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Summary. By applying the notion of the internal direct product decomposition we
investigate the relations between convex isomorphisms and direct product decompositions
of directed multilattices.
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morphism

AMS classification: 06A99

To each direct product decomposition of a partially ordered set L and each element
8° € L there corresponds an internal direct product decomposition of L with the
central element s° (for the definition of this notion cf. Section 1 below; it is analogous
to the corresponding notion for groups (cf., e.g., Kurosh [7], p. 104)).

The following result will be proved. Let L be a directed set and ¢1: L — A x B,
p2: L — A x C internal direct product decomp_ositions with the same central
element. Then for each z € L the component of z in A with respect to ¢, is the
same as the component of z in A with respect to ;.

Let us remark that an analogous result does not hold for internal direct decompo-
sitions of groups.

By applying internal direct product decompositions we shall investigate convex
isomorphisms of directed multilattices. This notion was introduced for lattices by
Marmazeev [8]. In [9] he studied convex automorphisms of a lattice L under the
assumption that L satisfies the following conditions:

(i) Each bounded chain in L is finite.
(ii) L is a direct product of a finite number of directly indecomposable lattices.

Kolibiar and Lihova [6] investigated convex automorphisms of a lattice L under
the assumption that the condition (ii) holds.
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In the present paper we generalize the main result. from (6] (Theorem 10) in two
directions. It will be proved that this result is true in the case when L is a direct
product of directly indecomposable lattices; the number of these lattices may be
arbitrary. Next it will be shown that the result remains valid for the case of directed
multilattices.

1. INTERNAL DIRECT PRODUCT DECOMPOSITIONS OF A DIRECTED SET

A direct product of partially ordered sets L; (i € I) will be denoted by [] L;. If
iel
I={1,2,...,n}, then we apply also the notation Ly x Lz X ... X L,.
If ¢ is an isomorphism of a partially ordered set L onto a direct product [] L,
ier
then we say that the morphism

(1) p: L — ] L
: , i€l
is a direct product decomposition of L.
The existence of isomorphic refinements of any two direct product decompositions
of a connected partially ordered set was proved by Hashimoto [3].
A partially ordered set K is called directly indecomposable if, whenever K is
isomorphic to some direct product n K, then there is i(1) € I such that card L; = 1

for each i € I'\ {i(1)}. In such a case K is isomorphic to L;(1).
- Let us remark that if (1) is valid and if there is I(1) C I such that card L; = 1 for

each i € I(1), then there is a direct product decomposition p;: L — [] L;.
S o ' - : ie\I(1)
If we consider the direct product decomposition (1) and if z € L, ¢ € I, then the

componeit of 2 in-the direct factor L; will be denoted by z(Ls, ¢).
" By simple examples we can-verify that if

) A 79 ey y i 10

iel(1) |
is anotlier direct product decomposition of L and if there are i € I, i(1) € I(1) such
that L; = Ly(1), then there can exist z € L with
@)  a(Liye) # 2(Liay ¥)-

Let (1) be valid, card I > 1 and let i € I. Put Li=" Tl Lj. Then thereisa

JeI{i}
dn'ect product decomposmon

(any Yi: L= Lix L} -
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where, for each z € L, z(Li, %) = z(Li, ¢) and z(Li, ¥;) = (.. ,y,,
(j € I\{i}),y; = z(L;, ) for each j € I\ {i}..

Hence the rather “unpleasant” relation (1) can occur also for direct product de-
compositions with two factors.

Let s° be a fixed element of L and let us consider the direct product decomposition
(1). For each z € L and ¢ € I we denote '

[e)(Li ) = {9 € L: 9(Lj,9) = 2(Ly, ¢) for each j €1\ i},

= [QO](L;, #)-

For each z € L and i € [ there is a unique element y; in LY such that

z(Li, ) = vi(Li, ¢).

Then the mapping

®3) B RRRLSY A /7
i€l

defined by ¢°(z) = ( Y- . Jier is also a du‘ect product decomposltlon of L. It
will be called the internal direct product decomposition of L (corr&pondmg to ).
The element s° is said to be the central element of the mtemal direct product de-
composition °. : )

It is evident that for each i € I, L; is isomorphic to LY. Hence if we are interested
only in considerations “up to isomorphisms”, then we need not distinguish between
(1) and (3). - R v '

We shall prove the following result:

(A). Let L be a directed set. Suppose that two internal direct product decompo- .
sitions are given, :

vi: L—J[A, va:L—][]8B;,

iel TS
such that there exist 1(1) € I and J(1) € J with A1y = Bjq). Tben foreachz € L
the relation

z(Ai1), V1) = z(Bj), ¥2)
is valid. v

We have already remarked above that this does not hold in general for dlrect’
product decompositions which are not internal. Rt ‘
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Let us consider a direct product decomposition

(4)ﬁ ot [N AL L . x:"L'-—’ I‘ICh LR A
. keK ‘

and suppose that (under the notation as in'(1))

(i) for each i € I there is a subset K (i) of K anda direct product decomposition

Xi: Li — [ Cu;
EEK(5)
(ii) under the notation as in (i), for each z € L and k E K (i) the relation

(5) 2(Cr, x) = (2(Li, ¢))(Ct, xs)

is, valid.
Then x is said to be a refinement of .

