Mathematic Bohemica

Rastislav Jurga
The cross-ratio in Hjelmslev planes

Mathematica Bohemica, Vol. 122 (1997), No. 3, 243-247

Persistent URL: http://dml.cz/dmlcz/126149

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE CROSS-RATIO IN HJELMSLEV PLANES

Rastislav Jurga, Košice
(Received January 31, 1996)

Summary. The cross-ratio in Hjelmslev planes is defined. The cross-ratio in the Hjelmslev plane $H(R)$ is independent of the choice of a coordinate system on a line.

Keywords: Hjelmsev plane over a special local ring, cross-ratio in Hjelmsev plane MSC 1991: 51C05, 51E30

1. Introduction

A special local ring is a finite commutative local ring R the ideal I of divisors of zero of which is principal. Suppose that R is not a field and that the characteristic of R is odd. Denote the factor ring R / I by the symbol \bar{R}. Further denote the set of all regular elements of R by the symbol R^{*}, thus $R^{*}=R-I$.

Definition 1.1. A projective Hjelmslev plane (we will denote it by $H(R)$) over R is an incidence structure $H(R)=(\mathcal{B} ; \mathcal{P} ; \mathcal{I})$ defined in the following way:

- the elements of \mathcal{B}-the points of $H(R)$ are classes of ordered triples ($\lambda x_{1} ; \lambda x_{2} ; \lambda x_{3}$) where $\lambda \in R^{*}, x_{1}, x_{2}, x_{3} \in R$ and at least one x_{i} is regular;
- the elements of \mathcal{P}-the lines of $H(R)$ are classes of ordered triples ($\alpha a_{1} ; \alpha a_{2} ; \alpha a_{3}$) where $\alpha \in R^{*}, a_{1}, a_{2}, a_{3} \in R$ and at least one a_{i} is regular.

A point $X=\left[x_{1} ; x_{2} ; x_{3}\right]$ is incident to the line $a=\left[a_{1} ; a_{2} ; a_{3}\right]$ if and only if

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0 . \tag{1.1}
\end{equation*}
$$

Remark 1.1. The canonical homomorphism $\Phi: R \rightarrow R / I=\bar{R}$ induces a homomorphism of $H(R)$ onto the projective plane $\pi(\bar{R})$.

We will call the points $X, Y \in H(R)$ neighbouring if $\bar{X}=\bar{Y}$ where $\Phi(X)=\bar{X}$ $\Phi(Y)=\bar{Y}$. Similarly we will call points $X, Y \in H(R)$ substantially different i $\bar{X} \neq \bar{Y}$. Two lines are neighbouring if there are points $A_{1}, A_{2} \in \mathcal{B}, A_{1} \neq A_{2}$ suck that $A_{1} \mathcal{I} a, b$ and $A_{2} \mathcal{I} a, b$. Let X be a subset of the R-modul M and let $j: X \rightarrow M$ be an insertion of the subset X into M. Then $M(R)$ is called the free modul over X if for an arbitrary function $f: X \rightarrow A$ into the R-modul A there is exactly one linear mapping $t: M(R) \rightarrow A$ such that $t \circ j=f$.

Remark 1.2. The analytic model of the Hjelmslev plane, introduced by definition 1.1 is really a free modul over R with a factorization defined in the following way: triples $\left(x_{1} ; x_{2} ; x_{3}\right)$ and $\left(x_{1}^{\prime} ; x_{2}^{\prime} ; x_{3}^{\prime}\right)$ are identical if there is $\lambda \in R^{*}$ such that $x_{i}^{\prime}=\lambda x_{i}$ for $i=1,2,3$ and we do not consider the zero triple.
2. The construction and proof of theorem

Definition 2.1. A coordinate system in $H(R)$ is an ordered quadruple of points $E_{1}, E_{2}, E_{3}, E_{4}$ such that the points $\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}, \bar{E}_{4}$ generate a coordinate system in $\pi(\bar{R})$.

If a point $X=\left[x_{1} ; x_{2} ; x_{3}\right]$ is given by the vector $x=\left(x_{1} ; x_{2} ; x_{3}\right)$, we write $X=\langle x\rangle$.

Lemma 2.1. Let $M(R)$ be a free modul over R and let e_{1}, e_{2}, e_{3} be a basis of $M(R)$. Then the points $E_{1}=\left\langle e_{1}\right\rangle, E_{2}=\left\langle e_{2}\right\rangle, E_{3}=\left\langle e_{3}\right\rangle, E_{4}=\left\langle e_{1}+e_{2}+e_{3}\right\rangle$ generate the coordinate system in the Hjelmslev plane $H(R)$ corresponding to the modul $M(R)$.

