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CONVEX ISOMORPHISMS OF DIRECTED MULTILATTICES 

JXN JAKUBIK, MARIA CSONT6OVX, Kosice 

(Received October 2, 1992) 

Summary. By applying the notion of the internal direct product decomposition we 
investigate the relations between convex isomorphisms and direct product decompositions 
of directed multilattices. 

Keywords: internal direct product decomposition, directed set, multilattice, convex iso­
morphism 

AMS classification: 06A99 

To each direct product decomposition of a partially ordered set L and each element 
s° € L there corresponds an internal direct product decomposition of L with the 
central element s° (for the definition of this notion cf. Section 1 below; it is analogous 
to the corresponding notion for groups (cf., e.g., Kurosh [7], p. 104)). 

The following result will be proved. Let L be a directed set and <p\: L —• A x B, 
<P2' L —• A x C internal direct product decompositions with the same central 
element. Then for each x € L the component of x in A with respect to <p\ is the 
same as the component of a? in .A with respect to <pi. 

Let us remark that an analogous result does not hold for internal direct decompo­
sitions of groups. 

By applying internal direct product decompositions we shall investigate convex 
isomorphisms of directed multilattices. This notion was introduced for lattices by 
Marmazeev [8]. In [9] he studied convex automorphisms of a lattice L under the 
assumption that L satisfies the following conditions: 

(i) Each bounded chain in L is finite, 
(ii) L is a direct product of a finite number of directly indecomposable lattices. 

Kolibiar and Lihova [6] investigated convex automorphisms of a lattice L under 
the assumption that the condition (ii) holds. 
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In the present paper we generalize the main result, from [6] (Theorem 10) in two 
directions. It will be proved that this result is true in the case when L is a direct 
product of directly indecomposable lattices; the number of these lattices may be 
arbitrary. Next it will be shown that the result remains valid for the case of directed 
multilattices. 

1. INTERNAL DIRECT PRODUCT DECOMPOSITIONS OF A DIRECTED SET 

A direct product of partially ordered sets Li (i 6 I) will be denoted by fj Lj. If 

J = { 1 , 2 , . . . , n}, then we apply also the notation L\ x L? x . . . x Ln. 
If <p is an isomorphism of a partially ordered set L onto a direct product fj L,-, 

i'€/' 
then we say that the morphism 

(1) <p:L—+l[Li 

is a direct product decomposition of L. 
The existence of isomorphic refinements of any two direct product decompositions 

of a connected partially ordered set was proved by Hashimoto [3]. 
A partially ordered set K is called directly indecomposable if, whenever K is 

isomorphic to some direct product \\ Ki, then there is t(l) E / such that card Li == 1 

for each t € J \ {t(l)}.-In such a case K is isomorphic to L,(i). 
Let us remark that if (1) is valid and if there is 1(1) C / such that card L» = 1 for 

each f € 1(1), then there is a direct product decomposition <p\: L —• J] £«'• 
«€/\/(1) 

If we consider the direct product decomposition (1) and if x € L, s € / , then the 
component of a? in the direct factor Li will be denoted by a?(L,-,y>). 

By simple examples we can verify that if 

a*) ^ i - n L'(O 
••6/(1) 

is another direct product decomposition of L and if there are t € / , «(1) € 7(1) such 
that Li = £.(i), then there can exist x 6 I with 

(2) x(Li,<p)? X(Li(;l),lt>)-

Let (1) be valid, card/ > 1 and let i £ L Put L\ - U. Li- T n e n t h e r e i s a 

WW) 
direct product decomposition 

(1") rl>i-.L^-*LiKL\ 
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where, for each x G I , x(L,-, ̂ ,) = x(Lj*,<p) and «(£,(•,#,*) = (.. . ,%*,...) 

(i 6 / \ {*}),% = *(^i, *>) for each j € / \ {t}. 
Hence the rather "unpleasant" relation (1') can occur also for direct product de­

compositions with two factors. 
Let s° be a fixed element of L and let us consider the direct product decomposition 

(1). For each x 6 X and i G I we denote 

[x](Li,<p) -{yeL: y(Lj,<p) = x(Lj,y>) for each" jf € I \ t}, 

., L? = [50](L (^). ; 

For each x € L and t G I there is a unique element yt- in L? such that 

*{Li><p) = y%{Litip). 

Then the mapping 

(3) f i L - * ^ 
«€/ 

defined by <p°(x) = ( . . . , y,-,.. .),-6/ is also a direct product decomposition of L. It 
will be called the internal direct product decomposition of L (corresponding to <p). 
The element 8° is said to be the central element of the internal direct product de­
composition <p°. 