While in (3] only isomorphic direct product decompositions are constructed by
applying the proof from [3] and (A) we obtain -

(B). Any two internal direct product decompositions of a directed set have a
common refinement.

Similarly as in the case of (A), the assertion analogous to {B) does not hold in
general for internal direct product decompositions of groups.

2. Pnoors OF (A) AND (B)

I“rom the conmdera.tlons in Sect.lon 1 (cf.-(1) and (1”)) we obtain that to prove (A)
it suffices to take into account two-factor internal direct product decompositions.
Again, let L be a directed set. Let us have a direct product decomposition

1) | e L—XxY
and let
o ¢®: L — X x Y°

be the corresponding internal direct product decomposition with the central ele-
ment s°.

2.1. Lemma. Foreachte L, t(X 0,¢%) is the unique element of L lying in the
set X° N [t](Y, ).

Proof. Thisisan 1mmedmte consequence of the definition of ¢°. - -0
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The following lemma is easy to verify.

2.2. Lemma. Letz; € X,y; €Y (i = 1,2), z) < 22, 11 < y2. Then (21,12) is the
unique relative complement of (z2,¥1) with respect to the interval [(z1,¥1), (23, y2)]
of X xY. , T : o

2.3. Lemma. Let v € L, s° < v, ¢°(v) = (a,b). Then a is the greatest element
of the set X° N [s%,v). ;

Proof. We have
¢°(8°) = (s,5"),  ¢%(a) =(a,5°), <P°(b) = (s°,0).

Thus 5o < a < v. Clearly a € X°. Let z € X°N [s°,v). Hence z = z(X°,ga°)
v(Xot‘P ) ) 0

For 21, 23 and 23 in L the notation z; Ag 22 = z3 means that 23 is the greatest
lower bound of the set {21, 22} in L; the notation 2; Vg 22 = z3 has the dual meaning.
(The symbols A and V are reserved for other purposes; cf. Section 3:)

2.4. Lemma. The set Y is uniquely determined by X° and s°.

Proof. Let us denote by Z the set of all z € L such that there exist z;,22 € L
with ' '

0

21<2<2, n<s’ <,

z1Voz1 =8 foreach z;€ X° withz; <%

" zgAgzz=35" foreach z,€ X° with zo > s°.

Then Z is uniquely determined by X° and s°.

Let z € Z and let 21, z3 be as above. By 2.1 we have z3(X?, ¢°) = s°, hence 2,
belongs to Y°. Applying the duality we obtain that z; belongs to Y°. It is obvious
that Y? is a-convex subset of L and hence z € Y?. Therefore Z C YO. t

Now let yo € Y°. Since L is dlrected Y? is directed as well. Thus. there are y;
and y; in Y such that

Then both y; and y, belong to Z. It is clear that Z is a convex subset of L. Hence
% € Z and thus Y° C Z, completing the proof. = g
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Since X° = [s°)(X,¥) and Y° = [s%](Y, ) and since s° js an arbitrary element of
L with no specific properties, we have

2 4.1. Lemma. Let t € L. Then the set [t](Y @).is umquely determmed by the
set [t](X, ).

2.5. Lemma. Let t € L, t > s°. Then the set [t)(X, ) is uniquely determined
by X° and t. '

Proof. In view of 2.3 (with X and Y interchanged) there exists b € Y° such
that b = max(Y° N [s%,¢]). Moreover, according to 2.4, b is uniquely determined by
X° and s°; also #(Y?, %) = b. Clearly b € [t}(X, ¢).

(a) Put A= {z € [t}(X,p):t > b}). For v € L we have

VEAS=v2b andb= max(Y° N [so, v]).

Hence A is uniquely determined by X° and s°.

(b) Put B = {¥ € [t}(X,9): ¥ <b). ,

Let ¥’ € B. Put b’(X°,4p°) = z. Then (po(b') = (z,b). Since b’ b and °(b) =
(s° b) we obtain that < s°. Thus in view of 2.2, b’ is the relative complement of
s° in the interval [z, b}, where z € X°,z < s°.

Let Z be the set of all z € L such that zis the relative complement of s° in an
interval [z’, b], where 2’ € X° and z' < s°. From 2.2 we infer that z € B. -

We have verified that B = Z. Therefore B is uniquely determined by X° and s°.

