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ON THE OSCILLATION OF CERTAIN NEUTRAL DIFFERENCE 

EQUATIONS 

S. R. GRACE, Giza, G. G. HAMEDANI, Milwaukee 

(Received July 15, 1998) 

Abstract. Various new criteria for the oscillation of nonlinear neutral difference equations 
of the form 

A* (xn — an_h) + qn\xn~g\€ sgns n _ 9 = 0 , i = 1,2,3 and c > 0, 

are established. 

Keywords: nonlinear difference equations, oscillatory solutions, asymptotic behavior of 
solutions 

MSC 1991: 34K25, 34K99 

1. INTRODUCTION 

Let N* be the set of all non-negative intergers, and let A be the first order forward 
difference operator, Axn = xn+\ — xn, n 6 N*. For % ^ 1, let A1 be the i-th order 
forward operator, A1 xn = A(A , -1ain). 

Consider the neutral difference equations 

(Ei) A\xn - xn-h) + qn \xn-g\
c sgnxVl_9 = 0, i = 1,2,3, 

and 

(Ni) Al(xn - xn-h) - qn \xn-g\c sgnan_9 =0 , i = 1,2,3, 

where {qn} is a sequence of non-negative real numbers, c is a positive constant, and 
h and g are positive integers. A solution {xn}, n € N* of the equations (Ei) (or of 
(Ni)) is said to be oscillatory if for every n0 > 0, there exists an n ) no such that 
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xn xn+\ <. 0. Otherwise the solution is called nonoscillatory. The equation (Ej) is 
called oscillatory if every solution of (Ei) is oscillatory. 

The problem of obtaining sufficient conditions under which all the solutions or 
all the bounded solutions of certain classes of neutral delay difference equations are 
oscillatory has been studied by a number of authors. A large portion of the results 
reported have been for neutral difference equations of the form 

(P,-) &{(xn + __„_/.) + qn \xn-g\
c sgns„_9 =0 , % > 1, c > 0, 

where a 5- —1. Here, we refer to [1-11] and the references cited therein. 
Much less is known regarding the oscillatory behavior of (Ei) when c = 1, though 

a number of authors have considered this problem. For recent works in this direction, 
we refer the reader to [1, 4, 8], It seems that in these results the condition 

(i.i) E * = °°. 
j=n0>0 

is essential for the oscillation of the equation (Ei) for c = 1. In view of Theorem 1 
of [12], for the continuous analogue of (Ex) with c = 1, namely 

•^(x(t)-X(t-h))+q(t)x(t-g) = 0. 

where q: [t0,00) —> (0,00) is continuous and g and ft are positive real numbers, one 
can easily show that (Ei) with c = 1 is oscillatory if 

(L2) E nqn E * = °°-
i=n 

Very little is known, as far as we have gathered, regarding the oscillation of non
linear equations (E.) and (N;), % = 1,2,3. The purpose of this paper is to establish 
some new criteria for the oscillation of all solutions (all bounded solutions) of (E») 
(of (N,)), i = 1,2,3. The results of this paper can be applied to superlinear (c > 1), 
linear (c = 1) and sublinear (0 < c < 1) equations of type (E») and (Nj). We would 
also like to point out that the result obtained for (Ex) extends the two oscillation 
criteria mentioned above. 
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2. OSCILLATION OF (E,) , i = 1,2,3 

First we investigate the oscillation of (E3) by considering two cases: 

C a s e 1. For n >- n0 >- 0, Qn = £ qt < 00. 

T h e o r e m 2 . 1 . If 

(2.1) ] T (nQ„) cg„ = co, 
n=n0 

then (E3) is oscillatory. 

P r o o f . Let {xn} be an eventually positive nonoscillatory solution of (E3 j Then 

there exists n\ >- no such that xn-a > 0 for n >. n\, where a = max{<?, h}. Let 

(2.2) yn = xn- xn-h. 

Then 

(2.3) A3yn = ~qnx
c
n^g <_ 0 for n>-nx, 

which implies that Alyn,i = 0,1,2 are eventually of one sign and that A2yn is 

nonincreasing for n>. n\ and is eventually positive. There are four cases to consider: 

(A) yn < 0 and Ayn < 0 eventually, 

(B) yn- < 0 and Ayn > 0 eventually, 

(C) yn > 0 and Ay„ < 0 eventually, 

(D) yn > 0 and Ay n > 0 eventually. 