It is evident that for each t G / , Li is isomorphic to L°. Hence if we are interested 
only in considerations "up to isomorphisms", then we need not distinguish between 
(1) arid (3). x 

We shall prove the following result: 

(A) . Let L be a directed set. Suppose that two internal direct product decompo* 
sitions are given, 

•€/ jeJ 

such that there exist t(l) G / and j(l) G / with A^i) = -9;(i). Then for each x £ L 
the relation 

*(-4*(i),^i) = *(-Bj(i)»^) 

is valid. » 

We have already remarked above that this does not hold in general for direct 
product decompositions which aire not internal. 
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Let us consider a direct product decomposition 

(*)< . . , • . . . . , . . x £ — Uc* . -•<• •> • • 
k£K 

and suppose that (under the notation as in (1)) 

(i) for each i € / there is a subset K(i) of K and a direct product decomposition 
xrLi—> n Ch\ 

A€K(t) 
(ii) under the notation as in (i), for each x € L and k G K(i) the relation 

(5) «(Cfclx) = W^,v))(G*lX<) 

ia valid. 

Then x is said to be a refinement of <p. 
While in [3] only isomorphic direct product decompositions are constructed, by 

applying the proof from [3] and (A) we obtain 

(B). Any two internal direct product decompositions of a directed set have a 
common refinement. 

Similarly as in the case of (A), the assertion analogous to (B) does not hold in 
general for internal direct product decompositions of groups. 

2. PROOFS OF (A) AND (B) 

From the considerations in Section 1 (cf. (1) and (1")) we obtain that to prove (A) 
it suffices to take into account two-factor internal direct product decompositions. 

Again, let L be a directed set. Let us have a direct product decomposition 

(1) <p:L—+XxY 

and let 

(1') <p°:L—+X°xY° 

be the corresponding internal direct product decomposition with the central ele­
ment *°. 

2.1. Lemma. For each t € I , t(X°,<p°) is the unique element of L lying in the 

Proof . This is an immediate consequence of the definition of p°. • 
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The following lemma is easy to verify. 

2.2. Lemma. Let x, e X, y, e Y (i = 1,2), xt ^x2tyl^y2. Then (xlty2) is the 

unique relative complement of(x2t y\) with respect to the interval [(x\t y\)t (xi, yz)] 

ofXxY. . ,. , • ;' ' 1 • 

2.3. Lemma. Let v € L, s° < v, <p°(v) = (a, 6). Then a is the greatest element 

of the set X°C\[s°tv]. 

P r o o f . We have 

* V ) = ( ' V ) . V%0 = («V). ^°(6) = (5°,6). 

Thus *o ^ a ^ v. Clearly a e -K°. Let * e X° f\ [*°tv]. Hence z = 2(-X°,y>0) ^ 

i>(X0,*>°) = a. D 

For z\t z2 and z$ in I the notation z\ Ao *2 =- *3 means that Z3 is the greatest 
lower bound of the set {z\, 2:2} in L; the notation zi Vo z2 = Z3 has the dual meaning. 
(The symbols A and V are reserved for other purposes; cf. Section 3.) 

2.4. Lemma. The set Y° is uniquely determined by X° and s°. 

P r o o f . Let us denote by Z the set of all z e L such that there exist z\, z2 e L 
with 

z\ ^ z t$ z2t Z\ $ * ^ z2t 

z\ Vo x\ = s° for each x\ e X° with x\ ^ s°t 

z2 Ao x2 = «° for each x2 e X° with £2 ^ s°. 

Then i? is uniquely determined by .K0 and s°. 

Let z £ Z and let Zi, z2 be as above. By 2.1 we have z2(X°t <p°) = s°t hence z2 

belongs to Y°. Applying the duality we obtain that z\ belongs to Y°. It is obvious 
that y ° is a convex subset of L and hence z e Y°. Therefore Z C y°* 

Now let yo e y ° . Since L is directed, Y° is directed as well. Thus there arey\ 

and y2 in Y° such that 

yi ^ yo ^ ifc, y\ ^ *° < 1*. 

Then both yi and y2 belong to Z. It is clear that Z is a convex subset of X. Hence 
yo e Z and thus Y° C Z, completing the proof. D 
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Since X° = [8°)(X,<p) and Y° = [s0](Yy<p) and since «° is an arbitrary element of 
L with no specific properties, we have 

2.4.1. Lemma. Let t € L. Then the set [t](Yt<p).i8 uniquely determined by the 
*>t[t)(Xf<p). 

2.5. Lemma. Lett e L, t > s°. Then the set [t](X, <p) is uniquely determined 
byX° andt. 

Proof . In view of 2.3 (with X and Y interchanged) there exists 6 E Y° such 
that 6 = max(y° H [s0,*]). Moreover, according to 2.4, 6 is uniquely determined by 
X° and 5°; also t(Y°, <p°) = 6. Clearly 6 € [t](X, <p). 

(a) Put A = {x € [t](X}(p):t^ 6}. For v € L we have 

v e - 4 « = > t ; ^ 6 and 6 = max (y°H [s0, v]). 