(c) Let 2’ be the convex subset of L generated by AU B. Thus in view of (a) and
(b), 2’ is uniquely determined by X° and s°.

Since AU B C [t](X, ) and [t](X,¢) is a convex subset of L we obtain that
Z' C [tl(X,¢). Let y € [t](X,p). Since L is directed, [t](X, ) is directed as well.
Thus from y, b € [t}(X, ¢) we get that there are y1, y2 € [t](X, ) such that

The second relation implies that y; € B and 3, € A. Thusy € Z' and 2’ = [t}(X, ¢),
completing the proof. _ -0

Similarly as in 2.4.1 we now have

2.5.1. Lemma. Let t,,t; € L, t; < t;. Then [t2)(X,¥) is uniquely determined
by t: and [tll(X ®)-

The uaemon dual to 25.1is also vahd
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2.6. Lemma. Let t € L. Then the set [t}(X,¥) is uniquely determined by t and
X0.

Proof. Since L is directed there is ¢’ € L with .
<0 <t

In view of the assertion dual to 2.5.1 the set [t'}(X, ¢) is uniquely determined by ¢’
and X°. Next, by 2.5.1 the set [t](X, ) is uniquely determined by ¢ and [t')(X, ¢).
Hence [t}(X, ¢) is uniquely determined by X° and ¢t. o

Lemmas 2.4.1 and 2.6 yield
2.7. Lemma. Let t € L. Then the set [t](Y,y) is uniquely determine& by t
and X°. '

Proof of (A). We have already noticed above that for verifying the validity of
(A) it suffices to consider internal direct product decompositions with two factors.
Hence let us again deal with the internal direct product decomposition (1’). We have
to verify that for each t € L the component of ¢ in X° is uniquely determined by ¢
and X°. RS » ,

The element {(X?, ©°) is the unique element of L lying in the intersection

X0 (X, ¢),

hence in view of 2.7, (X0, 4p°)‘is uniquely determined by ¢ and X°. ‘ o
If the relation (1) from Section 1 is valid and A C I, # € L then we denote

A(Li, ¢) = {a(Ls, 9): a € A}.

The set A(L;, p) is parti"ally ordered by the partial order inherited from L;.

Proof of (B). Let us have two internal direct product decompositions

(2) . o L— ] X2
: ier
3) oL — 1Y
jed

with the same central element s°. In view of Hashimoto’s construction (Theorem 1,
[3]) we obtain direct product decompositions

(4) v:L— JI X207™),
iel,jeJ



() s vi: L— [T ¥(x2¢0).
iel,jeJ
Here, (4) is a refinement of (2) and (5) is a refinement of (3); both (4) and (5) are
internal direct product decompositions of L with the same central element s°.
In view of this fact we have

6) X, = Y(X0,6°);

namely, in the notation applied in the proof of Theorem 1, {3] it was proved there
that S/ = S (under different denotation of indices), and since the direct product
decomposmons are internal with the same central element s°, the relations Si =
XY, ¢%) and 8} = Y(X?, ¢°) are valid. Next, by applying (A) we infer that the
mappings ¥ and ¥, coincide. This completes the proof. a

Let us remark that if we consider an internal direct product decomposition (2)
and if z is an element of L, then in view of (A) the component of z in - X? can be
denoted simply by z(.X?); we suppose that the central element s° is fixed.

Next, when considering refinements of direct product decompositions (cf., e. g (1)
and (4) in Section 1) we shall write

z(Ck) = z(Li)(Ck)

instead of (5) in Section 1 under t.he assumptlon that ¢ and x are internal direct
product decompositions. ‘ :
From (B) we obtain as a corollary:

(C). Let L be a directed set and let (2) be an internal direct product decompo-
sition of L such that all X? are d:rectly mdecomposable Let

(7 . ¢° L— X°xY®°

be an internal direct decomposition of L. Suppose that ¢° and ¥° have the same
central element s°. Then ¢° is a refinement of ¥°. Thus there are nonempty subsets
I(1) and I(2) of I with I(1)NI(2) =@, I(1)UI(2) = I such that there exist internal
direct product decompositions ;

(pl:Xo—-» II X,p, 502:Y0——> H X.o
21 i€ry - ie1(2)

with the same central element s°.



3. AUXILIARY RESULTS ON DIRECTED MULTILATTICES

The notion of a multilattice was introduced by Benado [1]. It is defined as follows.

Let P be a partially ordered set. For z,y € P we denote by E(z,y) and U(z,y) the
system of all lower bounds or all upper bounds of the set {z,y} in P, respectively.
P is said to be a multilattice if, whenever z,y € L and z € L(z,y), then there is
z1 in L(z,y) such that 2, is a maximal element of L(z,y) and z < z, and if the
corresponding dual condition concerning U(z,y) also holds.