Assume (A) holds. Since yn is nonincreasing for n > n\, there exist a constant 

ci > 0 and N '>-nx such that 

Thus, 

yn < ~c\ for n>- N, 

XN = 1JN + XN-h < -Cl + XN-h, 

XN+h = VN+h +XN < ~C\ + XN < -2Cl + XN-h-

Hence for any integer m > 1 

i ^ + m i , < — (m + l)cj + xN_h —* - 0 0 as m -> 00, 
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a contradiction. 
Assume (B), holds. Since A2yn > 0 eventually, we must have yn > 0 eventually, a 

contradiction. 
Assume (C) holds. Here we have 

xn>xn-h for n > « i . 

Hence, there exist a constant 6 > 0 and N\ ^ n\ + g such that 

xn-g ^ 6 for n >. JVj. 

Then 

(2.4) &3yn<-bcqn for n>-Nx, 

and hence 
s - 1 

A2jys - A2j/n sj -6C VJ % , n >. Nx. 
j=n 

Now, letting s - )oowe have 

(2.5) A2yn>bcQn for n^iVi . 

In view of the monotonicity of Ayn and A2yn we obtain for every m2 > mi > fc ̂  JVi 

(2.6) ^ ( m j - f c + l X - A ^ J , 

and 

(2.7) - A y m i >. (m2 - mi + 1) A2«ym2. 

Thus, for n>- N2^ Nt + 2h, we have 

(2.8) yn-2h^(h + l)2A2yn. 

Using (2.8) in (2.5), we obtain 

(2.9) yn>CQn+2h, n^N2, 

where C = 6C (ft+ 1)2. 
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Let N2 + (m - 2)h < n ^ Ar
2 + (m - l)h, then 

Xn >• C (Qn+2h + Qn+h + ••• Qn-(m-3)h) + Xn-mh 

>-C(m~ 2)Qn. 

From (2.3) and (2.10) we obtain 

(2.11) A3yn s; -Cc(m - 2)cQc
nqn -= -Mn. 

In view of the fact that — —> h as n —>• oo, we have 

/ 0 1 - Af» ^ (m-2\c Cc 

(2.12 T-TTT?— = C — y "77 a s « ~> °°-

Clearly (2.1) and (2.12) imply that 

(2.13) J2 M« = °°' 
n>A'2 

Then (2.11) and (2.13) yield 

A2yn —> - o o as n -+ oo, 

which contradicts the fact that A2yn > 0 eventually. 

Assume' (D) holds. There exist a constant k > 0 and n2 >• ri\ such that 

(2.14) xn~g >• yn~g >• k for n^n2. 

By Lemma 4.1 of [5], there exists an M* >- n2 such that 

(2.15) Ayn>-\;nA2yn for n>- M*. 

Replacing n with j >• M* in (2.3), summing from n J? M* to s — l(Js n) and letting 

s —>• oo, we obtain 

(2.16) A 2 y n ^ fcc Q„, n>-M*. 

Using (2.15) in (2.16) we have 

(2.17) Ayn>-\kcnQn, n>-M*. 



Now, for m - 1 >. M* we have 

(2.18) xm ^ y m Js y m - ym-i > \kc (m - l)Q-m, 

and hence 

xn-g>\kc(n-g~l)Qn for n^M* +g + l. 

There exists Ml > M* + g + 1 such that 

(2.19) xn^g^\kcnQn for n > Afj". 

Using (2.19) in (2.3) and summing from M{ to M — 1 > Afj", we have 

M-l 

0 < A 2 «/M < &2yMt - ( | * c ) c 5Z (n(3»)c9n —> - M as M ^ oo, 
n=Af* 

a contradiction. This completes the proof. D 

From the proof of Theorem 2.1, one can easily extract the following two oscillation 
criteria. 

Corol lary 2 . 1 . If condition (2.1) holds, then equation (Ex) is oscillatory. 