Hence A is uniquely determined by K° and s°. 
(b) Put B = {6' € [*](*, <p): 6' <6}v 
Let 6' € B. Put 6'(X°,y>°) = x. Then p°(6') = (x,6). Since 6' $ 6 and <p°(b) = 

(s°,6) we obtain that x ^ s°. Thus in view of 2.2, 6' is the relative complement of 
8° in the interval [ar,6], where x €E X°fx J$ S°. 

Let Z be the set of all z £ L such that z is the relative complement of s° in an 
interval [a?', 6], where x' € X° and x' <$ s°. From 2.2 we infer that z 6 B. 

We have verified that B = Z. Therefore J5 is uniquely determined by K° and s°. 
(c) Let Z' be the convex subset of L generated by _4U B. Thus in view of (a) and 

(b), Z' is uniquely determined by X° and s°. 
Since AU B C [t](X, <p) and [t](X> <p) is a convex subset of L we obtain that 

Z' C [t](X,<p). Let y 6 [*](*, y>). Since L is directed, [t](X,<p) is directed as well. 
Thus from y, 6 6 [*]P-\ ¥>) we get that there are yi, tfc € W(X, y>) such that 

yi ^ i K s f t , yi O ^ y * -

The second relation implies that yx € B and y* 6 -4. Thus y e Z' and Z' = [*](*, <p), 
completing the proof. D 

Similarly as in 2.4.1 *re now have 

2.5.1. Lemma* Let tx>t2 € Ly tx < t2. Then [*2](*>¥>) is uniquely determined 
byhMd[tx](Xt<p). 

The assertion dual to 2.5.1 is also valid. 
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2.6. Lemma. Let t G L. Then the se&\t](Xt<p) is uniquely determined by t and 

X°. 

P r o o f . Since L is directed there is t1 € L with 

t'^s°t t'^t. 

In view of the assertion dual to 2.5.1 the set [<1(-Y, <p) is uniquely determined by t1 

and X°. Next, by 2.5.1 the set [t](Xt<p) is uniquely determined by t and [f](Xt<p). 

Hence [t](Xt <p) is uniquely determined by .K0 and t. D 

Lemmas 2.4. land 2.6 yield 

2.7. Lemma. Let t G L. Then the set [t](Yt<p) is uniquely determined by t 

andX0. 

P r o o f of (A). We have already noticed above that for verifying the validity of 
(A) it suffices to consider internal direct product decompositions with two factors. 
Hence let us again deal with the internal direct product decomposition (1'). We have 
to verify that for each t € L the component of t in X° is uniquely determined by t 

a n d * 0 . 
The element t(X°t <p°) is the unique element of L lying in the intersection 

x0n[t](xt9)t 

hence in view of 2.7, t(X°t <p°) is uniquely determined by t and X°. O 

If the relation (1) from Section 1 is valid and AC It i£ L then we denote 

A(Lit<p)-{a(Lit<p):a€A}. 

The set A(Lit <p) is partially ordered by the partial order inherited from L,-. 

P r o o f of (B). Let us have two internal direct product decompositions 

(2> ?°:£ — Jjxfi 

(3) <P<»:L-+HY? 
i€J 

with the same central element s°. In view of Hashimoto's construction (Theorem 1, 
[3]) we obtain direct product decompositions 

(4) 1>:L-+ [J XfiY?'*01)' 
feijeJ 
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(5) *:L-> II WV)-
-€/j€J 

Here, (4) is a refinement of (2) and (5) is a refinement of (3); both (4) attd (5) are 
internal direct product decompositions of L with the same central element s°. 

In view of this fact we have 

(6) Xf(YJ>,V
n) = Y?(X?,V*); 

namely, in the notation applied in the proof of Theorem 1, {3] it was proved there 
that Sj = Sj (under different denotation of indices), and since the direct product 
decompositions are internal with the same central element s°, the relations Sj = 

XHYiQ> ^01) a n d % = y / ( * n <P°) a r e val id- Next> fey aPP^ing (A) we infer that the 
mappings ^ and if>\ coincide. This completes the proof. D 

Let us remark that if we consider an internal direct product decomposition (2) 
and if x is an element of L, then in view of (A) the component of x in X° can be 
denoted simply by x(X°); we suppose that the central element s° is fixed. 

Next, when considering refinements of direct product decompositions (cf., e.g., (1) 
and (4) in Section 1) we shall write 

x(Ck) = x(Li)(Ck) 

instead of (5) in Section 1 under the assumption that (p and \ are internal direct 
product decompositions. 

From (B) we obtain as a corollary: 

(C). Let L be a directed set and let (2) be an internal direct product decompo­
sition of L such that all X° are directly indecomposable. Let 

(7) 1>°:L—+X0xY° 

be an internal direct decomposition of L. Suppose that <p° and V>° have the same 
central element s°. Then <p° is a refinement of\l>°. Thus there are nonempty subsets 
1(1) and 1(2) of I with 7(1)0/(2) = 0, J(l)U/(2) = J such that there exist internal 
direct product decompositions 

^ : * ° — n *<°. ^ : y ° — n x " 
i€/(l) t'€/(2) 

with the same central element s°. 