In what follows we assume that P is a directed multilattice. For z,y € Llet zAy
be the system of all maximal elements of L(z, y); similarly, we denote by z V y the
system of all minimal elements of U(z,y). Both zA y and z V y are nonempty. v

A nonempty subset P’ of P will be called an m-subset of P if, whenever z and y
belong to P’, then both z Ay and z V y are subsets of P'. Let C(P) be the system
of all convex m-subsets of P.

Each lattice can be viewed as a directed multilattice. If P is a lattice and X is a
subset of P then X is a convex m-subset of P if and only if X is a convex sublattice
of P. . ,
In this section we shall deal with du'ected multilattlca P and P, whlch are defined
on the same underlying set and satisfy the condition

(1) C(P) = C(P).

The partial order in P or in Py will be denoted by < and <1, respectively. If z,y € P
and z < y, then [z,y] is the corresponding interval in P; if z <1 y, then [z,y]; has
the analogous meaning with respect to P;. Next, for a and bin P the symbols a/\1 b,
aVy b, Li(a,b) and U;(a,d) have the obvious meanings.

3.1. Lemma. Let z,y,2€ P,z <2<y, z<1y. Thenz <; zand 2§y .

Proof. We consider the system C(P) to be partially ordered by inclusion. The
least element of C(P) containing both z and y is [z, ). Thus in view of (1) the
relation [z, 9] = [£, y]1 is valid. Hence z € [z, y)i. ‘ o

3.2. Corollary. Let z, y be asin 3.1. If z;, z; € [z,y] and 21 < 23, then 2, <) z,.

By a similar argument we obtain

3.3. Lemma. Let z,Yy € P <y ySiz. Ifz,22 E»[‘-’.!l] and z; € 23, then
2 Sn 2. R ‘ - '

3.4. Lemma. Let z,y€E P,z <y, uE€EZ Ay, v €z V1Y. Then (2, 4] = [u,v],.
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Proof. [z,y]is the least element of C(P) containing both z and y. Similarly,
[u, ] is the least element of C(P;) which contains u and v. Since z,y € [u,v];, in
view of (1) we iobtain that [z,y] C [u,v];. If X € C(P,) and z,y € X, then u and v
belong: to X; thus u,v € [z, y] and then [u,v]; C [z,y], completing the proof. O

3.5. Cofollar.y. Let z,y € P,z < y. Then card(z A, y).= card(z V; y) = 1
3.6. Lemma. Let z, y, u and v be as in 3.4. Next let '
u',uj € [z,9), z;; u*, zslu:.
Then u* < u and ui < v. e _
Proof. In view of 3.4 we have u* € [u v]l, hence u Sl u*. From ;hé re_lat./iox_xs'
' 22" 214, z<u

and from 3.3 (with P and P, interchanged) we infer that u* < u. The rela.tlon u} ; < v
can be verified analogously. C \ ‘ a

3.7. Lemma. Let z,y, u and v be as in 3.4. Next let
v, 0] €Efz,y], y<1v', y21v].

Then v* > v and v] 2

The proof is analogous to that of 3 6. a
3‘.8‘.--Lemm_a. Let a,b,t e B, t..\ b t <1 a, t <1 b t; e avb Then a <1 tz'
and b S] tz.'

Proof. If @ and b are comparable in P, then the assertion.is implied by 3.1.
Thus we can suppose that a and b are mcomparable in P.

From'3.1 we infer that .
a<1t2¢=bb<1t2 ; >
By way of contradnctzon, assume that neither a- <y.ta .nor b < tg is valid. - Then
in ‘view of 3.5 there are uniquely determined elements a; and b; in P such that
a; €EaVy t; and b; € bV, t,. Hence accordmg to 3.4

a < a; <t b 61<t2, A

agi1a>1t2, b bl >1 3.

In view of 3.5-there are uniquely determined elements u and v in P with u € t Ay,
and v € t V1 t3. According to 3.2 the relations a; < v and b; < v are valid. Next, 3.4
yields that v < a; and v < 61 Therefore a; = v = b;. Then a1 €EaVb<i,, which
is a contradiction. . - - - o : e S I
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There are three obvious modifications of 3.8 (the first is obtained by.duality, and
then we obtain the other two cases by interchanging P and P;). When applying any
of these modifications we shall refer to 3.8. Similarly we proceed by quotations of
obvious modifications of the subsequent lemmas.