P r o o f . The proof is contained in the proof of Theorem 2.1 cases (A) and (C) 
and hence is omitted. D 

Corol lary 2.2. If 

fk-g-l \ c 

(2.20) Y, M E * =M-
k=n1^no+g+l \ n=n0 J 

then every unbounded solution of the difference equation 

(E*3) 6?yn + qn \yn-g\
c sSnyn-a = 0, c > 0, 

where qn and g are defined as in the equation (E3), is oscillatory. 

P r o o f . The proofis similar to that of Theorem 2.1 (D) and hence is omitted. D 

The following example is illustrative. 
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E x a m p l e 2.1. Consider the difference equations 

(F.) Al(xn - xn-h) + (l/na)\xn-g\
c sgnxn_s =0 , c > 0, % = 1,3 and n > 1, 

where /i,<? are nonnegative integers, h > 0 and a > 1. One can easily check that 

^ - D W ^ / t a - l K - 1 , 

2c+l 
c+1 • 

Thus we conclude that (F;), i = 1,3 are oscillatory for h > 0,g > 0 and all a and 
c.suchthat K a <_ 2£+_L. 

Case 2. We consider (E3) when 

(2.21) £ 0 j = oo. 
i=no 

Theorem 2.2. If condition (2.21) JioJds, then (E3) is oscillatory. 

Proof . Let xn be an eventually positive solution of (E3), say xn > 0 for n ^ 
n0 >. 0. There exists n\ > n0 such that xn_0 > 0 for n > ni where a = max{g, /),}• 
Define yn by (2.2) and as in the proof of Theorem 2.1, we see that Alyn> i = 0,1,2 
are eventually of one sign and the four cases (A)-(D) hold. The proofs of cases (A) 
and (B) are similar to those of Theorem 2.1 (A) and (B) and hence are omitted. 
Next, we consider the cases (C) and (D). In both cases we see that A2yn > 0 and 
yn > 0 eventually. From (2.2), we have xn > xn~n for n ^ n\. Hence, there exist 
6 > 0 and n2 >- n\ such that 

(2.22) xn-9 >b for n ^ n2. 

Then, 

(2.23) Asyn^-bcqn for n>-nt. 

Summing both sides of (2.23) from n2 to m — 1(^ n2), we obtain 

rn-l 

0 < A2ym ^ A2yn% - bc Y") qn —> -oo as m -+ oo, 
n = n 2 

a contradiction. This completes the proof. Q 
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The following two criteria are immediate. 

Coro l l a ry 2 .3 . If coaditioa (2.21) holds, then (E\) is oscillatory 

Coro l l a ry 2.4, If qn = q, q is a positive real number, theu (Ej), i = 1,3 are 

osciJJafory. 

Now, we pose the following question; "Is condition (2.21) (alone) a sufficient 

condition for the oscillation of (E2)?" The following example gives a negative answer 

to this question. 

E x a m p l e 2.2. The second order neutral difference equation 

(F2) A 2 ( _ „ - _ T . _ 3 ) + ( e 3 - l ) ( l - e - 1 ) 2 e - » x r . _ - = 0, 

has a nonoscillatory solution {e"~n}. 

Therefore, our objective here is to present the following criteria for the oscillation 

of (E2). 

T h e o r e m 2 .3 . If g JS h, condition (2.21) holds and every bounded solution of the 

difference equation 

(E2) A2zn - qn\Zn-(g-h)\c s g n 2 . _ ( s _ h ) = 0, 

is oscillatory, then (E2) is oscillatory. 

P r o o f . Let {xn} be an eventually positive solution of (E2), say xn > 0 and 

xn-g > 0 for n >. n-\ ~Z n0 ^ 0. Defining yn by (2.2) we have, from (E2), 

(2.24) A2yn = -gnx
c
n_g s£ 0 for n>-n\, 

which implies that {Ayn} is nonincreasing for n >- n\. 

As in the proof of Theorem 2.1, we consider the four cases (A)-(D). 

Proof of case (A) is similar to that of Theorem 2.1 (A) and hence is omitted. 

