is compact and D is closed, then F is use in D if and 

only if the graph of F is closed. 

(b) If D is compact, F is use in D and F(x) is compact for all x £ D, then F(D) 

is compact. 

(c) If D is connected, F is use in D and F(x) is connected for all x e D, then 

F(D) is connected. 

(d) If F(D) is compact and F is closed at a point x 6 D, then F is use at x and 

the set F(x) is compact. 

R e m a r k 2. Proposition 24.1 was formulated for Banach spaces, but the proof 

works also in a metric space. Theorem 2.3 in [8] has been proved under an additional 

assumption that F(x) is compact for all x G D , but again this assumption is not 

necessary for the validity of the theorem. 

L e m m a 5. (Compare with Theorem 55.1 in [25, pp. 124-125]). Suppose that 

assumption (HI) is fulfilled and D is a non-empty subset of M. Then the following 

statement holds: 

IfxeD is stable with respect to the set D, then the multifunction w is use at x. 

P r o o f . Let x e D be stable with respect to the set D. Lemma 4 implies that 

together with u(M) also w(D) is relatively compact. Thus, Proposition 5 can be 

applied and it suffices to show that for F = w the implication (9) => (10) holds. 

Consider two sequences {xk}, {Vk} such that 

lim Xk = x, lim yk = y, {xk} C D, 



and 

(13) ' t feew(a), k = l,2,.... 

We shall show that y E«(i) . 
(13) means that for each natural k there exists a sequence {nk,i} of natural numbers 

such that lim nk i = oo and 

j l imT n " ( ; r* )=^ , A; = 1,2,.... 

Hence there exists nk such that 

(14) e(Tnk(xk),yk)<l, fc = 1,2,.... 

Without loss of generality we can assume that the sequence {n-k} is increasing and 
lim nk = oo. Now our aim is to prove that 

fc—>-oo 

(15) lim Tn>'(x) =y. 

By virtue of the inequality 

e(Tn-(x),y) < e(Tnk(x),Tn«(xk)) + e(Tn"(xk),yk) + e(yk,y), 

the stability of x with respect to D, (14) and lim yk = y, we have (15) and the 
proof is complete. D 

Proposition 6. (Theorem 5, [11, p. 244]). If all spaces Xa of an inverse system 
S = {Xcr,IK,£} are eontinua, then tJie limit X = UmS of that system is also a 
continuum (a connected and compact space). 

Lemmas 1, 3 and 4 will be completed by 

Theorem 1. If assumption (HI) is satisfied, Mi and M% are determined by (1) 
and (9), respectively, then there exists a set M2 with the following properties: 

(i) 

(16) Ms C M2C Mi, M2 is compact and connected and T(M?) = M2. 

(ii) The set M% with properties (16) is minimal, that is, if Mi has the same pro­
perties and M4 C M2, then Mt = M2. 



(iii) If each x 6 M2 is stable with respect to M2, then w(M2) is compact. Moreover, 

ifalsoeachx 6 M3\(F.p{JC) is stable with respect toTk°(M) forsomeko depending 

on x, then w(M2) = M3 and M3 is compact. 

(iv) If each x 6 M2 js stable with respect to M2 and for each x 6 M2 , w(a-) is 

connected, then u(M2) is compact and connected. 

P r o o f , (i), (ii). Let 

Si = {F € 2 M : M"3 C F C Mi, F is compact and connected and T(F) C F}. 

By Lemmas 1 and 4, Mi € S\. Si can be partially ordered by the relation 

(17) Fi < F2 if and only if F2 C F t . 

Let U be a totally ordered subset of Si . Let V = f] F . Then by (10), M 3 = 
feu 

T(M3) C T(V) CVcMj and V is compact. We will show that V is connected, 

too, and thus, I7 € Si is an upper bound of U. By the Kuratowski-Zorn lemma, this 

will mean that Si has a maximal element M2. M2 as well as T(M2) belong to Si. 

Therefore T(M2) = M2 and the proof of (i), (ii) will be complete. 

Clearly the family U is directed by the relation ^ defined by (17). Let us define 

n f ) : Fj -> F 2 for F 2 < JF\ to be the embedding of Fx in F 2 . Then the system 

S = {F,np,U} where the space assigned to the element F 6 U is F itself, is an 

Inverse system of topological spaces. (For definition of such a system, see [11, pp. 87-

88]). An element {xp} of the Cartesian product fj F belongs to the limit of the 
feu 

inverse system S if and only if xp = x for every F € U and x € V. Therefore Urn S 

is homeomorphic to V (see Example 2 in [11, p. 88]) and by Proposition 6, V is also 

connected. 

(iii), (iv) If each x € M2 is stable with respect to M2, then by Lemma 5 the 

multifunction w is use in M2. Proposition 5 implies that ui(M2) is compact and if tu(x) 

is connected for every x e M2 , then ai(A/2) is also connected. If each x e M3\(Fj,UC) 

is stable with respect to Tk°(M) for some A,'o depending on x, then by Lemma 4, 

M3 = u)(M3) and thus M3 C w(M2) C w(M) = M3, which implies UJ(M2) = M3. • 

Now we will work in a Frecliet space (E, {pm}) where the seminorms pm define a 

topology and a metric in the usual way. We will use the following assumption 

(H2) Let (E,{pm}) be o Frechet space, 0 ^ M a closed, bounded and convex set 
in E, and 

T\ M->M 

an a-condensing mapping. 



Clearly (H2) implies (HI). 
Let M-i haye the same meaning as in Theorem 1. Let a be the cardinal number of 

the set 

(18) S = {P 6 2M : M3 C P, P is a closed and convex set, T(P) C P}. 

By the Cantor theorem, [14, p. 16], the cardinal number 2a > a. Let b be the 
initial ordinal number of the power 2a. Then we define a transfinite sequence {Py} 
of the type b with values in 5 in the following way (compare with the proof of 
Theorem 1.5.11 in [1, p. 33]): 

Po = M, and for 7 > 0 
•coT(P7_i), if 7 - 1 exists 

^ ' 7 ^ f} Pp, in the other case (7 is a limit number), 
P<i 

Here co A means the closed convex hull of the set A. The sequence {P7 } is decreasing 
with respect to the set inclusion and there exists an ordinal number 5 < b such that 
P& — Ps+i which, on the basis of (19), means 

(20) Ps =.co T(PS). 

Since the Kuratowski measure of noncompactness a[co T(P$)] = a[T(Pg)] and T is 
a-condensing, the set Pg is compact and convex. If (20) were not true for any 6 < b, 
the sequence {P-,} would be injective and the cardinal number of S would be greater 
or equal to 2°, which on the basis of the Cantor theorem is a. contradiction with the 
properties of cardinal numbers. 