3.9. Lemma. ‘Let a, b,'t and ty be as in 3.8. Let t; € aAb. Then_ t1 <1 @ and
t1 <1 b,

Proof. This is a consequence of 3.8. o

4. THE RELATIONS R; AND R,

We apply the same assumptions as in Section 3. For a,b € P we write aR;b if
there is t € P such that the assumptions from 3.8 are satisfied. Next we write aRzb
if there is t € P such that

t<a, tSb,‘ t2a, t?lb.‘

From 3.8 we infer that the relations R; and Rj can be defined also by applying
the corresponding dual conditions.

4.1. Lemma. Let a,b,c € P, aR1b and bRic. Then aR;c.
Proof. There exist elements t; and ¢ in P such that
ti<a, t1 b, tH<1a, H<1)

t2<b, tage, 2<ad, taac

Let t3 € t; Aty. According to 3.9 (by applying the elements ¢, t2 and b) we obtain
that t3 <; t; and t3 <3 t2. Thus aR, holds. (]

Similarly we can verify

4.2. Lemma. Let a,b,c € P, aR3b and bRac. Then aRze.

Since the relations R; and R3 are obviously reflexive and symmetric, in view of
4.1 and 4.2 they are equivalence relations on P. Let R,, be the greatest equivalence
relation on P.

4.3. Lemma. R; V R; = R,,.

Proof. Letz,y€ P,z <y. In view of 3.4 there is ¢ € [z, y] such that zR;c
and cR2y, hence z(R; V Ry)y. Now it suffices to apply the fact that P is directed.
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4.4. Lemma. Let i € {1,2}, a,b € P, aR;b. Then there exist elements t and t'
in P such that t < ', a,b € [t,t'] and tR;t'.

Proof. This is a consequence of the definition of R; and of 3.8. a

4.5. Lemma. Let z¢, z1, 22 € P, zoR1z, and z, Rax,. Assume that both the
pairs zg, 1 and ry, £z are comparable in P and in P,. Then there is y € P such
that

(i) zoR2y and yR,z; ‘
(ii) both the pairs zo, y and y, z2 are comparable in P and in P,.

Proof. (a)lIfzo < z; < z2, then in view of 3.5 there is a uniquely determined
element y € P with y € 2o A z2. Thus according to 3.4, y satisfies (i) and (ii). The
other cases under the assumption that the set {z¢,z,z2} is linearly ordered in P
are analogous.

(b) Now assume that the set {z¢, 1, Z2} is not linearly ordered in P. E.g., suppose
that zo > z; and z; < 23, 2o # z2. Then the set {zo,z,z2} is linearly ordered
in P, and we can apply the same method as in (a) by using 3.4 with P and P,
interchanged. The remaining cases when {z,z,z2} are not linearly ordered in P
are analogous. (]

4.6. Lemma. R,R;, = R,,.

Proof. Let z,y € P. Choose u € z Ay. Lemma 3.4 yields that there exist
elements p and ¢ in P such that

PE [us x]a lepa PRz'l,

q € [u,9], yRagq, qRyu.

Hence by 4.5 there is v € P such'that pR1v and vRyq. Thus by 4.1 and 4.2, zRjv
and vRay. Therefore zR; Ray. 0

4.6.1. Corollary. Rle = Rle.
Proof. Analogously to 4.6 we have RaRy = Ry, hence R1R; = R2R;. 0

4.7. Lemma. Let a,b € P. Then there are t,t2 € P such that
athl, t1 R2b,
Gthz, tszb.
“Proof. This is a consequence of 4.6 and 4.6.1. a
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4.8. Lemma. Let a,b € P, aR,b and aR3b. Then a = b.

Proof. In view of aRyb there is {; € P with {; € a A b such that ¢, <1 a and
t; <1 b. Similarly, from aR2b we obtain that there is t; € a Ab such that t; >; a and
t2 21 b. According to 3.9 we have, at the same time, {3 <; a and t; <; b. Hence
a=ty =b. 0

For £ € P we denote
z(R1) = {z1 € P: zRyz1}, =z(R2) = {z1 € P: zRaz1}.

Now we shall deal with the sets z(R;), where z runs over P. Analogous results hold
for the sets z(R3).

For z and y in P we write z(R;) < y(R:) if there are z; € z(R,) and y; € y(R1)
such that 1 < y;.-

4.9. Lemma. Let z,y € P, z(R1) < y(R1). Then there is z3 € P such that
z(R1) = z3(R1), z3 <y and 23 21 y.

Proof. There are z; € z(R;) and y € y(R1) such that z; < y1. In view of 3.4
there is z; € P such that zy < z2 < w1, 1 <1 22, 22 21 Y1. Hence z3(R,) = z(R,).
Choose u € y; Ay. According to the definition of R; and in view of 3.9 we have
¥1(R1) = u(Ry). Consider the elements z2,y; and u. Then 3.5 yields that z; Au is
a one-element set; we denote z2 A u = {u1}. Next, z;Rju; and u; Ryu.

