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EXTENDED TREES OF GRAPHS 

BOHDAN ZELINKA, Liberec 

(Received January 28, 1993) 

Summary. An extended tree of a graph is a certain analogue of spanning tree. It is 
defined by means of vertex splitting. The properties of these trees are studied, mainly for 
complete graphs. 
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In this paper we shall introduce the concept of an extended tree (2?-tree) of a graph; 
this concept is a certain analogue of a spanning tree. We consider finite undirected 
graphs without loops and multiple edges. We use the standard graph-theoretical 
terminology as eg. in [1]. 

For defining this concept we will use the concept of vertex splitting. Let G be a 
graph, let v be a vertex of G of degree at least 2. Let V = {Pi, P2} be a partition 
of the set F(u) of edges of G incident with v into two classes. We delete v from G 
and add two new vertices v1, v2. We join the vertex v1 (or v2) by edges with exactly 
those vertices which were joined in G with v by edges from Pi (or P2, respectively). 
Then we say that the resulting graph was obtained from G by splitting the vertex v 
according to the partition V. 

The above mentioned partition V is called disconnecting, if there is no circuit 
in G containing edges from both classes of V. Evidently a graph obtained from G 
by splitting v according to V has more connected components than G if and only if 
V is disconnecting. 

Here we see a certain analogy between a disconnecting partition and a bridge; this 
analogy leads us to the definition of an extended tree of a graph. 

Let G be a finite connected graph. If G is a tree, then the unique extended 
tree of G is G itself. If not, then G contains at least one circuit and thus there 
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exists a vertex v and a partition V of the set of edges incident with v which is not 
disconnecting. We choose one of them and perform the splitting according to it. We 
repeat this procedure, until a tree is obtained. This tree will be called an extended 
tree (shortly F-tree) of G. 

If we have an edge uv of the original graph and the edge uv1 or uv2 of the graph 
obtained by splitting t;, we may consider them as identical ones. Therefore we may 
consider the edge sets of both these graphs to be identical. 

P ropos i t ion 1. The above described procedure leads always to a tree. The num

ber of steps is equal to the cyclomatic number c(G) ofG. 

P r o o f . As we perform splittings always according to non-disconnecting parti
tions, we cannot obtain a disconnected graph. If in some step we obtain a graph which 
is not a tree, then it contains a circuit and therefore there exists a non-disconnecting 
partition of F(v) for some vertex v and we may continue. Consider such a graph 
G' and the graph G" obtained from it by the above mentioned splitting. If n is the 
number of vertices and m the number of edges of <3', then G" has n -f-1 vertices and 
m edges. For the cyclomatic numbers we have 

c(G") = m - ( r a + l) + l = m - n = c(G') - 1. 

Therefore exactly after c(G) steps we obtain a graph whose cyclomatic number is 0 
and this is a tree. • 

Here again we see an analogy with the spanning tree, which is obtained after c(G) 

deletions of edges. 

T h e o r e m 1. A finite connected graph G has an E-tree which is a path if and 

only if it has an Eulerian trail (open or closed). 

P r o o f . Suppose that G has an open Eulerian trail ( e i , . . . , e w ) . For i = 
1, . . . , m — 1 let Vi be the common end vertex of e* and ei+i; further, let vo be 
the end vertex of ei different from v\ and let vm be the end vertex of em different 
from v m _ i . If the degree of vo in G is greater than 1, then we consider the partition 
{{ei},F(vo) - {ei}}. All edges of G and thus also all edges of F(vo) - {ei} are in 
the above mentioned Eulerian trail and therefore there exists i > 0 such that Vi = v0. 

The edges e i , . . . ,ei form a closed trail, therefore there exists a circuit in G which 
contains ei and ei and the partition is not disconnecting. We perform the splitting 
of vo according to it; in the resulting graph the vertex v0 has degree 1. The vertex v\ 

has degree at least 2 in the resulting graph, because it is incident with ei and e2- If 
its degree is greater than 2, then consider the partition {{ei,e2},F(^i) - {ei,e2}}. 
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By a similar argument as above we prove that it is not disconnecting. We perform 
the splitting of v\ according to it; in the resulting graph the vertex v\ has degree 2. 
In such a way we proceed further. The final result is an E-tree of G isomorphic to 
a path. 