Denote 

(21) Ci-.= PS. 

By virtue of (10), (18), (20) the following lemma holds. 

Lemma 6. If assumption (H2) is satisfied, then the set C\ determined by (21) 
is nonempty, convex, compact and satisfies 

M3 c T(Ci) C co T(Ci) = CXC M. 

Consider now the set 

c2 := n p-
Pes 



Then C2 C Cx and hence C2 is compact and convex. Further, M3 C T(C2) C 

co T(C2) C C2 and C2 is the least set in M with these properties. Hence co T(C2) = 

C2, otherwise C3 := co T(C2) would be a proper subset of C2 with the same prop­

erties. We can proceed further in the same way as in the proof of statements (iii), 

(iv) of Theorem 1. Thus the following theorem is true. 

T h e o r e m 2. If assumption (H2) is satisfied and M3 is determined by (9), then 

there exists a set C2 having the following properties: 

(i) 

(22) M3 C T(C2) C co T(C2) = C2cM, C2 is compact and convex. 

(ii) The set C2 is the smallest set with the properties (22). 

(iii) If each x € C2 is stable with respect to C2, then ui(C2) is compact. Moreover, 

if also each x e M3 \ (FP U C) is stable with respect to Tk" (M) for some &Q depending 

on x, then u>(C2) = M3 and M3 is compact. 

(iv) If each x € C2 is stable with respect to C2 and for each x 6 C2, w(x) is 

connected, then w(C2) is compact and connected. 

E x a m p l e . Let T: [0,1] -+ [0,1] be the continuous piece wise linear map de­

fined by 
f 2x, 0 ^ x s: | , 

T{X)=\(-2)(X-1), | < a ; < l . 

Then each Tk, k = 1,2,..., has the same properties and, by mathematical induction 

we get that its graph consists of 2k segments. More precisely, 

!

, / 22 \ 22 22 + 1 

2k[x-—-), - r ^ c e s S — — , 
V 2kJ 2k 2* 

, . / 22 + 2 \ 22 + 1 2 2 + 2 . . 
(~2k)[x — ) , — r - ^ x ^ — — , 2 = 0 , 1 , . ..,2k~1-l. 
*• >\ 2k ) 2fc 2* 

Clear ly M\ = [0,1] and since M2 is an invar ian t compac t interval , we also have 

M2 = [0 ,1] . Tk has 2k equi l ibr ia satisfying 
22 r22 22 + l i , 22 + 2 r22 + 1 22 + 2 i 

2 = 0 , l , . . . , 2 * - 1 - l . 

Each fixed point of Tk either is a fixed point of T or belongs to an 2-cycle where 2 

is a divisor of k. In both these cases :x2i as well as x2i+i belong to the set w([0,1]) 

and hence this set is dense in [0,1]. By Corollary 12, [5, p. 76], w([0,1]) is a closed 

set and hence M3 = [0,1]. 
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P A R T 2 

Now we will work in an ordered Banach space. We will start with assumption 

(H3) Let (E, <J be a real Banach space, P C E a normal cone and <, the partial 

ordering in E defined by P. Let [a,b] ;— {x e E: a <. x <. b} be a cone interval 

(a < b) and let 

T: [a, &]->• [a, b] 

be an a-condensing mapping. 

Clearly (H3) implies (H2), 

For x,y € B w e write x < y if x <. y and x == y. If P has a nonempty interior 

in t (P) , we also write 

x << j / if y — x € int(P) . 

According to [18, pp. 8-9], we say that T is order-preserving (order-reversing) if 

x <. y => T(x) <. T(y) (x <_ y => T(x) >. T(y)), strictly order-preserving (strictly 

order-reversing) ii x < y => T(x) < T(y) (x < y => T(x) > T(y)) and strongly 

order-preserving (strongly order-reversing) if x < y => T(x) < T(j/) (re < j / => 

T(a) > T(y)) for x,y 6 [a, b]. 

An element x € [a,b] is called sub equilibrium (super-equilibrium) provided x <. 

T(x) (x >- T(x)) . The subequffibrium a; is a strict sub equilibrium (strong subequi-

librium) if x < T(x) (x < T(x)). T\i%, strict and the strong super-equilibrium are 

defined accordingly. 

Two points x,y e U are said to be related if x <, j / or y ^ x. A set A C JB is said 

to be unordered if it does not contain two related points. 

The following definitions are taken from [21, pp. 303-304]. 

Def in i t ion 2. Let z\ < z2 be two points from [a, b}. The interval [zi,z2} will be 

called singular (for the mapping T) if T([zi,z2]) C [z\,z2], T(zt) = z\, T(z2) = z2 

and for each x € [z\,z2] the inequality T(x) <. x or T(x) >. x implies T(x) = x. 

Def in i t ion 3 . A set F C E will be said to form a continuous branch connecting 

points Z\,z2 € E if for each bounded open set B C E such that either z\ 6 B, 

z2 £ E\B ot z\ £ E\B, z2 € B, the intersection SB n F is nonempty. 

Here $B means the boundary of the set B. 

P r o p o s i t i o n 7. ([6, pp. 63-64]) Let A C P, let (P,Q) be a metric space and 

let 8A:—An(P\ A) be the boundary of the set A. Then the following statements 

hold: 



(i) 5A c 5A, 
(ii) Let Q c P, A C P. Then 5Q(QnA)cQn SP(A), 
(iii) S(AnB)cSAUSB. 

In the following theorems we will keep the notation from Theorems 1 and 2. The 
basic set M will be the interval [z\,z2\. Hence M%, C2 will be defined by means of 
[z\, z2\ and hence M3 C C2 C [zx,z2\. 

Lemma 7. Let assumption (H3) be fulfilled, let \z\,z2\ C [a,b] be a positively 
invariant interval for the operator T, that is, T([z\,z2\) C [^i,^2], and Jet z%,z2 <= 
C2. TJian the set F of all subequilibria and all superequilibria lying in C2 forms a 
continuous branch connecting the points z\,z2. 

Proof . Let B C E be an open bounded set such that z\ € J3, z% e E\B. The 
case z\ e E \ B, z2 6 B can be dealt with similarly. By Theorem 2, co T(C2) = C2 

and-hence C2 is a retract of E [9, p. 45]. 
Consider open subsets U\ := C2 n B, U2 := C2 n (E \ B) of C2. In the rest of the 

proof the topological notions as open, closed and boundary which are referred to the 
relative topology of C2 as a subspace of E will be denoted by a subscript C2. By 
Proposition 7 

(23) fc2(C2nB)cC2n<513, 

(24) Sc2 (C2 n (E \ B)) C C2 n 5(E \ B) = C2 n <5B C C2 n SB. 

