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Summary. Natural liftings D: I -> ITT* are classified for n ^ 2. It is proved that they form 
a 5-parameter family of operators. 
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Kolaf classified natural liftings transforming vector fields on manifolds to vector 
fields on natural bundles which correspond to Weil algebras [3]. A simple example 
of a natural functor which does not arise from a Weil algebra is the cotangent bundle 
functor T* (functors which correspond to Weil algebras are precisely those which 
are covariant and multiplicative — see [1], [2]). Natural liftings of vector fields to the 
cotangent bundle of T* were found by Kolaf. In this paper we classify natural liftings 
of vector fields of 2TTT* — another example of a natural bundle; which does not 
correspond to a Weil algebra. 

1. PRELIMINARIES 

We first recall basic facts concerning natural bundles and introduce the notation 
we shall need later on. We shall consider natural bundle functors F: Jin -» $FJln 

where J(n denotes the category of ̂ -dimensional manifolds and local diffeorriorphisms 
whereas $FJ(n is the category of fibred bundles with n-dimensional base manifolds 
and fibre bundle morphisms. It is well known that every natural bundle has finite 
order and the category of natural bundles of order = r with natural transformations 
of functors as morphisms is equivalent to the category of Lr

rt-manifolds and L^-equi-
variant maps. For a natural bundle F we will denote by F0 the corresponding LJJ-
manifold, F0 == (FRn)0. Similarly, if p: F -> G is a natural transformation of natural 
bundles, p0 = p(Rn)\Fo: F0 -• G0 will denote the Lrt-equivariant map corresponding 
to p. The action of Ln on F0 is given by the formula (j0<p) z = F(<p) (z) and this 
gives formulae which describe the action in the coordinates in particular cases. For 
example, the canonical coordinates (xl) on Rn induce the coordinate system (xl, Pi) 
on T*Rn and then the coordinate system (x\ ph 7/, P[) on TT*Rn = (TT*)0 xRn. 
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This gives coordinates (ph Y[,P\) on (TT*)0 arid by calculating F(cp), where <pe 
€ Diff (Rn, 0), we get the action of L2

n on (7T*)0 (cf. [5]): 

(1) pt = b{Pj , 7[ = a)Y{ , P] = b{P) - al
jkb?b{pmY*, 

where (aj, aj.yj e L* and (fey) is the inverse matrix of (a)). By repeating this procedure 
again we get coordinates (ph Y{, PJ, Y[, P], Y},pf) on (77T*)0 but we will not 
calculate the action of L*. For our purposes it will bs sufficient to know the action 
of the subgroup B*n = {jl<p: <p G Diff(Rn, 0), j0<p = f0 \dRn). This action is easier 
to be calculated since if (a), a)xjl, a)j2h)e Bn then a) = S) and ai

jijl = 0. Using (1) 
we get 

(2) Pf = P* - a{lrVjYlY'2 

and the remaining coordinates do not change. 
For a natural bundle F we will denote by JrF the rth jet prolongation of F while 

Qr
k: JrF -> JkF (r ̂  k) will denote the canonical projection. Later on we will need 

a formula for the action of Br+i = {f0
+i<p: cp e Diff(lT, 0), f0cp = f0 \ARn} on 

(JT) 0 . It can be obtained by differentiating 

ПA - % XJ(<p-l(x)). 
\<f>-l(x) 

We get 

(3) XLjr=XLjr + <.Jr+lXJr+l 

and the other coordinates are not affected. 

2. VERTICAL BUNDLES AND LIOUVILLE VECTOR FIELDS 

Let F be a natural bundle and let £ be a natural vector bundle, E: Mk -> &Jtk 

where k = n + dim F0. Then the composition EF: Mn -> !FJln is a natural bundle. 
The projection EF -> F is a natural transformation of functors and will be denoted 
by pp. The vertical bundle VEF will be defined by the following exact sequence of 
natural vector bundles over EF: 

(4) 0->VFF lEF>TEF dPF ,pJTF -> 0 , 

where lEP denotes the natural inclusion VEF -• TEF. 
Since E is a natural vector bundle, natural bundles VEF and EF xFEF are 

isomorphic (the natural functor EF xF EF is defined so that EF xp EF(M) = 
-a EF(M) x P(M) EF(M), and the riatural equivalence is given by the formula 