Now let us consider the elements u;, u and y. By applying 3.5 we get that there
is 3 € (u; V1 y) N[u1,y] such that u; < 23 < y, u1 Ryz3 and z3Ray. Clearly z3R)z.

a

By similar considerations we obtain

4.10. Lemma. Let z,y € P, z(Ry) < y(R1). Then there is y3 € P such that
Y(R1) = ys(R1), # S ys and z 21 ys.

4.11. Lemma. Let z,y,z € P, z(R1) < y(R1) and y(R1) < z(Ri1). Then
z(Ry) < z(Ry).

Proof. In view of 4.9 and 4.10 there are elements z3 € z(R;) and z1 € z(R;)
such that z3 < y and y < z1. Hence z(R;) < z(R:). a

4.12. Lemma. Let z,y € P, a:(Rl) Y(Ry) and y(Ry) € z(R1). Then z(Ry) =
Y(Ry). : ‘
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Proof. By way of contradiction, assume that z(R1) # y(R1). Since z(R1) <
¥(R1), according to 4.10 there is y1 € P such that y; € y(Ri)and z < yy, 2 >1 %1-
Next, since y1(R1) < z(R;) and y1(R1) # z(Ry), according to 4.9 there is z; € z(R1)
such that y; < z; and z; >1 y1. Therefore z < z; and z >; z;. Hence zR22;.
According to 4.8, z = z;. Thus z = y; and so z(R;) = y1(R1) = y(R1). -0

Put A = {z(R)): ¢ € P}. With respect to the relation < on A defined above
(which is obviously reflexive), A is a partially ordered set (cf. 4.11 and 4. 12).

Now we denote B = {z(R2): z € P} and define the relation < on B analogously
as we did for A. Then B is a partially ordered set as well.

By a method analogous to that used for proving 4.9 and 4.10 we get

4.13. Lemma. Let z,y € P, z(R3) < y(R2). Then there are elements y; € y(R2)
and z; € z(R2) such that
<Yy, Ty,

1<y, 119

4.14. Lemma. Let z,y € P, z(R;) < y(R:1) and z(R;) < y(R2). Then z < y.

Proof. By 4.9 and 4.13 there are elements z; and z, in P such that
<z, 2121 and  z Ry,

r<zy;, <122 and z3Ryy.

Then in view of 3.4 and 3.5 (with P and P, interchanged) there is a unique element
z in z1 V z3; moreover, £, R;z and z3R2z. Hence 2R,y and zR2y. Hence according
to 4.8, y = z. Therefore z < y. - a

Consider the mapping ¢: P — A x B such that ¢(a) = (a(R1),a(R2)) for each
a € P. It is evident that if a,b € P and a < b, then (a(R,),a(Rz2)) < (b(R1), b(R2)).

4.15. Lemmé. The mapping ¢: P — A x B is a direct product decomposition
of the multilattice P.

Proof. Thisis a consequence of 4.3, 4.8, 4.6 and 4.14. a

By defining the relations R; and R; we have viewed the multilattice P as beeing
basic. Let us now define relations R} and R by starting with the multilattice P,
instead of P; i.e., when defining R} and R; we proceed by the same method as when
defining R; and R; with the distinction that the relations < and <; are interchanged.
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Since the assumptions of 3.8 are symmetric with respect to  and <; we obtain
immediately that the relations R; and Rj coincide. ’

Next, for a and b in P, we put aRb if there is ¢; in P, such that t; <; a, ) <31 b,
t; 2> a, t; > b. However, from the modification of 3.8 (by applying duality and by
interchanging P and P;) we obtain that aR%b implies aR3b; similarly we can prove
that aRyb implies aR5b. Thus R; and R coincide as well.

Let A and B be as above. For i € {1,2} we define a binary relation <; on A as
follows: for a and b in A we put a(R}) <1 b(R}) if there are a; € a(R}) and b, € b(R})
such that a; <; b1. The set A with this relation will be denoted by A;. Analogously
we define the partially ordered set B;. Similarly as in 4.15 we can prove

4.15’. Lemma. A;, B; are partially ordered sets and the mapping
P P1 —_— A1 X Bl

defined by ¢(a) = (a(R}),b(R5)) is a direct product decomposition of P;.