3. AUXILIARY RESULTS ON DIRECTED MULTILATTICES 

The notion of a multilattice was introduced by Benado [1]-. It is defined as follows. 
Let P be a partially ordered set. For x , j / 6 P w e denote by L(xf y) and U(xfy) the 

system of all lower bounds or all upper bounds of the set {x, y} in P , respectively. 
P is said to be a multilattice if, whenever x,y 6 L and z € L(x,y), then there is 
z\ in L(x>y) such that z\ is a maximal element of L(xfy) and z ^ Z\} and if the 
corresponding dual condition concerning U(x,y) also holds. 

In what follows we assume that P is a directed multilattice. For x, y € L let x A y 
be the system of all maximal elements of L(x, y); similarly, we denote by x V y the 
system of all minimal elements of U(x> y). Both x A y and x V y are nonempty. 

A nonempty subset P' of P will be called an m-subset of P if, whenever x and y 
belong to P', then both x Ay and x Vy are subsets of P'. Let C(P) be the system 
of all convex rn-subsets of P. 

Each lattice can be viewed as a directed multilattice. If P is a lattice and X is a 
subset of P then X is a convex rn-subset of P if and only if X is a convex sublattice 

of P. 
In this section we shall deal with directed multilattices P and Pi which are defined 

on the same underlying set arid satisfy the condition 

(1) C(P) = C(Pl). 

The partial order in P or in Pi will be denoted by ^ and -^i, respectively. If x,y € P 
and x t^y , then [x,y] is the corresponding interval in P; if x ^i y, then [x,y]i has 
the analogous meaning with respect to P\. Next, for a and b in P the symbols a A\ 6, 
a Vi 6, Li(a, 6) and U\(a, b) have the obvious meanings. 

3.1. Lemma. Let x,y,z € P, x ^ z ^y, x ^\ y. Then x < t z and z ^\ y. 

P r o o f . We consider the system C(P) to be partially ordered by inclusion. The 
least element of C(P) containing both x and y is [xfy]. Thus in view of (1) the 
relation [x, y] = [x, y]\ is valid. Hence z 6 [x, y]\. D 

3.2. Corollary. Let x,ybeasin 3.1. lfzuz2 € [*,yj »«<**i ^ z2, then z\ ^\ z2. 

By a similar argument we obtain 

3.3. Lemma. Let xfy G P, x ^ y, y ^i a:, If zi,*2 € fold *«<* *i < *2> then 

3.4. Lemma. Let x, y € P, x ^ y, « € x A\ y, v 6 x Vi y. Then [x, y] s { U ^ J L 

367 



P r o o f . [z,y] is the least element of C(P) containing both z and y. Similarly, 
[u, v]i is the least element of C(P\) which contains u and v. Since x,y € [u,u]i, in 
view of (1) we obtain that [z,y] C [u,v]i. If X € C(Pi) and x , y € X , then u and v 
belong to X; thus u, u € [«, y] arid then [u, v]i C [x, y], completing the proof. D 

3.5. Corollary. Let x,yeP,x^ y. Then card(x Ai y) = card(a: Vi y) = 1. 

3.6. Lemma. Let x, yt u and v be as in 3.4. Next let 

"*»«i € [x,y], x ^i u*, a: ̂  u*v 

Then u* $ u and uf ^ v. 

P r o o f . In view of 3.4 we have u* € [u,v]i, hence u ^i u*. From the relations 

i ) i « ' ) i u, a: :$ u 

and from 3.3 (with P and Pi interchanged) we infer that u* .$ u. The relation u\ $ t; 
can be verified analogously. P 

3.7. Lemma. Let z, y, u and v be as in 3.4. Next let 

v*,vl G[ar,y], y $ i v ,̂ y ^ i v j . 

Then v* ^ v and vj ^ u. 

The p r o o f is analogous to that of 3.6. D 

3.8. Lemma. Let ayb,t 6 Pt t£ att ^b, t ^ a,t ^i 6, t2 6 aVt. Then a .$1 t2 

and 6 < i J 2 . 

P r o o f . If a and 6 are comparable in P, then the assertion is implied by 3.L 
Thus we can suppose that a and b are incomparable in P. 

From 3.1 we infer that 
a < i t2<=>b<i t2. ; 

By way of contradiction, assume that neither a <\ t2 nor b <\ t2 is valid. Then 
in view of 3.5 there are uniquely determined elements ai and 6i in P such that 
ai € a Vi t2 and b\ G b Vi t2. Hence according to 3.4 

a < a i <* 2 , 6-$6i < t2} 

a $ i ai >i t2t b ^i 6i >i t2. 