Proof. It is necessary to prove that the points $\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}, \bar{E}_{4}$ generate a coordinate system in $\pi(\bar{R})$. Obviously $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$ form a basis of a vector space over \bar{R} and thus the vectors $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$ are linearly independent. It follows that the points $\bar{E}_{1}=\left\langle\bar{e}_{1}\right\rangle, \bar{E}_{2}=\left\langle\bar{e}_{2}\right\rangle, \bar{E}_{3}=\left\langle\bar{e}_{3}\right\rangle$ and $\bar{E}_{4}=\left\langle\bar{e}_{1}+\bar{e}_{2}+\bar{e}_{3}\right\rangle$ are not on a unique line.

Conversely, we have

Lemma 2.2. Let $E_{1}, E_{2}, E_{3}, E_{4}$ be a coordinate system in $H(R)$. Then there is a basis of the modul $M(R)$ such that $\left\langle e_{1}\right\rangle=E_{1},\left\langle e_{2}\right\rangle=E_{2},\left\langle e_{3}\right\rangle=E_{3},\left\langle e_{1}+e_{2}+e_{3}\right\rangle=$ E_{4}.

Proof. Let $E_{1}=\left\langle b_{1}\right\rangle, E_{2}=\left\langle b_{2}\right\rangle, E_{3}=\left\langle b_{3}\right\rangle$ and $E_{4}=\left\langle b_{4}\right\rangle$. Because $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of $M(R)$ the vector b_{4} can be expressed in the form

$$
b_{4}=\beta_{1} b_{1}+\beta_{2} b_{2}+\beta_{3} b_{3}
$$

If we denote $e_{1}=\beta_{1} b_{1}, e_{2}=\beta_{2} b_{2}, e_{3}=\beta_{3} b_{3}$ then e_{1}, e_{2}, e_{3} are the vectors from the statement of the lemma.

Let $E_{1}, E_{2}, E_{3}, E_{4}$ and $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}, E_{4}^{\prime}$ be coordinate systems in $H(R)$. If e_{1}, e_{2}, e_{3} and $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ are the corresponding bases of the modul $M(R)$ then there is a regular matrix $A=\left[a_{i j}\right]$ such that

$$
e_{i}^{\prime}=\sum_{j} a_{i j} e_{j}, \quad i=1,2,3
$$

Let $X_{E}=\left[x_{1} ; x_{2} ; x_{3}\right], X_{E}^{\prime}=\left[x_{1}^{\prime} ; x_{2}^{\prime} ; x_{3}^{\prime}\right]$. Then

$$
x=\sum_{i} x_{i}^{\prime} e_{i}^{\prime}=\sum_{i} x_{i}^{\prime} \sum_{j} a_{i j} e_{j}=\sum_{j}\left(\sum_{i} x_{i}^{\prime} a_{i j}\right) e_{j}=\sum_{j} x_{j} e_{j}
$$

Comparing the two identities, we get

$$
\begin{equation*}
x_{j}=\sum_{i} x_{i}^{\prime} a_{i j} \tag{2.1}
\end{equation*}
$$

The relation (2.1) can be written also in the form

$$
\begin{equation*}
X_{E}=X_{E}^{\prime} A, \quad X_{E}^{\prime}=X_{E} A^{-1} \tag{2.2}
\end{equation*}
$$

Let an invertible matrix A and a coordinate system $E_{1}, E_{2}, E_{3}, E_{4}$ be given, then points $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}, E_{4}^{\prime}$ generate a coordinate system and the corresponding vectors of the point $X \in H(R)$ satisfy

$$
X_{E}=X_{E}^{\prime} A
$$

Let the special local ring R be given. We introduce a set Ω by

$$
\begin{equation*}
\Omega \cap R=\emptyset, \quad|\Omega|=|I| . \tag{2.3}
\end{equation*}
$$

Thus there is a bijective mapping ω such that

$$
\begin{equation*}
\omega: I \rightarrow \Omega, \quad \omega: i \rightarrow \omega_{i}=\omega(i), \quad i \in I \tag{2.4}
\end{equation*}
$$

where ω_{i} are "inverse" elements of elements $i \in I$, thus $\omega_{i} \sim 1 / i . \Omega$ is the set of "infinities" corresponding to singular elements. Define an extension of the canonical homomorphism Φ to the set $R \cup \Omega$, let us put

$$
\begin{equation*}
\Phi(\Omega)=\infty \tag{2.5}
\end{equation*}
$$

Let A, B, E be three substantially different points generating a coordinate system on a line. Then every point X of this line can be expressed uniquely (the singlevaluedness guarantees the point E) in the form

$$
\begin{equation*}
X=s A+t B \tag{2.6}
\end{equation*}
$$

and hence the point $X=[s ; t]$ is determined by the pair $(s ; t)$.
On the line with the coordinate system A, B, E let us have points $P_{1}, P_{2}, P_{3}, P_{4}$ where $P_{i}=s_{i} A+t_{i} B$ thus $P_{i}\left[s_{i} ; t_{i}\right]$.