Consider two homotopies 

(25) Tx(x):^XT(x) + (l-X)z\, 

(26) fx(x) := AT(z) + (1 - X)z2, O^X^l, x£C2, 

Since [z\,z2\ is a positively invariant interval for T, we have that 

(27) a; = rA(a:) (x = fA(x)) implies that a;<. T(x) (x^T(x)). 

Indeed, if x = Tx(a;) and A = 0, then (27) is a consequence of x = z\ < T(«i) and for 
0 < A 4 1 this follows from z\ < a:. Similarly we can proceed in the case x = T\(x). 

Suppose that SB n F ~ 0. Then, in view of (23), (24) we have 5C%U\ n F = 0 
and ($02̂ 2 n F = 0. Hence TA(:E) 5̂  a: for each s 6 Sc3U\ and 2"A(a") 5̂  x for each 
a; € 5c2U2, 0 < A < 1. By the homotopy invariance and the normalization property 
of the fixed point index % (T, U\, C2) of T over Ui with respect to C2 given in Theorem 
11.1 ([2, pp. 657-658]) we obtain 

(28) i(T, U\,C2) = i(T\,U\,C2) = i(T0, U\,C2) = 1 



and similarly 

(29) i(T,U2,C2)=i(fj,U2,C2)=i(f0,U2,C2) = l. 

On the other hand, if R: E ~> C2 is a retraction of E onto C2, then using the 

definition of the index we get that 

i(T, C2,C2) := dLS(I - TR,R^1 (C2),0) = dLS(I - TR,E,0) := dLS(I - TR, V,0) 

where dLS is the Leray-Schauder degree, I is the identity in E and V C E is a 

sufficiently large ball containing (/ - TiJ) _ 1 (0) C C2 and all AC2 for 0 < A ^ 1. 

Then 

d i S ( J - TR, V, 0) = d i S ( / - ATI?, F, 0) = dLS(I, V, 0) = 1 

and thus 

(30) «(T,C2 ,C2) = 1. 

If we denote U3 := C2 n SB, then C/x, {72, U3 axe pair wise disjoint, V\ U U2 U C/3 = C2 

and hence, C2 \ (Ui U t/2) = C2 n <5B. This enables us to apply the additivity of the 

fixed point index. (28) and (29) then imply that 

i(T, C2,C2) = i(T, Vi,Ci) + i(T, U2, C2), 

which contradicts (30). Therefore SB n F is nonempty. • 

In the proof of Lemma in [32] the following proposition has been proved. 

P r o p o s i t i o n 8. ([32]) Let K be a compact subset of a Banach space E. Then 

there exists a closed separable subspace E\ of E such that 

K C JSi. 

The following proposition is a corollary to Michael's selection theorem. 

P r o p o s i t i o n 9. ([4, p. 83]) Let G be a lower semi-continuous map from a para-

compact space X to a Banach space Y. Let H: X => Y be a set valued map with 

open graph. IfG(x) V\H(x) 5̂  0 for allx e X, then there exists a continuous selection 

ofGnH. 

A simple criterion for upper semicontinuity of a map is given in the following 

proposition. 
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Proposition 10. ([4, p. 42]) Let G be a set-valued map from a Hausdorff topo­
logical space X to a compact topological space Y whose graph is closed. Then G is 
upper semicontinuous. 

The next proposition deals with a property of a compact metric space. In its 
formulation we need the following definitions (see [6, pp. 140, 135]). 

Let (P, Q) be a metric space. 
Let e > 0, a € P, b € P. An e-chain from the point a to the point b in the space 

P is any finite sequence {a;}Ei of points in P such that (i) aj = a; (ii) am = 6; (iii) 
e(ai,ai+i) < e for 1 ̂  i 4 m — 1. 

Let a £ P, b 6 P. P is connected between the points a and b if for each decompo­
sition P = AuB with separated A and JS the points a, b either both belong to A ox 
both belong to P. 

A set Q C P is called a quasicomponent of the space P if (i) Q ^ 0; (ii) P is 
connected between any two points a e Q, 6 6 Q; (iii) P is not connected between a, 
b whenever a e Q, b £ P\Q. 

By [6, Theorem 19.1.3, p. 140, Theorem 18.3.5, p. 136 and Theorem 19.1.5, p. 141] 
the following proposition holds. 

Proposition 11. Let (P,o) be a metric space. Then the following statements 
hold: 

(i) If P is a compact space, a e P, b 6 P arid for each e > 0 there exists an s-chain 
from the point a to the point b in P, then P is connected between the points a and b. 

(ii) TJie points a € P, b 6 P belong to the same quasicomponent of the space P 
if and only if P is connected between a and b. 

(iii) In a compact space P the quasicomponents coincide with components. 
Hence, 
(iv) if P is a compact space, a € P, b £ P and for each e > 0 there exists an 

e-chain from the point o to the point b in P, then the points a, b belong to the same 
component of P. 

Now we are able to prove the following lemma which describes a property of a. 
continuous branch. 

Lemma 8. Let assumption (H3) be satisfied and let [z\,z-z] C [a, b]. If a set 
S C [zi,Z2] is compact and forms a continuous branch connecting the points z\, z-2, 
then S contains a continuum Si such that z\, z2 6 Si. 

Proof . Since S is a continuous branch,, there exist points xn, J/n 6 S such 
that \\xn - zi\\ = \\yn - 32II < ~ and hence z\, z2 £ S. In view of Proposition 11, 



statement (iv), we will show that for each e > 0 there exists an e-chain from the 
point z\ to the point z2 in S and this will complete the proof of the lemma. 

Hence, let e > 0 be given. Denote the f-neighbourhood of x € S by U(x, f). 
Then (J U(x, f) is an open cover of the compact set S and hence there exists a 

• xes 

finite subcover \J U(xk,%) where Xk G S, fc = ! , . . . , « . We will deal with the case 
A = l 

that zi, Z2 $, {xi,... ,xs}. The other cases can be dealt with in a similar way. By 
rearranging the indices if necessary, we can suppose that z\ 6 U(xk, f), k = 1,. . . , /, 
z2 € U(xk,^), k = r , . . . , s. If I >. r, then the searched e-chain from z\ to z2 in 5 is 
{z\,xi,z2}. Suppose now that I < r. 