In view of 3.54here are uniquely determined elements u and v in P with uJE t At t2 

and v € * Vi$2. According to 3.2 the relations ai ^ t; and 6i ^ v are valid. Next, 3.4 
yields that t; ^ ai and v ^b\. Therefore ai = v = b\. Then ai G a V b < t2) which 
is a contradiction. - O 
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There are three obvious modifications of 3.8 (the first is obtained by duality, and 
then we obtain the other two cases by interchanging P and Pi). When applying any 
of these modifications we shall refer to 3.8. Similarly we proceed by quotations of 
obvious modifications of the subsequent lemmas. 

3,9. Lemma. Let a, 6, t and t2 be as in 3.8. Let t\ E a A 6. Then t\ ^\ a and 

*i < i b. 

P r o o f . This is a consequence of 3.8. • 

4. THE RELATIONS R\ AND R2 

We apply the same assumptions as in Section 3. For a, 6 E P we write aR\b if 
there is t E P such that the assumptions from 3.8 are satisfied. Next we write aR2b 
if there is t E P such that 

t ^ a, t ^ 6, t ^i a, t ^i 6. 

From 3.8 we infer that the relations R\ and R2 can be defined also by applying 
the corresponding dual conditions. 

4.1. Lemma. Let a,6,cE PyaR\b and bR\c. Then aR\c. 

P r o o f . There exist elements t\ and t2 in P such that 

h ^ at t\^. 6, t\ ^\ a, t\ ^.\ 6, 

t2 ^ 6 , t2 $ c, t2 ^i 6, t2 ^i c. 

Let £3 E t\ A t2. According to 3.9 (by applying the elements *i, t2 and 6) we obtain 
that *3 ^i t\ and t$ ^\ t2. Thus a.fti holds. D 

Similarly we can verify 

4.2. Lemma. Let a, 6, c E P, aR2b and bR2c. Then aR2c. 

Since the relations R\ and R2 are obviously reflexive and symmetric, in view of 
4.1 and 4.2 they are equivalence relations on P. Let Rm be the greatest equivalence 
relation on P. 

4.3. Lemma. R\V R2 = Rm. 

P r o o f . Let xyy E P, x ^ J/. In view of 3.4 there is c E [x,y] such that xR\C 
and cR2yt hence x(R\ V R2)y. Now it suffices to apply the fact that P is directed. 

• 
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4.4. Lemma. Let i € {1,2}, a, b 6 Pt aRib. Then there exist elements t and t1 

in P such that t^t',a,b€ [t, t7] and tRit. 

P r o o f . This is a consequence of the definition of Ri and of 3.8. D 

4.5. Lemma. Let XQ, X\, X2 € P, XQR\X\ and x\R2x2. Assume that both the 

pairs XQ, X\ and x\, X2 are comparable in P and in P\. Then there is y G P such 

that 

(i) x0R2y and yR\x2; 
(ii) both the pairs XQ, y and y, X2 are comparable in P and in P\. 

P r o o f , (a) If xo ^ x\ ^ a?2, then in view of 3.5 there is a uniquely determined 
element y € P with y € -To Ai «2- Thus according to 3.4, y satisfies (i) and (ii). The 
other cases under the assumption that the set {xo,x\,X2} is linearly ordered in P 

are analogous. 

(b) Now assume that the set {XQ, X \ , X2} is not linearly ordered in P. E.g., suppose 

that XQ ^ x\ and x\ ^ a?2, £0 £ #2- Then the set {XQ,X\,X2} is linearly ordered 

in Pi and we can apply the same method as in (a) by using 3.4 with P and Pi 

interchanged. The remaining cases when {x0,x\,X2} are not linearly ordered in P 

are analogous. D 

4.6. Lemma. .R1.R2 = Rm> 

P r o o f . Let x,y £ P. Choose u € x Ay. Lemma 3.4 yields that there exist 

elements p and q in P such that 

p € [u,x], xR\p, p/?2t*, 

f € [« ,y ] , Sf#2g, qR\u. 

Hence by 4.5 there is v € P such that pR\v and vR2q. Thus by 4.1 and 4.2, xR\v 

and vR2y. Therefore xR\R2y. D 

4.6.1. Corollary. R\R2 = R2R\. 

P r o o f . Analogously to 4.6 we have R2R\ = Rm, hence R\R2 = R2R\. D 

4.7. Lemma. Let a,b£ P. Then there are t\,t2 £ P such that 

aR\t\, t\R2b, 

aR2t2, t2R2b. 

P r o o f . This is a consequence of 4.6 and 4.6.1. D 
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4.8. Lemma. Let a, 6 € P , aR\b and aR2b. Then a = 6. 