Definition 2.2. The cross-ratio of an ordered quadruple of points $P_{1}, P_{2}, P_{3}, P_{4}$ on a line in $H(R)$, of which at least three are substantially different is an element $\left(P_{1} P_{2}, P_{3} P_{4}\right) \in R \cup \Omega$ which is defined by relations

$$
\left(P_{1} P_{2}, P_{3} P_{4}\right)=\frac{\left|\begin{array}{ll}
s_{1} & t_{1} \tag{2.7}\\
s_{3} & t_{3}
\end{array}\right| \cdot\left|\begin{array}{ll}
s_{2} & t_{2} \\
s_{4} & t_{4}
\end{array}\right|}{\left|\begin{array}{ll}
s_{2} & t_{2} \\
s_{3} & t_{3}
\end{array}\right| \cdot\left|\begin{array}{ll}
s_{1} & t_{1} \\
s_{4} & t_{4}
\end{array}\right|}
$$

if points $P_{1} P_{4}$ and $P_{2} P_{3}$ are substantially different,

$$
\begin{equation*}
\left(P_{1} P_{2}, P_{3} P_{4}\right)=\omega\left(P_{1} P_{2}, P_{3} P_{4}\right) \tag{2.8}
\end{equation*}
$$

if points P_{1}, P_{4} and P_{2}, P_{3} are neighbouring. Suppose that points P_{1}, P_{3} and P_{2}, P_{4} are substantially different.

Remark. If R is a field, $I=\{0\}$ then Definition 2.2 is the same as the definition of the cross-ratio in a projective plane.

Theorem 2.3. The cross-ratio introduced by relations 2.7 and 2.8 is independent of the choice of a coordinate system on the line.

Proof. Let a line $p \in H(R)$ be given and on this line let us have coordinate systems A, B, E and $A^{\prime}, B^{\prime}, E^{\prime}$. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be points on the given line p whose the cross-ratio we want to investigate. There is obviously a linear transformation which maps the points A, B to the points A^{\prime}, B^{\prime} on p. We want to verify that the cross-ratio is independent of the choice of the coordinate points on the line. Thus

$$
\left(P_{1} P_{2}, P_{3} P_{4}\right)_{A B}=\left(P_{1} P_{2}, P_{3} P_{4}\right)_{A^{\prime} B^{\prime}}
$$

We have

$$
\begin{aligned}
& A^{\prime}=a_{1} A+a_{2} B \\
& B^{\prime}=b_{1} A+b_{2} B
\end{aligned}
$$

11 and thus

$$
P_{i}=s_{i}^{\prime} A^{\prime}+t_{i}^{\prime} B^{\prime}
$$

and after a substitution we get
$1 \quad P_{i}=\left(s_{i}^{\prime} a_{1}+t_{i}^{\prime} b_{1}\right) A+\left(s_{i}^{\prime} a_{2}+t_{i}^{\prime} b_{2}\right) B=s_{i} A+t_{i} B, \quad i=1,2,3,4$.
By direct calculation we obtain $\left(P_{1} P_{2}, P_{3} P_{4}\right)_{A B}=\left(P_{1} P_{2}, P_{3} P_{4}\right)_{A^{\prime} B^{\prime}}$ which was to be proved.

1

References

[1] Dembowski P.: Finite Geometries. Springer-Verlag, New York Inc., 1968
[2] Ewald G.: Geometry: An Introduction. Wadsworth Publishing Company, Inc., Belmont, California, 1971.
[3] Hjelmslev J.: Die natürliche Geometrie. Leipzig, 1923.
[4] Hughes D. R., Piper F. C.: Projective Planes. Springer-Verlag, New York, 1973.
[5] Jurga R.: Some combinatorial properties of conics in the Hjelmslev plane. Math. Slovaca 45 (1995), no. 3, 219-226.

Author's address: Rastislav Jurga, Katedra aplikovanej matematiky, Podnikovohospodárska fakulta v Košiciach Ekonomickej univerzity v Bratislave, Tajovského 11, 04130 Kosice, Slovakia, e-mail: jurga@phf.euke.sk.