If U(xi,f) n £%./,§) # 0 for 1 sj i,j 4 s, % ^ j , then ||-Xi - Xj\\ < e (||.|| 
is the norm in E) and we call U(xi,^), U(x,j,~) adjacent. Now we consider all 
subsequences {U(xkm, f )}m~i (the so called admissible subsequences) such that k\ € 
{1, . . . , /} , the sequence {km}m=1 is injective, U(xki,i

v), U(xki+1,^) are adjacent 
and 1 < p ^ s. If there is an admissible subsequence which contains the term 
with the index kv e {r, . . . , s } , then the searched e-chain is {z1,Xk1, • • • ,xk„,z2}. 
Otherwise we would have two disjoint open bounded sets 0\ = \J{U(xkm, f )}m=1 

where the union is taken over all admissible subsequences, and 0 2 = U U(xk,^)\0\, 
*=i 

U U(xk, f) C 02 ^ 0. Thus 22 G 02 , zi 6 IS\02 and since 5' is a continuous branch, 
fc=r 

we have S02 n 5 ^ 0, which contradicts the fact that S C Or U 0 2 and Oj n 0 2 = 0 
(open disjoint sets are separated, see [11, p. 242]). • 

The last result can be stregthened by the following continuous selection theorem 
which asserts that each continuum Si with the smallest z\ and the greatest element 
z% in a partially ordered Banach space contains a continuous curve connecting z\, 
z2-

Theorem 3. Let (E, ^) be a partially ordered Banach space with a normal cone 
P and let S\ C E be a continuum with the smallest element z\ and the greatest 
element z2. Then there exists an interval [ai,,a2] C R and a continuous function 
s: [0 ,̂0:2] -* Si such that 

(31) s(cx\)=z\, s(a2) = z2. 

Proof . By Proposition 8, there exists a closed separable subspace E\ of the 
Banach space E such that S\ C E\. When the norm and ordering in E\ are induced 
by the norm and ordering, respectively, from E, then E\ is a partially ordered Banach 
space with the normal cone P\ = P n E\. By Proposition 19.3 in [9, p.222], in the 
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separable Banach space E\ there exists a strictly positive linear continuous functional 
x* from the dual cone P*. 

Denote x*(zi) = a,, i = 1,2. Then aj. < o2, 01 < a*(a;) < a2 for each x G 
S! \ {zi,z2} and x*(Si) = [ai,a2]. Consider the multifunction x*~l (the inverse 
of the functional x*). By Example 24.1 in [9, p. 301], a;*-1 is lower-semicontinuous. 
Further, a;*-1 (a) n Si ^ 0. We shall show that the multifunction 

(32) S1(a)=x*~1(a)DS1, oi <. a <. a2, 

has a continuous selection. 
Let V, = {a; 6 -Bi: ||x|| < ^r}, fc = 1,2, — Consider the multifunction 

(33) Si(a) = a;*-1(a)n(S1 + V), ai <_ a ^ a2. 

Since Hi (a) = Si + Vi, oi ^ a < o2, has an open graph, by Proposition 9 there 
exists a continuous selection sj of Si. Now we consider the multifunction 

S2(a) = x*^1(a) n (Si + V) n (sa(o) + V>), ai <. a <_ a2. 

Again the multifunction H2(a) = (Si + V.) n (sj(a) + V2), ai <. a <, a2, has an 
open graph and H2(a) ^ 0. Therefore, by Proposition 9, there exists a continuous 
selection s2 of S2 on [oi,o2]. 

Suppose that we already have continuous functions s i , . . . , Sj with the property 

(34) s k (a)ea ;*- 1 (a)n(Si+V^i )n(s^ i (Q) + V), aa <. a < a2, fc = 2, . . . , j . 

Then there exists a continuous function Sj+i on [ai, a2] such that 

s i+1(a) e s* - l(a) n (Si + V) n (s,-(a) + V+1). 

By mathematical induction there exists a sequence {sk}^=1 of continuous functions 
with property (34). Since sk+i(a) € (sk(a)+Vk+i), {«*} is a Cauchy sequence which 
converges uniformly on [ai,a2] to a continuous function s. As s(a) € a;*~1(a) n 

fl (Si + Vic), we have that s(a) e x*~l(a) n Si, ax <. a <. a%. Thus s is a 
fc=i 
continuous curve lying in Si and connecting the points z\, z2. D 

R e m a r k 3. The multifunction S\ defined by (32) has a closed graph. Indeed, if 
an -+ o and a;n —> x, xn 6 Si(o„), then the points xn as well as x belong to Si and 
x*(xn) = a„ -+ a;*(a). Thus x e Si (a) and (a,x) belongs to the graph of Si. By 
Proposition 10, Si is upper semicontinuous. Nevertheless, Si contains a continuous 
selection. 
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Now let us go back to Lemma 7. Keeping the notation from that lemma, the set 
F C C2 is closed and since C2 is compact, F is also compact. By Lemma 7, F forms 
a continuous branch connecting the points z\, z2. Then Lemma 8 implies that F 
contains a continuum F\ such that z\, z2 6 F\. By Theorem 3 we get the following 
theorem. 

Theorem 4. Let assumption (H3) be fulfilled, let [z\, z2] c [a, b] be a positively 
invariant interval for the operator T and let z\, z2 6 C2. Tiien tie set F of all 
subequilibria and all superequiiibria lying in C2 forms a continuous branch connecting 
the points z\, z% and contains a continuous curve s connecting z\, z2. 

R e m a r k ! By Theorem 2, each equilibrium belongs to C2. Further, if z — s(a) 
is a subequffibrium (superequilibrium) and there is a sequence au ~^r a such that 
Zk ~ s(uk) are superequiiibria (subequilibria), then z<x -» z and z is an equilibrium. 
We also have that the set of all equilibria lying on the curve $ is closed and thus, the 
set of all sub- and superequiiibria on that curve is open (with respect to that curve), 
By the continuity of s, the corresponding values of the parameter a form a closed 
and an open subset of [a\,a2], respectively. 

On the basis of Remark 4, Theorem 4 implies the following theorem and lemma. 

Theorem 5, If assumption (H3) is satisfied and [z\,z2] C [a,b] is a singular 
interval for the mapping T, then the set Fp of all equilibria lying in [z\,z2] forms 
a continuous branch connecting the points z\, z2 and contains a continuous curve s 
connectingz\, z2. 