If G has a closed Eulerian path, then we choose a vertex v and an edge e 6 F(v) 

and perform the splitting of v according to {{e}yF(v) — {e}}. The resulting graph 
has an open Eulerian trail going from v1 to v2 and we may continue by the procedure 
described above. Therefore a graph having an Eulerian trail has an 15-tree which is 
a path. 

Now let G have an IS-tree T which is a path. If two edges have a common end 
vertex in T, they have it also in G. If we run over the E-tree from one end vertex to 
the other, then the corresponding edges in G form an Eulerian trail. D 

Proposition 2. A finite connected graph G has an E-tree which is a star if and 

only if G is a star. 

P r o o f . If G is a star, then evidently its unique .E-tree is G itself, i.e. a star. 
Now suppose that G is not a star. If G is a tree, then its unique E-tree is G itself, 
therefore it is not a star. If G is not a tree, it contains a circuit C; the length of C 

is at least 3. Then we may take a vertex v of C and a non-disconnecting partition 
of F(v) and perform the splitting according to it. The vertices vl,.v2 in the resulting 
graph axe obviously not adjacent and have no common neighbour, because it would 
have to be joined with v in the original graph by two edges. Therefore the distance 
between v\ and v\ is at least 3. By further splittings it cannot be decreased, therefore 
any E-tree must contain a path of length at least 3 and cannot be a star. D 

Theorem 2. Let G be a finite connected graph, let q be the number of vertices 

of odd degrees in G. Let T be an E-tree of G, let t be the number of its terminal 

vertices. Then 

±q + l ^ t . 

P r o o f . If g = 0, the assertion is evident; thus suppose q ^ 2. If we perform 
a splitting of a vertex i>, then the sum of the degrees of vl and v2 in the resulting 
graph is equal to the degree of v in the original graph. If the degree of v is odd, then 
exactly one of the vertices u1, v2 has an odd degree and thus the number of vertices 
of odd degrees cannot decrease at splittings. Therefore if T is an .E-tree of G and 
qo is the number of its vertices of odd degrees, then qo ^ q. Let t be the number of 
terminal vertices of T. We have 2 -̂  t ^ qo, because each terminal vertex has the 
odd degree 1. We shall prove the inequality \q$ + 1 ^ t by induction according to t. 

If t = 2, then T is a path and q0 = 2; then | g 0 + 1 = t. Now let t = k > 3 and 
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suppose that the assertion holds for K k - 1. Let u be a terminal vertex of T, let 
v be the vertex of degree at least 3 (at least one must exist) whose distance from u 
is minimal. Let P be the path in T connecting u and v, let T' be the tree obtained 
from T by deleting all edges and vertices of P except v. The tree V has t' = fc - 1 
terminal vertices. If v has an even (or odd) degree in T', then it has an odd (or 
even) degree in T' and q0 = qo (or q0 = q0 — 2, respectively) for the number q0 of 
vertices of odd degrees in V. As t' = k - 1, we have |^o + 1 ^ t' and therefore 
|<Zo ^ 2 #o + l ^ t ' = £ — 1 and hence |</o +1 < t. As qo ^ q, we have also \q +1 ^ t. 

Theorem 3. Let n be an even positive integer. Then there exists an E-tree T 
of the complete graph Kn having exactly | n + 1 terminal vertices. 

R e m a r k . The graph Kn for n even contains n vertices of the odd degree n - 1 . 

Proof . For n = 2 the assertion is evident. Suppose n ^ 4. Choose a linear 
factor L in Kn. Let G be the graph obtained from Kn by deleting all edges of L; it 
is a connected regular graph of the even degree n — 2. For each edge e G E(L) choose 
one of its end vertices and denote it by u(e); let M be the set of all vertices u(e) for e 
from L. We split each vertex u(e) according to the partition {{e},F(u(e)) - {e}} 
and denote the graph thus obtained by H. The vertices ul(e) for u(e) G M are of 
degree 1 in H and the subgraph of H induced by the set of all vertices u2(e) is G. 
By Theorem 1 we can construct an .E-tree of G which is a path; the construction 
described in the proof of the theorem is such that both the terminal vertices of this 
path come from one (arbitrarily chosen) vertex of the original graph. If we choose 
this vertex to be a vertex u2(eo) for some eo £ E(L), then by this construction 
we obtain from H a tree T whose terminal vertices are all u(e) for e € E(L) and 
one of the terminal vertices of this path (the other is joined with n1(eo) and has 
the degree 2). This is the required tree. D 