Next, from 4.9 and 4.13 we immediately obtain

4.16. Lemma. Let a,b € P. Then
a(Ry) < b(Ry) <= a(Ry) 21 b(Ry),
a(Rz) < b(Rz) <= a(R3) <1 b(R3).

For each partially ordered set L we denote by L% the partially ordered set which
is dual to P. Then 4.16 yields

4.17. Corollary. A; = A% and B, = B.

By summarizing, from 4.15, 4.15’, 4.17 and by constructing the corresponding
internal direct product decompositions we infer

4.18. Theorem. Let P and P, be directed multilattices defined on the same
underlying sets such that C(P) = C(P,). Let s° € P. Then there exist internal
direct product decompositions

¢’ P— A°x B°, ¢°: P, — (A% x B®
with the central element s°.
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For results related to 4.18 cf. [2] (for the case of finite lattices), [4] (for the case of
distributive lattices) and [5] (for the case of lattices).

4.19. Lemma. (i) If L is a multilattice, then C(L) = C(L%). (ii) Let X,Y be
multilattices and Z C X x Y. Let Z, and Z, be the projections of Z into X or Y,
respectively. Then Z € C(X x Y) iff Zy € C(X) and Z; € C(Y).

The proof is easy, it is omitted.

Let us remark that in (ii) above the two-factor direct product decomposition can
be replaced by a direct product decomposition with an arbitrary number of direct
factors.

4.20.- Corollary. Let P and P, be multilattices defined on the same underlying
set. Let s° € P. Assume that there exist internal direct decompositions

% P— A’ x B°, °: P, — (A%) x B®

with the central element s°. Then C(P) = C(P).

5. CONVEX ISOMORPHISMS
We assume that P and P’ are directed multilattices.

5.1. Definition. A mapping f of P onto P’ is called a convex isomorphism if

(i) f is a bijection;
(ii) for each X C P, X € C(P) <= f(X) € C(P').

For the case of lattices, this definition is due to Marmazeev [8]. If P = P’, then
under the assumptions as in 5.1, f is called a convex automorphism.

For each positive integer n put @ = {1,2,...,n}. The following is the main result
of [6].

5.2. Theorem([6], Theorem 10.). Let L be a lattice which can be decomposed
into a direct product L = Ly x Ly X...x L, where all L; are directly indecomposable.
Convex automorphisms‘of L are just the mappings obtained as follows: we take a
permutation x of the set @ such that there exist bijections f;: L; — Lx(;), each of
them being either an isomorphism or a dual isomorphism, and set f(z)«(;) = fi(zi)
for any z € L. ‘

(In 5.2, for each z € L and each i € 7, z; denotes the component of z in L;.)
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5.3. Theorem. Let P and P' be directed multilattices which can be decomposed
into direct products

p: P——-»HP;, ¢ P — HP;
i€l j€J

Assume that w: I — J is a bijection and that for each ¢ € I, f;: P; — Py(;), is a
bijection which is either an isomorphism or a dual isomorphism. Then f is a convex
isomorphism.

Proof. Without loss of generality we can assume that ¢ and ¢’ are internal
direct product decompositions with the same central element s°. Let I(1) be the set
of all i € I such that f;: P; — Py(1) is an isomorphism. Put

A={z€P:z(P)=5" foreach ieTl\I(1)},
B={z€P:z(P)=5s" foreach i€ I(1)}.

Then in view of 4.19 and 4.20 (cf. also the remark after 4.19) we obtain that f is a
convex isomorphism. O

5.4. Definition. Let P and P’ be directed multilattices. A bijection f: P — P’
is said to be a similarity mapping from P to P' if, whenever P can be decomposed
into a direct product

(1) p: P——-»IIP;
i€l

where all P; are directly indecomposable, then

i) there exists a direct product decomposition ¢': P’ — [] P! such that all
.G' '
13
P} are directly indecomposable;
ii) for each i € I there exists a bijection f;: P; — P! such that f; is either an
s
isomorphism or a dual isomorphism;

(iii) for each z € P and each i € I, f(z)(P,’) = fi(z(P)).

5.5. Theorem. Let P and P’ be a directed multilattices and let f: P — P’ be
a convex isomorphism. Then f is a similarity mapping from P to P'.

Proof. Let (1) be valid where all P; are directly indecomposable. Let ag €
P. Without loss of generality we can assume that ¢ is an internal direct product
decomposition with the central element s°.
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" For 2,y € P we put z <, y if and only if f(z) < f(y). Then <, is a partial order
on P; the set P with this partial order <; will be denoted by P,. The mapping fL
P’ — P, is an isomorphism. P, is a directed multilattice satisfying

C(P) = C(P).

Hence for P and P, we can apply the results from Section 4. According to 4.18 there
are internal direct product decompositions

¢’ P — A" x B°, °: P, — (A")¢ x B°®

with the same central element s°.
In view of Theotem (C) in Section 2, ¢ is a refinement of ¢° and there are internal
product-decompositions

go},:Ao——o H P;, (pgz.Bo-—) H P;
i€l(1) i€I(2)

with the same central element s° such that I(1)NI(2) =0 and I(1) U I(2) = I.
For each i € I we put Q; = (P;)?ifi € I(1), and Q; = P; ifi € I(2) We obtain
internal product decompositions

0p: (A% — ] @ ¢8:B°— J] &
i€I(1) i€I(2)

with the same central element s°. By applying this and using the mappings ¢° and
¢ we get an internal direct product decomposition

@ o: P — L@
' iel
with the central element s°. Here all Q; are directly indecomposable.