Lemma 9. Let assumption (H3) be fulfilled, let [z\,z2] C [a,b] be a positively 
invariant interval for T and let z\, z2 be two equilibria. Then the following alternative 
holds: Either 

(a) there exists a further equilibrium in [z\,z2], 
or 

(b) tfiere exists a continuous curve s in [z\,z2] connecting z%, z2 such that all 
points of the curve except z-\, z2 are strict subequilibria, 
or 

(c) there exists a continuous curve s in [z\,z2] connecting z\, z2 such that all 
points of the curve except z\, z2 are strict superequiiibria. 

The following lemma is a little modification of Lemma 1.1 in [16, p. 9]. 

Lemma 10. Let assumption (H3) be satisfied. Let [z\,z2] C [a,b] and let 
T: [z\, z2] -¥ [z\, z2] be an order-preserving mapping. Let x e [z\, z2] be a subequi-
librium (y € \z\,z2] a superequilibrium). Then the following statements hold: 
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1. The sequence 

(35) xk+i := T(xk) for each keN, x0 = x 

is an increasing sequence converging to the least equilibrium v in [x,z2], while the 
sequence 

yk+i := T(yk) for each fc 6 M, y0 = y 

is a decreasing sequence converging to the greatest equilibrium u in [zi,y]- Hence 
w(x) = {v}, w(y) = {«}. 

2. TJie eJenienfcs x-k and yk are again sub- and super-equilibria, respectively. IfT 
is strictly order-preserving and x is a strict subequilibrium (y is a strict superequi-
librium), then also xk (yk) is a strict subequilibrium (a strict superequilibrium). 

Proof . We only prove the convergence of the sequence {Kfc}fcgN- The other 
statements can be easily proved. By Lemma 3, w(x) =£ 0. Assume that there exist 
two subsequences {xk, }ieN and {xkm }mgN of the sequence (35) such that 

lim Xk, = w, lim xkm = z. 

Then we proceed as in the proof of Lemma 1.1 in [16, p. 9] and obtain that w = z. O 

In the sequel we will use the following definition. (Compare with [16, p. 10]). 

Definition 4. A sequence {xk}kez in S c [a,b] with 

xk+i = T(xk), kel 

will be called an entire orbit of the discrete dynamical system {T }k£N in S (shortly 
an entire orbit in S). The entire orbit {xk}kei in S is connecting points z\ € S, 
z2 € S (in this order) if 

and lim xk = z-j. 
k-itx 

The entire orbit {xk}kei connecting points z\, z2 is positively finite if there exists 
an integer I such that 

Xk = z% for all fc > I. 

The next lemma gives another sufficient condition for the curve s from Theorem 4 
to contain only equilibria. 

Lemma 11. Let assumption (H3) be satisfied, let z\, z2 be two equilibria such 
that a < z\ < Z2 ^ 6 and let T be order-preserving in [z\,z2]. Further, let all 
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equilibria in \z\, z%\ be stable. Then there is a continuous curve of equilibria in 
\z\,z2\ connecting zlf z2. 

Proof. Clearly [̂ 1,̂ 2] is a positively invariant interval for T. If there were a 
strict subequilibrium on the curve s, then by Remark 4 there would exist an interval 
(03,04) such that s(a-i), 3(04) are equilibria and s(a) are strict subequilibria for all 
a € (03,04). On the basis of Lemma 10, this contradicts the stability of 3(03). • 

The following theorem extends the statement of Proposition 2.1 in [16, p. 10] to 
order-preserving condensing mappings. Its proof is similar to that of the proposition 
mentioned. For the sake of completeness it is given here. 

Theorem 6. Let assumption (H3) be fulfilled, let z\ < z2, z\, z2 e \a,b\ be two 
equilibria and let T be order-preserving in \z\,z2\. Then the following •statement 
holds: Either 

(a) there exists another equilibrium in \z\,z2\, 
or 

(b) there exists an entire orbit {xk}kei in C2 connecting the points z\ and z2 such 
that either all terms of the orbit are strict subequilibria or this orbit is positively 
finite and the terms of the orbit different from z2 are strict subequilibria, 
or 

(c) there exists an entire orbit {xk}kez m C2 connecting the points z2 and z\ such 
that either all terms of the orbit are strict superequilibria or this orbit is positively 
Snite and the terms of the orbit different from Z\ are strict superequilibria. 

Proof. Clearly \z%, z2\ is a positively invariant interval for T and hence Lemma 9 
can be applied. Let B(a, e) denote the open ball in C% with center a 6 C2 and radius 
e > 0. The subscript C2 will have the same meaning as in the proof of Lemma 7. 

Suppose that there is no further equilibrium in \z\,z2\. Then, by Lemma 9, we 
have two cases: 

(i) There exist strict subequilibria in C2 as close to z\ as we wish. 
(ii) In each neighbourhood of z2 there exists a strict superequilibrium in C2. 
In the first case we will derive alternative (b). Dealing with the case (ii) we would 

come to statement (c). 
Let So > 0 be such that z2 $ Bc2(z\,5o). By continuity of T at z\ there exists 5\, 

0 < S\ < S0 such that \\T(z) - z\\\ < So for each z e Bc2(z\,5\) and there is a strict 
subequilibrium v\: v\ 6 dc2B(z\,5\), z-\ <v\ < T(v\). 

Further, there exists S2: 0 < 52 < 5\ < 50 such that \\T(z) - zx\\ <. 5\ for each 
z € Bd(z\, S2) and there exists a strict subequilibrium v2, v2 e dc2B(z\,52). Hence 
z\ < Vi < T(v2) < T2(v2) < ... and, by Lemma 9, Mm Tk(v2) = z2, since there 
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is no further equilibrium in [z\,z2]. Then there exists an index n(2) such that 

St < | |Tn ( 2 )(»2) - -.ill 4 So, whereby n(2) > 1. 

In this way we get a sequence {Tnl-k>(vk)}\%:\ of strict subequilibria such that 

S\ < \\T<k>(vk) - * i | K So and n(/b) >k-l. 

Since T(C2) is compact, there exists a subsequence {Tn(hl>(vk<)} converging in 

C2 to some x0. Clearly S\ < ||a:0 - zi | | < <$0. Then the sequence {TnV°">-1(vk>)} 

contains a subsequence (index k") converging to some x~\. Since Tn(k >~1(vk") < 

T<k'">(vkn), we have Km T^'")-1 (vk») = z - i < x0 = Jim rn(*")(wfc») and 

T(a;_i) = ar0. But E _ I £ ~i , since j|ar0 - z\\\ > <5i. As zi , z2 are the only equilibria 

in [z\, z2], we have x_i < x0 and s_i is a strict subequilibrium. 