(B) Suppose yn < 0 and Ayn > 0, n>-n\. Note that 

0 < vn = -yn = xn-h - xn < xn-h, 

and hence 

xn > vn+h for n > n\. 
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Prom (2.24), we have 

A2t)„ > qn ( v n _ ( s _ f t ) )
c for n > n%. 

Now, in view of Theorem 2 of [7] and its proof, we see that (E_) has eventually 

positive solution, a contradiction. 

(C) Suppose yn > 0 and Aj/„ < 0, n > nj.. Since A2yn <. 0,n -> n%, one can easily 

see that yn —)• — oo as n —• oo, a contradiction. 

(D) Suppose j/„ > 0 and A;yri > 0, n > nj.. From (2.2), we see that xn > xn-h 

for n > ni and hence there exists 6 > 0 and n2 > n\ such that (2.22) holds. Using 

(2.22) in (2.24) and summing from n2 to (m — 1)(> n 2 ) , we have 

m - l 

0 < Ay m ^ Ayn2 — bc 2_. Qn —^ "~°° a s n -*• oo, 
n _ i _ 

a contradiction. This completes the proof. D 

The following corolloary is immediate. 

C o r o l l a r y 2 .5 . Let g > h, c—1 and 

(2.25) qn^q>0 for n > n 0 > 0. 

Then (E2) is oscillatory if one of the following conditions is satisfied: 

(2.26) q>.\ and g - h. 

4kk 

(2.27) q > — - j ^ - y , wiere * = . - h ^ l . 

P r o o f . Follows from the proof of Theorem 2.3 above and Corollary 2.2 (ii) and 

(iii) of [7]. D 

The following result deals with the oscillatory and asymptotic behavior of all 

solutions of (E2) . 

C o r o l l a r y 2.6. If condition (2.21) or (2.25) holds,, then every solution {xn} of 

(E2) is either oscillatory or xn -> 0 monotonically as n -^ oo. 

P r o o f . Let {xn} be an eventually positive solution of (E2) and let yn be defined 

as in (2.2). Proceeding as in the proof of Theorem 2.3, we see that the cases (A), (C), 
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and (D) are impossible. Next, we consider the case (B) and suppose that xn -+ C\ >• 0 
as n -+ oo. We claim that c\ = 0. To show this, assume that c\ > 0. Then there 
exists an n2 ^ «i such that 

(2.28) xn >- |ci for n > n2. 

Using (2.28) in (2.24) and summing from n 2 t o w - 1(5= n2), we obtain 

m - l 

0 < Aym <. Aj/„2 — (|cj)c V^ gn -+ —oo as n -+ oo, 
•rc=n2 

a contradition. D 

R e m a r k 2.1. The hypotheses of Corollary 2.6 are satisfied for (P2), and hence, 
we see that xn = e~n —• 0 monotonically a s n - * oo. 

R e m a r k 2.2. The characteristic equation associated with the linear difference 
equation 

(L;) A{ (_•„ - xn^h) + g xn-g = 0, j = 1,2,3, 

which is a special case of (E.), i = 1,2,3 has the form 

(Ci) ( m - l ) ! ' ( l - m - ' l ) + gm- s = 0, i - 1,2,3, 

where g is a positive real constant and g and ft are positive integers. By Corollary 2.1, 
one may conclude that (Ci), i = 1 and 3 have no positive roots, while, by Corollary 
2.5, one may observe that (C2) has no positive roots if either condition (2.26) or 
(2.27) is satisfied. 

3. BOUNDED OSCILLATION OF (N,), i = 1,2,3 

The results of this section are concerned with the oscillatory behavior of every 
bounded solution of (Nj), 1 = 1,2,3. 

Theorem 3.1. Ifg > h and every bounded solution of each of the equations 

(Hi) A2«n + (Hz/f qn |,n_9r sgnz,.., = 0, 
2 

and 

(H2) A3wn + qn |wn_(s_A)|c sgnwn_(9_A) = 0, 
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is oscillatory, then every bounded solution of (N3) is oscillatory. 