Put (s°)' = f(s°) and P/ = f(Q;) for each i € I. Since f is an isomorphism of P,
onto P’ there is an internal direct decomposition with the central element (s%)’

N - N II P:
iel
and all P/ are directly indecomposable.

For each ¢ € I and each y € P; we put fi(y) = f(y)- We obtain a bijection
fi: P — P{. If i € I(1), then f; is a dual isomorphism; for i € I(2), f; is an
isomorphism. Next, by applying the fact that f is an isomorphism of P, ontb P’ and
by- nsmg (1), (2) we get that for each z € P and each i € I the relation

 f@(P) = f(2(Q) = ﬁ(z(Q-)) f:(z(P.))
is valid. - : R b
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5.6. Theorem. Let P be a multilattice which has a direct product decomposition
@w: P — T[] P; such that all P; are directly indecomposable. Let f be a convex
iel
automorphism of P. Then there exist
(i) a bijectionw: I — ],
(ii) bijections f;: P; — Pg(;)y where for each i € I, f; is either an isomorphism
or a dual isomorphism, such that f(z)x) = fi(z:) for each xz € P.

Proof. The assertion is trivial in the case card P = 1. Thus we can assume
that card P > 1. Then without loss of generality we can suppose that ¢ is an internal
direct product decomposition with a central element s° and that card P; > 1 for each
i€l

We apply 5.3 where we put P’ = P. In view of the constructions in the proof of
5.4 we have an internal direct product decomposition (with the central element s°)

¢ P— H P/
i€l

such that for each ¢ € I there is a bijection f;: P; — P/, this bijection being either
an isomorphism or a dual isomorphism. Hence all P/ are directly indecomposable.

According to (B) there exists an internal direct product decomposition 1 of P
with the central element s° such that v is a refinement of both ¢ and ¢’. Again
without loss of generality we can assume that each direct factor standing in 4 fails
to be a one-element set. Then, since all P; are directly indecomposable, by applying
(A) we obtain that ¢ = 9; similarly, ¢’ = . Thus ¢ = ¢'.

Hence for each i € I there exists (i) € I such that P} = Py(;). Then7: [ — I is
a bijection and the condition (ii) is satisfied. Next, in view of 5.5 and the condition
(iii) in 5.4 we have (under the obvious notation)

f(2)x) = fi(zi) foreach zeP.

Theorem 5.2 is a consequence of 5.3 and 5.6.

References

[1] M. Benado: Sur la théorie de la divisibilité, Acad. R. P. Romine, Bul. Sti. Sect. Mat.
Fiz. 6 (1954), 263-270.

[2] C. C. Chen, M. K. Koh: On the lattice of convex sublattices of a finite lattice, Nanta
Math. 5 (1972), 93-95. '

[3] J. Hashimoto: On direct product decompositions of partially ordered sets, Annals of
Math. 54 (1951), 315-318.

3717



[4] J. Jakubik, M. Kolibiar: On some properties of pairs of lattices, Czechoslov. Math. J. 4
(1954), 1-27. (In Russian.)

[5] M. Kolibiar: Intervals, convex sublattices and subdirect representations of lattices, Uni-
versal algebra and applications, Banach Center Publications, Vol. 9, Warszawa, 1980,
pp. 335-339.

[6] M. Kolibiar, J. Lihovd: Convex automorphisms of a lattice, Math. Slovaca, to appear.

[7) A. G. Kurosh: Group Theory, Third edition, Moskva, 1967. (In Russian.)

[8] V. I. Marmazeev: The lattice of convex sublattices of a lattice, Ordered sets and lattices
No. 9, Saratov. Gos. Univ., Saratov, 1986, pp. 50-58. (In Russian.)

[9] V. I. Marmazeev: A group of automorphisms of the lattice of convex sublattices of
a lattice, Vestsi Akad. Navuk BSSR, Ser. fiz. mat. navuk (1988), no. 6, 110-112. (In
Russian, English summary.) ’

Author’s address: Jin Jakubik, Matematicky dstav SAV, dislokované pracovisko, Gre-
sdkova 6, 04001 Kosice, Slovakia; Maria Csontdova, fakulta stavebnd TU, Letna 9, 04001
Kosice, Slovakia.

378



		webmaster@dml.cz
	2020-07-01T11:51:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