By induction we get a negative semiorbit {x_p}pgN of strict subequilibria. As 

x-j, 6 C2 for each p € N, the decreasing semiorbit { a_p} p e N converges to some 

x £ C2 with T(a;) = x < XQ < z2. Since z\ is the only equilibrium in [z\,z2] smaller 

than z2, we have x = z\. By Lemma 9, Xk+i '•= T(xk), k £ U, axe subequilibria 

and either all of them are strict subequilibria or there is the smallest integer I, such 

that xi = T(xi),axiA hence the entire orbit {xk}kei is positively finite, xi is an 

equilibrium greater than z\ and hence xi = z2. All terms xk,k < I, of the orbit are 

strict subequilibria. • 

R e m a r k 5. If the entire orbit is positively finite, xi-\ < xi and Xk = z2 for all 

k "$: I, then T(x) = Z2 for all x € [xi-\,z2]. Hence the following corollary holds. 

C o r o l l a r y 1. If all assumptions of Theorem 6 are satisfied and T is not constant 

on any of subintervals [z\,Z3] arid [z±, z2] of[z\,z2] where z\ < Z3 < z& < z2 (in par­

ticular ifT is strictly order-preserving in [z\, z2]), then in alternative (b) (alternative 

(c)) all terms of the entire orbit connecting the points z\ and z2 (the points z2 and 

Z\) are strict subequilibria (strict superequilibria). 

If T is order-preserving, then Theorem 5 can be strengthened. 

T h e o r e m 7, If assumption (H3) is satisfied, z\ < z2 are two equilibria in [a, b], 

T is order-preserving in [z\,z2], and either 

(i) [z\, z2) is a singular interval for the mapping T, 

or 

(ii) each equilibrium in [z\,z2] is stable, 

then the set Fp of all equilibria in [z\, z2) has the following two properties: 

(a) If z$ is an equilibrium satisfying z\ < z% < z%, then the set Fp contains a 

continuous curve 

(36) G = {x € C2: x = <p(t), O^t^l, ip(Q) = z\, <p(l) = z2} 
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such that z3 € G and G is strictly increasing in the following sense: If 0 ^ t\ < t2 <. 

1, then ip(ti) < <p(t2). 

(b) Fp is a continuum. 

P r o o f . Case (i). Since C2 is compact, similarly as in the proof of Theorem 3 

we get the existence of a separable partially ordered Banach space (Ei, <j and of a 

strictly positive linear continuous functional x* such that the norm and ordering in 

Ei are induced from E, C2 C E\ and x* is from the dual cone P( where Pt — PnEi. 

Fp is a subset of C2 and is closed, hence it is compact. Further, Fs, is a partially 

ordered set by the ordering Induced from E\. 

Let 23 £ Fv be an arbitrary but fixed element such that :.i < z-i < z2. Denote 

x*(z{) = at, i = 1,2,3. Then a i < a 3 < a2 . Zi,z2,z?, form a chain in Fp. By the 

Hausdorff maximal-chain theorem [14, p. 65], there exists a maximal chain U C Fv 

containing 21,22,23. We shall show that the set U is closed. If xh e U, a> -> J: as 

k -»• oo and y £ U is an arbitrary element, then in case that there exists a subsequence 

{xk,} of {xk} such that Xk, <_ y (xk, > y) we have x <, y (x ^ y) and thus, x e Fp 

is comparable with each element y 6 U. Maximality of U implies that x e U. 

Therefore U is a closed subset of J7), and hence compact. Then x*(U) — A C [cv i, »2] 

is compact, a i , a 2 6 A and hence [01,02] \ .4 is an open subset of R. 

Suppose that [a i , a 2 ] \ A ^ 0 and let the open interval (a.i ,a5) be a component 

of [0^02] \ A. Then there exist two points z4 < zr> of U such that x*(z4) = o4 , 

x*(z&) = a 5 . Again, by Theorem 5, there exists another point zr, e Fp such that 

24 < z0 < 25. Then, in view of maximality of U. cu 6 U and 04 < x*(zn) < a5 , 

which contradicts the fact that (04,05) contains no points from .4. Therefore 4 = 

[aj ,a 2 ] and x*: U -y [a 1 ( a 2 ] is continuous and bijective. Then its inverse mapping 

<£'• [<*i>a2] - • U is continuous, too. By using a strictly increasing homeomorphic 

mapping of [0,1] onto [a t , a2] we may assume that -p is defined on [0,1] and 1,9(0) = zx, 

ip(l) = z2. Clearly <p is strictly increasing and there is an 5 € (0,1) such that 

ip(a) = 23. 

Case (ii). We proceed in the same way as before. The only difference is that 

instead of Theorem 5 we apply Lemma 11. O 

T h e o r e m 8. Let assumption (H3) be fulfilled, let the cone P have a nonempty in­

terior int(P), Jet z\ < z2 be two equilibria in [a, b], let T he strongly order-preserving 

in [21,22] and Jet either 

(i) [21, z2] be a singular interval for T, 

or 

(ii) each equilibrium in [21,z2] be stable. 

Then the set Fp of all equilibria is a continuous curve G given by (36). 



P r o o f . Case (i). We will show that Fp is totally ordered. Consider any 

noutrivial positive linear continuous functional x\* 6 P* (nor necessarily strictly 

positive). Since T is strongly order-preserving, if x < y are two equilibria, then 

,r < y and, by Proposition 19.3 in [9. p. 222], xx*(x) < XI*(JJ). If x\*(x) = a e R, 

then x will be denoted briefly by .t:a. Hence ,fi*(.ra) = a. 

Assume that a and u are not order-related elements oiFp. Since Fp C M-j C C2. Fp 

l-i compact. Let r._. be a minimal equilibrium above u, U. Its existence can be proved 

!,y the KuraTowski-Zoru lemma. Indeed, denote Fa.:; = {.v € Fp: x > u, x >- u}. 

Clearly Fu,u # 0- Let G2 be a totally ordered subset of FlL,u. Let the sequence 

<"U 6 J ' J ' ' ( G 2 ) be such that a A- \ inf . r i^G^) as k -> oo. As F p is compact and 

-[:</„,,} C G2 is a decreasing sequence, similarly as in Lemma 10 we get that there 

exists <> e Fp such that lim xai — v. Clearly v £ FU,Q and v is a lower bound 

of G2 . Then, by the Kuratowski-Zorn lemma, FUiB has a minimal element t'2 > u. 

v-j > a. By the strong monotoniat.y of T, u « v2, U < <>2. This implies that v2 is an 

element of Fp which is isolated from below. Otherwise, there would exist a sequence 

{uk} C Fp such that uu < v2 and lim uk = v2. Then « < uj,. < v2, u < Uk < <>2 for 

large k, contradicting the minimality of i'2. 