Proof . Let {xn} be a bounded and eventually positive solution of (Ns)> say 
xn > 0 and xn-g > 0 for n >- nx >• n0 >- 0. Define yn as in (2.2). Then (N3) takes 
the form 

(3.1) A3yn = qnx
c

n_g>-0, for n^m, 

and hence A* yn, i = 0,1,2 are eventually of one sign. Since xn is bounded, A2yn < 0 

eventually. Therefore, the following two cases are considered: 

(I) Ayn > 0 and yn < 0 eventually. 

(II) Ayn > 0 and yn > 0 eventually. 

I. Assume Ayn > 0 and yn < 0 for n >• n 2 >• ny. Note that 

(3.2) 0 < vn = -yn = _„-/, - z n < a;n_A. 

Using (3.2) in (3.1), we have 

(3.3) A3vn + qnv
c

n_(g_h)<_0, n>-n2. 

Now, in view of Theorem 1 of [7] and its proof, (H2) has a bounded and eventually 
positive solution, a contradiction. 

II. Assume Ayn > 0 and yn > 0 for n >- n 2 >- m. By Lemma 4.1 (d) of [5], there 
exists n 3 >. n2 such that 

n — g 
Vn-g ^ —z—Ayn_g for n>-n3. 

From (2.2), we see that 

n~g (3.4) _ n _ a >- - — Ai/n-g for n>-n 3 . 

Using (3.4) in (3.1), we have 

(3.5) Д 2 u n >- ( ^ — ^ ) qn < for n >• n3, 

where _n = Ayn > 0, n >- n3. The rest of the proof is similar to that of Theorem 
2.3 (B) and hence is omitted. Q 
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Theorem 3.2. If g ^ h, condition (2.21) (or (2.25)) holds and every bounded 
solution of(H2) is oscillatory, then every bounded solution of (N3) is oscillatory. 

Proof. Let {xn} be a bounded and eventually positive solution of (N3) and 
let yn be defined as in (2.2). As in the proof of Theorem 3.1, we see that case (I) 
is impossible, and so, we consider case (II). From (2.2) and the fact that yn > 0 
for n ^ n\, there exist n2 "~z «i and 6 > 0 such that (2.22) holds for n J? n%. In 
view of condition (2.21) (or (2.25)), using (2.22) in (3.1), and summing from n-i to 
m — 1{~H n2) we have 

0 > A2ym ~ž A2ÿn2 + bа ] P qn - ł 00 as m • 0 0 , 

a contradiction. * • 

Prom the proof of Theorem 3.1, we have the following oscillation result for (Ni). 

Corollary 3.1. If g ~2 h and the equation 

(H3) Av„ + «,iK-(s~h)|c sgnvn_(9_ft) = 0, 

is oscillatory, then every bounded solution of (Ni) is oscillatory. 

The following result deals with the oscillatory and asymptotic behavior of every 
bounded solution of each of the equations (N,), i — 1,3. 

Corollary 3.2. If condition (2.21) (or (2.25)) holds, then every bounded solu
tion {xn} of each of the equations (Nj), i — 1,3, is either oscillatory or xn ~> 0 
monotonically as n -» 00. 

Proof . Let {xn} be a bounded and eventually positive solution of (N3) and let 
yn be deined as in (2.2). As in the proof of Theorem 3.2, we see that case (II) is 
impossible. Now, we consider (I), and as in the proof of Theorem 3.1 (I), we obtain 
(3.1), Suppose xn ->• c\ >- 0 as n -)• 00. We claim that c\ — 0. If c\ > 0, there exists 
"2 S5 n\ such that (2.28) holds for n > n2. Using (2.28) in (3.1) and summing from 
n2 to m — 1(>- n2) we have 

0 > A2ym >- A2y„2 + ( i C l )
c Vj qn ~> 00 as m -

a contradiction. 

The following example is illustrative. 
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E x a m p l e 3.1. The difference equations 

(F3) A* (xn - xn-h) = (1 - e'*) (e^1 - l ) ' er" xn-g, i = 1,3, 

where h and g axe nonnegative integers, h > 0, has a nonoscillatory solution xn = 
e~n -+ 0 monotonically as n -+ oo. AH conditions of Corollary 3.2 are satisfied. 

R e m ar k 3.1. Proof of (Ni) is similar to that of (N3) and hence is omitted. 