Theorem 4. Let T be an E-tree of a complete graph Kny let t be the number of 
its terminal vertices. Then 

1 < 2n* ~ l n + 2-

Proof . The assertion is clear for n = 2; thus suppose n ^ 3. The cyclomatic 
number of Kn is c(Kn) = \n(n - 1) - n + 1 = \n2 - §n + 1. The .E-tree T is 
obtained from Kn by c(Kn) vertex splittings. For each vertex v of Kn we denote by 
S(v) the set of vertices of T which were obtained by successive splittings of the vertex 
v; obviously S(v) has at most n - 1 elements and the sum of degrees of vertices from 
S(v) in T is equal to the degree of v in G, i.e. to n — 1. If M(v) contains n — 1 
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vertices of degree 1, then these vertices were obtained by n — 2 splittings. But such 
a case may occur for at most one vertex; otherwise there would exist an edge joining 
two vertices of degree 1 in T, which is impossible. For any other vertex v the set 
S(v) consists of s(v) < n — 3 vertices of degree 1 and at least one vertex of degree at 
least 2. These s(v) vertices are obtained by at least s(v) splittings. In total, t vertices 
of degree 1 can be obtained by at least t - 1 splittings. The number of splittings is 
c(Kn), hence t - 1 -̂  c(Kn) and 

t ^ c(Kn) + 1 = \n2 - §n + 2. 

Theorem 5. For every integer n ^ 2 there exists an E-tree of Kn having exactly 

\n2 - | n + 2 terminal vertices. 

P r o o f . Choose a spanning tree S of Kn and choose one terminal vertex VQ 

of S. Further, assign orientations to all edges of E(Kn) — E(S) in such a way that 
all edges of E(Kn) — E(S) which are incident with VQ will be oriented so that VQ will 
be their terminal vertex, other edges of E(Kn) — E(S) will be oriented arbitrarily. 
Now for each edge e G E(Kn) — E(S) we perform a splitting of its terminal vertex (in 
the orientation) according to the partition in which one class is {e}. In this way the 
required 22-tree is obtained. Its terminal vertices are all terminal (in the orientation) 
vertices of edges of E(Kn) — E(S), whose number is c(Kn), and moreover one vertex 
which was obtained from VQ by splittings (a vertex incident with an edge of E(S)). 

D 

In the end we will mention the diameters of J5-trees of complete graphs. 

Theorem 6. Let T be an E-tree of a complete graph Kn for n ^ 4, let S be its 

diameter. Then 

S^4. 

P r o o f . The diameter of T cannot be 2, because then T would be a star, which is 
impossible by Proposition 2. Suppose S = 3. Then T exactly two vertices of degrees 
greater than 1 and therefore it has \n(n — 1) — 1 = \n2 — \n — 1 terminal vertices. 
According to Theorem 4 this must be less than or equal to \n2 — | n + 2. But this 
implies n ^ 3. Therefore for n ^ 4 we have 5 > 4. D 

R e m a r k . For the graph K2 there exists a unique .E-tree, namely K2 itself; its 
diameter is 1. For the graph K3 all E-trees are isomorphic to a path of length 3 and 
therefore they have diameter 3. 
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Theorem 7. For each integer n ^ 4 there exists an E-tree T ofKn whose diameter 
is 4. 

Proof . The required tree T is constructed in the way described in the proof 
of Theorem 5, choosing the spanning tree 5 to be a star. D 

Theorem 8. Let T be an E-tree of a complete graph Kn, let 6 be its diameter. 
Then 

5 ^ n(n — 1) for n odd% 

6 ^ n 2 - n + 1 torn even. 

Proof . If n is odd, then Kn is an Eulerian graph and has an .E-tree which is 
a path; this path has \n(n - 1) edges. If n is even, then by Theorem 2 the tree T 
has at least | n + 1 terminal vertices. A diametral path of T can contain only two 
of them and therefore its length is at most \n(n - 1) - | n + 1 = | n 2 - n + 1. O 

Theorem 9. For each even positive integer there exists an E-tree T ofKn whose 
vneter is \n2 - n + 1. 

Proof . This is the tree described in the proof of Theorem 3. D 
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