Let t'i be a maximal fixed point, of T below i>2 which exists again by the 

Kuratowski-Zorn lemma. To prove this, denote Fv, = {x e Fp: x < v2}. Then 

z\ G Fv,. Let Gj be a totally ordered subset of Fv, and let the sequence au be such 

that ak / " sup J ; ' I * (GI ) as fc —> oo. Then there exists v 6 Fp such that lim xai = v 

and v 6 Fv._ due to the fact that v2 is isolated from below. Thus, v is an upper 

bound of Gi and. by the Kuratowski-Zorn lemma, there exists a maximal point 

j'l 6 i v , below v2. This contradicts Theorem 5 with ; i = f i , z-> = i'2. Hence the set 

Fp of all equilibria in ['-1,-2] is totally ordered. 

Similarly as in the proof of Theorem 7 we get that for each a e (01,0.2) there 

exists an :rQ € F.p. Fp is compact. Thus X\*: Fp -» [ Q I , O 2 ] is an increasing home-

omorphism of Fp onto [ a i , a 2 ] . Therefore Fp is a continuous curve which can be 

written in the form (30). 

Case (ii) differs from the previous one only by using Lemma 11 instead of Theo­

rem 5. D 

R e m a r k G. Theorems 5, 7, 8 represent an extension of Theorem 5 in [21, p.304] 

t.o a-cojidensiug operators. Theorems 7 and 8 contain a new sufficient condition for 

the existence of a continuous curve of equilibria. They also complete Theorem 1.5 in 

[36, p. 229]. Similarly Theorem 4 in [32] is extended and sharpened by the theorems 

mentioned. Theorem 8 is similar to Theorem 3.3 in [1G, p. 12], 
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(i) 0 ^ x(t, to,c) «s P, t being from the maximal to the right interval of existence, 

0 sg t0 < oo, c e [0,p], and hence, x(t, t0, c) is defined in [t0, oo). 

Further, 

(ii) x(t,t0,c) 4 x(t,t0,d) for t0 < i < oo, 0 < i0 < oo and for any c, d 6 Rn , 

0 < c < d sS p . 

By (a), we have 

(iii) x(t + kT,t0,c) - x(t,t0,x(t0 + kT,t0,c)) for t0 < t < oo, k € N, 0 < t0 < oo, 

c e [0,p]. 

In particular, if x(t0 +T,t0,c) = a;(t0,io,c), then »(t + r , io ,c) = x(t , io,c) , t0 <, 

t < oo, 0 < to < oo, 0 Jg c ^ p. 

Statement (i) allows to define the period mapping Tta: [0,p] -+ [0,p] for each 

0 ^ t0 < oo by 

T to(c) = a : ( io+T, i 0 ,c) . 

By virtue of the uniqueness of the initial value problems for (37), T to is continuous 

and hence, a compact mapping. Further, by (ii) and (iii), 

(iv) Tto is order-preserving and T^c) = x(t0 + kT,t0,c) for k € H, c e [0,p] and 

0 < t0 < oo. 

(v) T to(c) = c iff a:(t,to,c) is a r-periodic function (in [io,oo)) for each admissible 

to. 

Since x(t, t0,c) = x(t + fcr, to + kr, c), the following equality holds: 

(vi) Tt0+kr(c) = Tto(c) for each 0 < t0 < oo, k e N, c € [0,p]. 

Further, 

(vii) T t0(e) •= c iff T t l (c i ) = cx for Ci = a:(ii,to,c), i0 s: ix 4 t0 + r , 0 < i0 < oo, 

c e [ 0 , p ] . 

(iv) implies the first part of the statement 

(viii) If the solution x(t,i0,c) is Lyapunov stable (0 ^ t0 < oo), then the point 

c 6 [0,p] is stable with respect to [0,p] (and the mapping T t o) . Conversely, 

if TtQ(c) — c is stable (with respect to [0,p] and the mapping Tta), then the 

periodic solution x(t, t0, c) is Lyapunov stable. Hence the Lyapunov stability of 

r-periodic solutions of (37) is equivalent to the stability of equilibria (of T t o). 

P r o o f of the second part of the statement. Let e > 0 be arbitrary. Then there 

exists S > 0 such that 

(38) | a ; ( t , io ,c ) -a ; ( i , to ,c i ) | < e for i0 s? t < t0 + r , ]c - c i | < 5. 

Further, by (iv), there is Si > 0 implying | e ~ x(t0 + fcr, i 0 , c i ) | < 5 for ) c - c i | < &i, 

k 6 N. Let |c - d | < 5i, let fe e N be arbitrary but fixed. Then, by (iii) and in view 
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of (38), 

\x(t + kT, t0, c) - x(t + kr,i0,d)\ = \x(t, t0,c)- x(t, t0,x(t0 + kT, t0,cj))| < £ 

for t0 + kT sj t + kT ^t0 + (k + 1 )T. D 

Further, by an to-limit point of the solution x(t,to,c) we understand a point q € 

[0,p] such that there exists a sequence t0 < £1 < t2 < . . . - > co and 

lim a;(tjt,io,c) = g. 

The set of all w-limit points of x(t,t0,c) will be denoted by w(x(t,i0,c)). Denote by 

wt0(c) the w-limit set of c under Tt0. Then the following statement holds, 

(ix) usto(c) C u>(x(i,t0,c)) and for each q € w(x(t,t0,c)) there exists t' 6 [0,r] and 

d £ w to(c) such that x(t0 + t',t0,d) = q. 

P r o o f . In view of (iv), the first part of the statement is clear. Let q G 

w(x(t, t0 , c)) and let x(tk, t0 , c) —> q as fc -> cc. Then i* = t0 + lkT + t'k where {/*} is a 

nondecreasing subsequence of N tending to oo and 0 C t'k < r is uniquely determined. 

Choosing a subsequence if necessary, we may assume that lim t'k = t' 6 [0,r]. By 

(f), 

. rt„+lkT+t'k 

\x(to+lkT + t'k,tQ,c)-x(t0 + lkT + t',t0,c)\=\ / f[t,x(t,to,c)]dt\ 
1 Jta+hr+t' ' 

sg M\t'k -1'\ -> 0 as fc -> oo 

and hence, (iii) and (iv) yield 

q= lim x(t0+lkT + ti,to,c) = lim x(t0+ lkT+ t',t0,c) 
k—i-oo fc—>co 

+ Ij^M tO + IkT + t^ to, C) - (̂t-O + ^ T + t', t0, C)] 

= lim x(t0 + t',t0,x(t0 + lkT, t0, c)) 

= lim x(t0 + t',t0,T^(c)). 