The following result is concerned with the oscillation of all bounded solutions of 
(N2). 

Theorem 3.3. Every bounded solution of (N2) is oscillatory if one of the following 
conditions is satisfied: 

(i) Condition (2.1). 
(ii) Condition (2.21) or (2.25). 

(iii) Every bounded solution of the difference equation 

(H4) A2zn - qn \zn^g\
c sgnzn-9 = 0, 

is oscillatory. 

Proof . Let {xn} be a bounded and eventually positive solution of (N2), say 
xn > 0 and xn-a > 0 for n >- n\ >- no >- 0 and a ~ rnax{<7, h}. Let yn be defined as 
in (2.2). Then (N2) takes the form 

(3.6) A2yn = qn xn_g for n>-ni. 

Since xn is bounded, we must have Ayn < 0 eventually and so yn must be eventually 
positive. Assume (2.1) holds. There exist n2 >- m and 6 > 0 such that (2.22) 
holds for n >. n2. Replacing n with j >- n2 in (3.6) and summing from n(>- n2) to 
m — 1(>- n), we have 

m-l 

(3.7) -Aj/u >- Aym - Ayn >- bc V J g;- -+ hcQn as in -» 00 

yn i? yn — 2/n+i ^ 6cQn for n >- n 2 . 

The rest of the proof is similar to that of Theorem 2.1 (C) and hence is omitted. 
Next, assume (ii) holds. Using (2.22) in (3.6) and summing from n(>- n2) to 

m — 1(^ n), we have 

m - l 

0 > Ay„ >- Aj/„3 + 6C ^ g„•-+ 00 as m -> 00, 
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a contradiction. Finally assume (iii) holds. From (2.2) and the fact that yn > 0, n >-
ni, we have,xn > yn for n"^n\. Thus 

A2t/» > gnl/n-9 for n ^ w 2 ^ n%. 

The rest of the proof is similar to that of Theorem 2,3 (B) and hence is omitted. D 

From Theorems 3.2 and 3.3 above and Corollary 1 of [7], we have the following 
result: 

Corollary 3.3, For the linear difference equations 

(Lf) A* (xn - xn-h) = q Xn-g, i = 1,2,3, 

where q is a positive real number, h > 0 and g >- 0 are integers, we have: 
(i) Every bounded solution of (Lf) is oscillatory if q > 1 for g = h and 

g>(TTW for k = g-h>l. 

(ii) Every bounded solution of (L|) is oscillatory. 
(iii) Every bounded solution of (L|) is oscillatory if q > 1 for g = h and 

27 kk 

g > ( 3 + fc)(3+fc) fOT fe = » - ^ 1 -

The following examples are illustrative. 

E x a m p l e 3.2. Consider the difference equations 

(Ff) Ai(xn-xn-h)-(l-e-h)(e-l)ie9xn-g = 0, i = 1,2,3, 

where h > 0 and g >- 0 are integers. All conditions of Corollary 3.3 are satisfied if 
g >- h >- 1 and hence bounded solutions of each of the equations (Ff), i — 1,2,3 are 
oscillatory. We note that each of the equations (Pf), i = 1,2,3, has an unbounded 
nonoscillatory solution xn = en. 

E x a m p l e 3.3. Consider the neutral difference equation 

(F4) A2 (xn - xn-h) = n~a \xn-g\
c sgaxn-g, a > 1, c > 0, 

where h > 0 and g >- 0 are integers. As in Example 2.1, we see that all bounded 
solutions of (F4) are oscillatory by Theorem 3.3 (i). 

320 



R e m a r k 3.2. 
1. The results of this paper are presented in a form which is essentially new. These 

results are applicable to superlinear, linear and sublinear equations of type (E,) 
and(Ni), . = 1,2,3. 

2. The results obtained here are concerned with the delay neutral difference equa
tions (i.e., g, h > 0). The results for advanced equations of type (E.) and (N»), 
i = 1,2,3 (i.e., g, h < 0) can be obtained similarly. Here, we omit the details, 

3. It would be interesting to obtain results similar to those presented here for 
equations (E,-) and (N»), i > 3, as well as those for the oscillation of all solutions 
of equations (N,-), i >- 1. 
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