P r o o f . In view of ai?i& there is t\ G P with t\ G a A b such that t\ ^\ a and 
t\ ^ i 6. Similarly, from aR2b we obtain that there is t2 G a A 6 such that t2 ^ i a and 
t2 ^ i 6. According to 3.9 we have, at the same time, t2 -^i a and t2 ^ 6. Hence 
a = t2 = 6. D 

For x € P we denote 

x(i i i) = {xi G P : xi?ixi}, x(/J2) = {xi € P: xR2xx). 

Now we shall deal with the sets x(R\), where x runs over P . Analogous results hold 

for the sets x(R2). 

For x and y in P we write x(R\) ^ y(R\) if there are xi G x(i?i) and y\ G y(i2i) 

such that x\ ^ y\. 

4.9. Lemma. Let x,y e P, x(R\) < y(i2i). Then there is X3 G P such that 

x(iii) = x3(i?i), x 3 ^ y and x3 ^1 y. 

P r o o f . There are xi G x(Ri) and y\ G y(J?i) such that xi ^ y\. In view of 3.4 
there is x2 G P such that xi < x2 .^ j/i, xi $1 x2, x2 ^1 yi- Hence x2(i?i) = x(i?i). 
Choose u G y\ A y. According to the definition of R\ and in view of 3.9 we have 
y\(R\) = u(R\). Consider the elements x2 ,yi and u. Then 3.5 yields that x2 A u is 
a one-element set; we denote x2 A u = {tii}. Next, x2i?itii and ui.R2ti. 

Now let us consider the elements u\y u and y. By applying 3.5 we get that there 
is x3 G (tii Vi y)fl [tii,y] such that tii .^ X3 ̂  y, tii/?ix3 and x$R2y. Clearly x3.ftix. 

D 

By similar considerations we obtain 

4.10. Lemma. Let x,y e P, x(R\) ^ y(.Ri). Then there is y3 G P such that 

y(R\) = y3(R\), x .$ y3 and x ^1 y3. 

4.11. Lemma. Let x\y,z G P , x(i?i) ^ y(i?i) and y(i?i) < z(R\). Then 

x(R\)^z(R\). 

P r o o f . In view of 4.9 and 4.10 there are elements X3 G x(i?i) and z\ G z(R\) 

such that X3 t̂  y and y ^ z\. Hence x(i?i) ^ z(Rt). Q 

4.12. Lemma . Let z,y€ P , x(.Ri) < y(R\) and y(Rt) ^ x(R\). Then x(R\) = 

y(R\)-
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P r o o f . By way of contradiction, assume that x(Ri) / y(R\). Since x(Ri) ^ 
y(R\)> according to 4.10 there is y\ G P such that y\ € y(R\) and x < t/i, x >\ y\. 

Next, since y\(R\) ^ x(R\) and y\(R\) ^ x(R\), according to 4.9 there is xi 6 x(R\) 

such that |/i < a?i and x\ >\ y\. Therefore x < x\ and x >\ x\. Hence xRiX\. 

According to 4.8, x = x\. Thus x = j/i and so £(#1) = yi(-Ri) = 2/(-fti). O 

Put J4 = {x(R\): x € P } . With respect to the relation ^ on A defined above 
(which is obviously reflexive), A is a partially ordered set (cf. 4.11 and 4. 12). 

Now we denote B = {x(R*i): x € P] and define the relation ^ on B analogously 
as we did for A. Then B is a partially ordered set as well. 

By a method analogous to that used for proving 4.9 and 4.10 we get 

4.13/ Lemma. Let x,y€Pf x(R2) ^ t/(I?2)- Then there are elementsy\ £ 2/(^2) 
and x\ € x(R2) such that 

* ^ y i > * < $ . i 2 / i , 

x\ ^ y, x\ ^1 y. 

4.14. Lemma. l e t ar, j / 6 P , x(-Ri) -̂  y(iJi) and x ^ ) ^ yC-^)- Then x < y. 

P r o o f . By 4.9 and 4.13 there are elements xi and x2 in P such that 

x^x\, x^\X\ and x\R\y, 

x ^ x2f x ^\ x2 and x2R2y. 

Then in view of 3.4 and 3.5 (with P and Pi interchanged) there is a unique element 
z in x\ V £2; moreover, ari/Ji* and x2R2z. Hence zR\y and .z/itey. Hence according 
to 4.8, y = z. Therefore x ^ y. D 

Consider the mapping <p: P —> Ax B such that <p(o) = (a(R\)t a(R2)) for each 

a € P . It is evident that if a, 6 G P and a ^ 6, then (a(/?i),a(/e2)) ^ (&(#-)> 6(#2))-

4.15. .Lemma. The mapping <p: P —• Ax B is a direct product decomposition 
of the multilattice P. 

P r o o f . This is a consequence of 4.3, 4.8, 4.6 and 4.14. D 

By defining the relations JRI and R2 we have viewed the multilattice P as beeing 
basic. Let us now define relations R\ and R^ by starting with the multilattice Pi 
instead of P ; i.e., when defining { and R2 we proceed by the same method as when 
defining R\ and R2 with the distinction that the relations ^ and ^1 are interchanged. 
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Since the assumptions of 3.8 are symmetric with respect to ^ and ^ i we obtain 
immediately that the relations R\ and R[ coincide. 