(39) 

From the sequence {Tt£(c)} we can extract a convergent subsequence. Denoting it 

again by {Tj* (c)} we get that there exists d 6 wio (c) such that T^' (c) -> d as fc -> oo. 

The relation lim x(t0 + f, t0,T
lk(e)) = x(t0 +1',t0,d) together with (39) implies the 

k—too 

second part of the statement. D 
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Two cases for the T-periodic Kamke system (37) may occur. Either it has only 
one T-periodic solution, namely the trivial one, or it has also a nontrivial T-periodic 
solution. In the former case the following theorem is true. 

Theorem 9. Let assumption (H4) be fulfilled. Suppose that x(t) = 0, 0 < t < 
oo, is the only T-periodic solution of (37). Tien this solution is stable and 

(40) lim x(t, to,c) = 0 for each 0 < t0 < co and each c 6 [0,p]. 

Proof . Let 0 < t0 < oo and let c £ [0,p] be arbitrary but fixed. By (v), 0 is the 
only equilibrium and p is a superequilibrium (under Tt0). By Lemma 10, \Tto(p)} is 
decreasing and lim Tfjp) = 0. Since 0 ^ Tf0(c) ^ T.j°a(p) for each i £ N, we have 
lim Tt\(c) = 0, and hence Wt0(c) = {0}. Let q e ui(x(t,t0,c)). By (ix), there exists 

t! 6 [0,r] such that q = x(t0 + f, t0,0) = 0. Hence (40) is true. 

On the basis of Theorem 7.5 ([40, pp. 50-51]) and Lemma 7.1 ([ 40, p. 49]), stability 
of the trivial solution will be proved if we show that to any e > 0 and to s? 0 there 
exists a 5(t0) > 0 and a T(t0,e) >• 0 such that |c| < S(t0) implies \x(t,t0,c)\ < e for 
all t ^ t0 + T(t0,e). Hence, let e > 0, t0 ^ 0 be arbitrary but fixed. By (ii) we have 
x(t,t0,c) <. x(t,to,p), t0 <. t < co for each c e [0,p] and since lim x(t,to,p) = 0, 
there exists a T(to,e) >. 0 such that 

KM 0 , c ) | < \x(t,t0,p)\ <e for all t >- t0+T(t0,e). 

The proof of the theorem is complete. D 

R e m a r k 8. In view of Definition 7.1 in [26, p.93], under the assumptions of 
Theorem 9 system (37) has the property of convergence. 

Further, by Definition 9.1, p. 77, and Theorem 9.3, p. 78 in [40], we get, 

Corollary 2. Under the assumptions of Theorem 9 tie zero solution of (37) is 
uniformly asymptotically stable in the large. 

R e m a r k 9. Corollary 2 can be partially reversed. By Remark 23.2 in [3, p. 343], 
any asymptotically stable T-periodic solution x(t) of (37) in [t0, co) is isolated, which 
means that there exists an e > 0 such that for any other T-periodic solution y(t) of 
(37) in [t0, oo) we have \y(t) — x(t) \ >. e for all t > t0 • This implies that a nonconstant 
T-periodic solution of the autonomous equation 

(41) x> = f(x), 

where / is continuous in [0,p], cannot be asymptotically stable ([3, p. 345]). 
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Suppose, now, that there exists a nontrivial T-periodic solution x(t, t\,ci) of (37). 
Denote by Stl the set of all T-periodic solutions x(t,h,c). Then Stl is a nonempty 
subset of the Banach space X = C([ti,ti + r], i " ) equipped with the norm 

||y|| = sup \y(t)\ for each y € X. 
*iC*s£'i+T 

X can be partially ordered by the natural ordering x ^ y (in X) iff x(t) C y(t) (in 
Rn) for all h <_ t <. <! + T. By this definition the cone if = {a- e X: x > 0} in X is 
normal. 

Theorem 10, Let assumption (H4) be satisfied and let there exist a nontrivial 
T-periodic solution x(t,ti,c%). Then Stl contains the greatest T-periodic solution 
x(t, h,c2) and either Sts contains an unstable solution or Stl is a continuum in the 
space X. In the latter case, ifx(t,ti,cs) is an arbitrary T-periodic solution such that 
0 < C3 < c2, then the set Stl contains a continuous curve 

H = {xeStl: x = i>(t), 0 < < < 1 , ip(0) = x(t,h,0) = 0, </>(!) = x(t,h,c2)} 

such that x(t, ti ,Cs) 6 H and H is strictly increasing in the following sense: If 
0 ^ h < t2 ^ 1, then ii(h) < ij}(t2) (in X). 

Proof . Consider the mapping Ttl. By (iv) and (v), Ttl: [0,p] -+ [0,p] is 
order-preserving and c is an equilibrium (in notation c 6 FP) iff x(t, h,c) e Stl. Let 
S: Fp -* Stt be defined by S(c) = x(t,ti,c), c 6 Fp. Then S is continuous and, 
by (ii), order-preserving. By Lemma 10, there exists the greatest equilibrium c2 in 
[0,p] which is defined by c2 = Mm Tt (p), and the solution S(c2) = x(t,ti,c2) is the 

k—>QO 

greatest T-periodic solution in X. When all T-periodic solutions in Stl are Lyapunov 
stable, then (viii) implies that all c e Fp are stable, and by Theorem 6, there exists 
another equilibrium in [0,02]- Theorem 7 gives that Fp is a continuum and hence, 
Stl is also a continuum. Further, for any C3 G Fp there exists a continuous curve 
G in Fp which contains C3 and is strictly increasing, Then the image of this curve 
under S is the curve H with the properties mentioned in Theorem 10. D 

On the basis of Remark 9, we get from the last theorem the following corollary. 

Corollary 3. Let both the assumptions of Theorem 10 be satisfied. Then the 
following implication holds: 

If there exists an asymptotically stable T-periodic solution of (37), or more gene­
rally, an isolated T-periodic solution of (37) (in Stl), then there is another T-periodic 
solution of the equation (in Stl) which is unstable. 
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R e m a r k 10. A criterion for the stability of a nonconstant T-periodic solution 
of an autonomous differential system is given by the Andronov-Witt theorem ([10, 
p. 312]). Further results on the stability of a T-periodic solution can be found in [28], 
[29]. 

R e m a r k 11. Theorem 10 and its corollary completes the statement from [27] 
dealing with the strongly cooperative T-periodic differential system. 
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