VEF(M) э [ Г f ] -* ( ľ 0 , .£ ľ . | , и 0 ) є EF x , ÊҒ(M) , 
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where yt is a curve in EF(M)). It is easy to notice that the natural bundles p*EF 
and EF xFEF are also naturally equivalent. From now on we will identify the 
functors VEF, EF xFEF and p*EF. Let LEF: EF -+ TEF denote the composition 
of the diagonal transformation EF -> EF x F EF ~ VEF with lEF: VEF -> TEF. 
Since pEF o LEF = id£F, LEF(M) is a vector field on EF(M). This general construc­
tion will be used in this paper only in two cases: E = T*, F = id^n and E = T, 
F = T*. In the first case F(M) = M so F is a natural bundle with 0-dimen-
sional fibres, sequence (4) can be rewritten as 

(5) 0 -> VT* - ^ 7T* - ^ - > P*T-> 0 , 

VT*(M) a. T*(M) x M T*(M) is the vertical bundle and LT*(M) is the Liouville 
vector field on T*(M). In the second case we get the sequence 

(6) 0 -» VTT*-^* TTT*^+p$.TT* -» 0, 

VTT*(M) ~ TT*(M) x T*(M) TT*(M) and LTT*(M) is a vector field on TT*(M). 
In order to make formulae shorter, we will denote bundle projections as in the 

following diagram: 

T T T* ___\, TT* _ _ 1 * T* __^U id^n 

| d P l 2 | d p 0 l 

T T * T 

We also put pi = pi o pi, Po == Po ° Pi a n ^ s o o n-

3. NATURAL LIFTINGS 

Let F be a natural bundle and let M e Jtn. By ^(M) we will denote the set of 
sections of the bundle F(M) -> M. Similarly, <̂ F(M) will denote the set of sections 
of the bundle EF(M) -+ F(M). For example, LT<(M)e 3TT*(M) and LTT*(M)e 
e ^TT*(M). 

A natural lifting Jf of vector fields to a natural bundle F is a regular natural 
differential operator from the tangent bundle functor Tto the functor TF, Jf: 3T -> 
-> 2TF. It was proved in [3] that the order of such an operator is not greater than 
the order of F. Let r denote the order of Jr. Then, since Jf is regular, there is a cor­
responding natural transformation N: JrT x F -> TF such that for X e &~(M), 
z e F(M)X we have Jr(M) (X)z = N(M) (jxX, z) (regularity is necessary for N(M) 
to be smooth). Further on we will denote liftings and the corresponding natural 
transformations by the same letters. 

For every natural bundle F there is a fundamental lifting 3FF: $" -> yF , which is 
also called the flow operator: ^F(X) is a vector field which corresponds to the local 
1-parameter group of diffeomorphisms (F(<pt)), where (<pt) is a local 1-parameter 
group of X. The order of 3FF is equal to the order of F. 
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We shall begin with examples of natural liftings of vector fields to the bundle 7T*. 
First, we have the flow operator ^ r l»3 = #*rr*: T -> FTT*. We also have the 
following 'constant' lifting £eTT.\ F -• 5TTT* defined by the formula 

er(M) 9 X -* LTT*(M) e FTT*(M). 

We can get other natural operators 3~ -> 3TTT* by composing natural operators 
9~ -> $"T* and natural operators FT* -+STTT*. We have two natural liftings 
/JF-.2 = j r r < andJ5fT*:«r-^«7T*, defined similarly as J5"1'3 andJ^rr*. We also 
have two natural operators «̂ "2*3 and /: 3TT* -> &"TT*y where i^2 '3 is the flow 
operator and / is defined in the following way: for Xe FT*(M), Ze TT*(M) we 
have l(X)z = /rr*(Z, X(p\(Z))) (we recall that /rr*: VTT* -> 7TT* is the natural 
inclusion from the diagram (6)). Since «^2'3 o #'1 , 2 = «^r1,3, we get three more 
operators: ^2,3oJS?r», /o«£?r*, / o ^ 1 , 2 . We will prove that all natural liftings 
-ST -> y 7T* are generated by the five listed above, provided n ^ 2. But first we shall 
need some lemmas. 

If a group G acts on a set X on the left then Gx will denote the stability group 
of x e X, Gx = {a e G: ax = x}. We have the following obvious lemma: 

Lemma 1. If a group G acts on setsX, Yon the left andf: X -> Yis G-equivariant 
then Gx c Gf(x)for all xeX. 

The next lemma comes from the book [4]. Let V denote the vector space Rn with 
the standard action of the group Ll

n and let Vkl = V x . . . x V x V * x . . . x V*. 
1 v ' ' v ' 

k times I times 

Lemma 2. All smooth L^-equivariant maps Vk { -> V are of the form 
k 

£ 9*«x0> yy» *« 

where ga\ R
kl -+ R are smooth functions, a, ft = 1 ... fc and y = 1 ... /. 