Next, for a and 6 in Pi we put aRf2b if there is t\ in P\ such that t\ ^\ a, t\ ^\ 6, 
t\ ^ ayt\ ^ 6. However, from the modification of 3.8 (by applying duality and by 
interchanging P and Pi) we obtain that aR2b implies aR2b; similarly we can prove 
that aR2b implies aR2b. Thus R2 and R2 coincide as well. 

Let A and B be as above. For i € {1,2} we define a binary relation -^i on A as 
follows: for a and 6 in A we put a(R'{) < i b(R^) if there are ai € a(Ri) and &i € 6(iZ{) 
such that ai -^i 6i. The set A with this relation will be denoted by A\. Analogously 
we define the partially ordered set B\. Similarly as in 4.15 we can prove 

4.15'. Lemma. A\y B\ are partially ordered sets and the mapping 

<p:P\-^A\ xB\ 

defined by <p(a) = (a(R\)} b(R2))
 , s a direct product decomposition of P\. 

Next, from 4.9 and 4.13 we immediately obtain 

4.16. Lemma. Leta.be P . Then 

a(R\) < b(R\) <==> a(R\) >\ b(Rfx), 

a(R2) ^ b(R2) <£=> a(R!2) ^ b(R!2). 

For each partially ordered set L we denote by Ld the partially ordered set which 

is dual to P . Then 4.16 yields 

4.17. Corollary. Ax = Ad and B\ = B. 

By summarizing, from 4.15, 4.15', 4.17 and by constructing the corresponding 
internal direct product decompositions we infer 

4.18. Theorem. Let P and P\ be directed multilattices defined on the same 

underlying sets such that C(P) = C(Pi). Let s° € P . Then there exist internal 

direct product decompositions 

9*:P—>A°xB°> <p°:P\—+(A°)dxB0 

with the central element s°. 
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For results related to 4.18 cf. [2] (for the case of finite lattices), [4] (for the case of 
distributive lattices) and [5] (for the case of lattices). 

4.19. Lemma, (i) If L is a multilattice, then C(L) = C(Ld) . (ii) Let X,Y be 

multilattices and Z C X x Y. Let Z\ and Zi be the projections of Z into XorY, 

respectively. Then Z € C(X x Y) iff Z\ G C(X) and Z2 € C(Y). 

The proof is easy, it is omitted. 
Let us remark that in (ii) above the two-factor direct product decomposition can 

be replaced by a direct product decomposition with an arbitrary number of direct 
factors. 

4.20. Corollary. Let P and P\ be multilattices defined on the same underlying 

set. Let 8° G P . Assume that there exist internal direct decompositions 

(p0.p_^A0x B0^ v0. pi _ ^ ^ O y f x gO 

with the central element s°. Then C(P) = C(P\). 

5. CONVEX ISOMORPHISMS 

We assume that P and P' are directed multilattices. 

5.1 . Definition. A mapping f of P onto P' is called a convex isomorphism if 

(i) / is a bijection; 

(ii) for each XCP,Xe C(P) <-=> f(X) € C(P'). 

For the case of lattices, this definition is due to Marmazeev [8]. If P = P\ then 
under the assumptions as in 5.1, / is called a convex automorphism. 

For each positive integer n put n = { 1 , 2 , . . . , n}. The following is the main result 
of[6]. 

5.2. Theorem([6], Theorem 10.). Let L be a lattice which can be decomposed 

into a direct product L = L\ x L% x . . . x Ln, where all L% are directly indecomposable. 

Convex automorphisms of L are just the mappings obtained as follows: we taice a 
permutation n of the set n such that there exist bijections f%: L% —• -̂ ir(i)> each of 

them being either an isomorphism or a dual isomorphism, and set f(x)w(i) = f%(x%) 

for any x € L. 

(In 5.2, for each x 6 i and each t € n, x% denotes the component of x in L(.\ 
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5.3. Theorem. Let P and P9 be directed multilattices which can be decomposed 

into direct products 

»€/ j€J 

Assume that TT: / —• J is a bijection and that for each i G /, /»: Pi —• P*(i)t *s a 
bijection which is either an isomorphism or a dual isomorphism. Then f is a convex 
isomorphism. 

P r o o f . Without loss of generality we can assume that <p and <p9 are internal 
direct product decompositions with the same central element s°. Let 1(1) be the set 
of all t G / such that /•: P,- —• P)r(1) is an isomorphism. Put 

A = {x G P: x(Pi) = s° for each i G / \ / ( l ) } , 

B = { x 6 P : s(P,) = s° for each i G / ( l ) } . 

Then in view of 4.19 and 4.20 (cf. also the remark after 4.19) we obtain that / is a 
convex isomorphism. • 

5.4. Definit ion. Let P and P9 be directed multilattices. A bijection f: P —• P9 

is said to be a similarity mapping from P to P9 if, whenever P can be decomposed 
into a direct product 

(1) ^:P_JJp, 
»€/ 

where all Pi are directly indecomposable, then 

(i) there exists a direct product decomposition <p9: P9 —• J ] P( such that all 
<€/ 

P( are directly indecomposable; 

(ii) for each i £ I there exists a bijection /»: P»- —• P( such that /,* is either an 

isomorphism or a dual isomorphism; 

(iii) for each x G P and each i G / , f(x)(P() = /,(*(P,)). 

5.5. Theorem. Let P and P ' be a directed multilattices and let f: P —• P9 be 
a convex isomorphism. Then f is a similarity mapping from P to P'. 

P r o o f . Let (1) be valid where all Pg are directly indecomposable. Let ae G 
P. Without loss of generality we can assume that <p is an internal direct product 
decomposition with the central element 8°. 
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For ar, y € P we put x ^\ y if and only if f(x) ^ f(y). Then ^ i is a partial order 
on P ; the set P with this partial order ^ i will be denoted by P\. The mapping Z"*1: 
P ' —• P\ is an isomorphism. P\ is a directed multilattice satisfying 

C(P1) = C(P). 

Hence for P and P\ we can apply the results from Section 4. According to 4.18 there 
are internal direct product decompositions 

(po.p_^Aox go^ <p0. Pi_> (Ao^d x Bo 

with the same central element s°. 

In view of Theorem (C) in Section 2, <p is a refinement of (p° and there are internal 
product - decompositions 

V>0:-4°— I t *> <Pl~B°-+ I I Pi 

f€ / ( l ) t€/(2) 

with the same central element 8° such that 1(1) O /(2) = 0 and / ( l ) U /(2) = / . 
For each i G I we put Qf = (P.)** if t € / ( I ) , and Qf = Pf if t 6 /(2). We obtain 

internal product decompositions 

<pi.(A°)d-+ n Q*> <piB°-+ n <?. 
•e/(i) «€/(2) 

with the same central element s°. By applying this and using the mappings <p° and 

<p we get an internal direct product decomposition 

(2) V'.Pi— ]jQi 
*€/ 

with the central element s°. Here all Qf are directly indecomposable. 

Put (a0)' = f(s°) and P/ = / (Qi) for each t € / . Since / is an isomorphism of P\ 
onto P' there is an internal direct decomposition with the central element (s0) ' 

<€/ 

and all P/ are directly indecomposable. 
For each t € / and each y G Pi we put / f(y) = f(y). We obtain a bijection 

/*: Pi —* Pi- If * € ^(1)> ^ c n /i is a dual isomorphism; for t € /(2), /,- is an 
isomorphism. Next, by applying the fact that / is an isomorphism of P\ onto P1 and 
by using (1), (2) we get that for each x £ P and each t g / the relation 

f(*)(Pi) = f(*(Qi)) = fi(x(Qi)) = fi(*(Pi)) 

is valid. D 
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5.6. Theorem. Let P be a multilattice which has a direct product decomposition 

<p: P —• n pi sucn tn*t &I1 pi are directly indecomposable. Let f be a convex 
i£l 

automorphism of P. Then there exist 

(i) a bijection T ; / —• /, 

(ii) bijections /,-: Pi —-> Pw^ where for each i G / , /• is either an isomorphism 

or a dual isomorphism, such that /(-c)*(«) = /•(*<) &r eacn £ € P-

P r o o f . The assertion is trivial in the case cardP = 1. Thus we can assume 
that card P > 1. Then without loss of generality we can suppose that (p is an internal 
direct product decomposition with a central element s° and that card Pi > 1 for each 

i e i. 
We apply 5.3 where we put P1 = P. In view of the constructions in the proof of 

5.4 we have an internal direct product decomposition (with the central element s°) 

r<:P-+l[P( 
• €/ 

such that for each i £ I there is a bijection /»: P,* —• P/, this bijection being either . 
an isomorphism or a dual isomorphism. Hence all P( are directly indecomposable. 

According to (B) there exists an internal direct product decomposition %f) of P 
with the central element s° such that tp is a refinement of both <p and (p1. Again 
without loss of generality we can assume that each direct factor standing in ip fails 
to be a one-element set. Then, since all P,- are directly indecomposable, by applying 
(A) we obtain that <p = ip; similarly, <p' = xp. Thus <p = <p'. 

Hence for each i € I there exists 7r(t) G / such that P( = P*(«> Then w: I —• / is 
a bijection and the condition (ii) is satisfied. Next, in view of 5.5 and the condition 
(iii) in 5.4 we have (under the obvious notation) 

f(x)*(i) = Mx0 for each * € P. 

D 

Theorem 5.2 is a consequence of 5.3 and 5.6. 
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