Remark 1. A similar statement is true in the case of L^-equivariant maps Vk t -> V* 
(see [4]). 

Lemma 3. Let c: JXT x TT* -+ T be a natural transformation and let n Si 2. 
Then there exist smooth functions a, f}:R3 -» J? such that 

(7) c(£X, Z) = (a o ^ X , Z)) X + (/? 0 {(£*, Z)) dpi(Z) 

where {: JlT x TT* 3 {j\X, Z) - {(X, p\{Z)y, <dpl
0{Z), p?(Z)>, *) e J?3 and 

t: J1Tx TT* -*R is a natural function, 

(8) t{jU,[cot]) = j<<o„xy\t=0. 

at 
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Proof. Let us consider the L^-equivariant map c0:(J
lTx TT*)0~*V. The 

injection Ll„ 9 (a)) -> (a)9 0) e J}n allows us to consider L\ as a subgroup of £* Let 
S° c (7^)0 denote the space of 1-jets of constant vector fields on R". The space 
S° x (TT*)0 can be defined in the coordinates (Xl

9 X), ph Y[9 P\) on (JlT x TT*)0 

by the conditions X) = 0, i,j = 1 ... n. It is easy to notice that S° x (TT*)0 is 
L*-invariant and, as an L^-space, it is equivalent to V x V x V* x V*. Now we 
apply lemma 2 to the map c0 restricted to S° x (TT*)0. We see that 

c0(X\ 0, pi9 Y
l
l9 P\) = ^(-y'pi. *'*!> li'pi, r/pj) X + 

+ h(XiphXiP\9Y[pi9Y[P\)Y1 

where a, ft: /f4 -> R are smooth functions. We will prove that g and h do not depend 
on the fourth variable. Let Bt cz B2 be the stability group ofj0X9 where X = djdxl 

is a constant vector field on Rn. If (a)k) e Bt then formula (3) implies that ajx = 0 
and, since c0 is i^-equivariant, 

giX^X'Pl YiPi, YiP]) = giX^X'Pl YiPi, Y[P\ - a ^ Y / ^ ) . 

This formula implies that g does not depend on the fourth variable. The same 
argument can be applied to h. It follows from (8) that in the coordinates we have 

(9) t0{X\ X'j, p„ Yi, P]) = P1** + X" YiPm . 

Consequently, there exist smooth functions a, ft: R3 -*• R such that c0 satisfies (7) 
on 5° x (TT*)0. Since c0 is L2„-equivariant, (7) is satisfied on L2

n(S° x (7T*)0), 
which is a dense subset of (JXT x TT*)0. This completes the proof because c0 is 
continuous. QED. 

For the fibre product of two fibre bundles we will denote by prt and pr2 the 
projections to the first and to the second factor of the product, respectively. 

Lemma 4. Let f: JlT x TT* -> TT* be a natural transformation such that 
p\ °f = Pi ° Pr2 and let n ^ 2. Then there exist smooth functions a, />, y: R3 -* R 
such that 

(10) / = (a o {) ^ 2 + {p o t) pr2 + (y o t) <£T. 

where £ is defined as in lemma 3. 

Proof. Let us consider the natural transformation c = dp0 of: JrlT x 7T* ~> T. 
Then c is as in (7) for suitable functions a, /?. Let us define 

(U) f1-=f-(ao0^1'2-(i8o^)Pr2, 

fx: JlT x TT* -^ TT*. Since d/>0 o ^U2 = £0 o pru we have dP0 °/i = °> a n d 

from the exact sequence (5) we get thatfx takes values in VT*. But VT* is naturally 
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equivalent to (Po)* T* = T* x T* and, since the diagram 

jiTx Yfv.J^ T* x T* 

I ! 
Pi2opr2\ i/pri 

T* 

commutes, it is enough to findf2 = pr2 oft: J1T x TT* -• T*. Similarly as in the 
proof of lemma 3 one can show thatf2 = (y o £) p\ o pr2, where y: R3 -> R is a smooth 
function (see Remark 1). Since fx = /r* o (P2 o pr2,f2) we see that fx = (y 0 £) cS?T» 
and from (11) we get (10). QED. 

Theorem. Let D: I -* 7TT* be a natural lifting and let n ^ 2. Then fhere exisf 
smooth functions a, y, a', /?', y': i?3 -* R such that 

(12) D =- (a o <J) ^U3 + (y o {) z^2*3 o J2f r . + ( a ' o{ ) !o -F1-2 + 

+ (jS /'o{)jSfrr, + ( /o{ ) /oJSP T * . 

Proof. Let us consider the corresponding natural transformation D: J2T x TT* -» 
TTT*. Then the diagram 

J2Tx TT*-^-> TTT* 

pr2\ jS P23 

TT* 

commutes. We will consider the natural transformation dp\ 0 D: J2T x TT* -» 
TT*. Let A1 = (<?£)-- ( F S { 0 } ) <= (^T) 0 and A2 = (<,*)-* (Fx{0}) e (J2T\, 

Formula (3) implies that B3 acts transitively on fibres of the bundle Q\: A2 -* Ax. 
Since B3 acts trivially on (TT*)0, dp\ 0 D is constant on fibres of the bundle A2 -* A1. 
But -41 is dense in ( J 1 ^ and consequently dp2 o D is constant on fibres of (J2T% -* 
-> (J1T)0. Therefore there exists / : J1T x TT* -» TT* such that the diagram 

J2T x TY* * ^ TT* 

p l 2 X i d T T * \ * " / 

J l r x TT* 

commutes. We apply lemma 4 to f and find that f = (a o £) P1,2 + (p o {) />r2 + 
+ (yo^)«SfT*. Let 

(13) Z)x = Z) - (a o {) ̂ ' 3 - (y 0 «) ̂ * ' 3
 0 ^ V . 

This implies that 

(14) dpi
loD1(j

2
xX,Z) = (PoZ)Z. 
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We will prove later that /? 0 { = 0. Then it follows from the exact sequenCc /^\ 
that Di takes values in VTT* and we have the following commutative diagram: 

J2T x TT* —--U TT* x r , TT* 

pr2 \ / prt 

TT* 

Let D2 = Pr2 o Dt: J2T x TT* -> TT*. Then Dx = lTT*o(pr2i D2). Similarly as 
above we find that there exist (x\p\y':R3 -> R such that D2 = (at! o(]^la + 
(P' o 0 Pr2 + ( / o Q&T*. This formula and (13) imply (12). 

It remains to prove that f} 0 £ = 0. We shall use the coordinate systems on 
(J2T x TT*)0 and (TTT*)0 introduced in the first section. Let 

(p, Yu P1, Y2, P2, f3, P ) = ^ ( j 2 * , p9 Yl9 P1) . 

Since DY: (J2T x TT*)0 -> (TTT*)0 is B^-equivariant, lemma 1 and formulae (2), 
(3) imply 

(15) a^X'^O^a^ptfY' = 0 

for all (a(jkl)eB3. Since dp0 oDx(j
2
0Xyp, Yl9 P1) = ?2 , it follows from (14) that 

Yz = (p o £) Yv This and (15) imply that if X and Yare linearly independent, p =# 0, 
then /? o £ = 0. Consequently, /? o £ vanishes on a dense subset of ( J 2 T x TT*)0 

and since it is smooth, ft o £ = 0. QED. 

Remark 2. In a similar way one can get classification of natural differential 
operators F -> J T * . We consider a natural transformation D: JlT x T* -• TT*. 
Since B2 acts transitively on fibres of Ax -> V\{0} and trivially on V, the map 
dpl

0 oD: JlT x T* -> Tfactorizes through Dt:T x T* -* T. Then we use Lemma 2 
and find that dp0 o D = ao0 o Prx and the natural transformation D — cc^j.* takes 
values in FT* = T* x T*. Therefore it is enough to find all natural operators 
D: JXT x T* -> T*. As before we find smooth p:R-+R such that 5 = j?Pr2 and 
conclude that if D: 3T -> .^T* is a natural differential operator, then 

D = a i ^ , + P&T* • 

Note that we do not need n ^ 2 in this case. This result and the idea of proof is 
due to Kolar (not published). 

Remark 3. In the case n = 1 the bundle TTT* -> TT* is four-dimensional and, 
since there are five different liftings, new invariants might appear, at least locally. 

I would like to thank professor Kolar for suggestions and corrections. 
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Souhrn 

PŘIROZENÉ LIFTY VEKTOROVÝCH POLÍ DO TANGENCIÁLNÍCH BANDLŮ 
BANDLŮ 1-FOREM 

PlOTR KOBAK 

Autor klasifikuje přirozené lifty D: I -> ITT*. Dokazuje, že tvoříd 5-parametrickou soustavu 
operátorů. 
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