Mathematica Bohemica

Dana Fraňková
 Regulated functions

Mathematica Bohemica, Vol. 116 (1991), No. 1, 20-59
Persistent URL: http://dml.cz/dmlcz/126195

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

REGULATED FUNCTIONS

Dana Frañková, Praha

(Received August 18, 1988)

Summary. The first section consists of auxiliary results about nondecreasing real functions. In the second section a new characterization of relatively compact sets of regulated functions in the sup-norm topology is brought, and the third section includes, among others, an analogue of Helly's Choice Theorem in the space of regulated functions.

Keywords: regulated function, linear prolongation along an increasing function, ε-variation AMS classification: 27A45, 46E15

INTRODUCTION

When investigating integral equations in the space of regulated functions there is a need to clarify some questions concerning the pointwise convergence of regulated functions. While the uniform convergence of regulated functions has been met with in classical literature and further interesting results have been brought e.g. by $\mathrm{Ch} . \mathrm{S}$. Hönig in [3], [4], the pointwise convergence has not been studied in a sufficient measure so far.

During the study of the pointwise convergence it has appeared fruitful to introduce a method of a prolongation along an increasing function, which is useful also for establishing new properties of regulated functions.

1. PRELIMINARIES. REAL MONOTONE FUNCTIONS

1.1. The symbol \mathbb{N} will denote the set of all positive integers. For $N \in \mathbb{N}$ the symbol \mathbb{R}^{N} denotes the N-dimensional Euclidean space with the norm $|\cdot|$. In case $N=1$ we write $\mathbb{R}^{1}=\mathbb{R}$.

The set of all continuous functions defined on an interval $[a, b]$ and with values in \mathbb{R}^{N} is denoted by $\mathscr{C}_{N}[a, b]$. In case $[a, b]=[0,1]$ we write $\mathscr{C}_{N}[0,1]=\mathscr{C}_{N}$.

The symbol $\left(a_{n}\right)_{n=1}^{\infty}$ denotes the sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$.
The symbol $y \circ v$ denotes the composed function $y(v(t))$, provided it is well-defined. If Y is a set of functions then $Y \circ v=\{y \circ v ; y \in Y\}$. If V is also a set of functions then $Y \circ V=\{y \circ v ; y \in Y, v \in V\}$.

For any bounded function $x:[a, b] \rightarrow \mathbb{R}^{N}$ we denote $\|x\|_{[a, b]}=\sup \{|x(t)|$; $t \in[a, b]\}$. If there is no danger of misunderstanding, we write shortly $\|x\|$.

The symbol $B V_{N}[a, b]$ denotes the set of all functions $x:[a, b] \rightarrow \mathbb{R}^{N}$ with bounded variation; $B V_{N}[0,1]=B V_{N}$.
1.2. The function $x:[a, b] \rightarrow \mathbb{R}^{N}$ is regulated if for every $t \in[a, b)$ the right-sided limit $\lim x(\tau)=x(t+)$ exists and is finite, and for every $t \in(a, b]$ the left-sided limit $\lim _{\tau \rightarrow t-} x(\tau)=x(t-)$ exists and is finite.

The linear space of all regulated functions from $[a, b]$ to \mathbb{R}^{N} will be denoted by $\mathscr{R}_{N}[a, b]$; we write $\mathscr{R}_{N}[0,1]=\mathscr{R}_{N}$. It is usual to define the topology of uniform convergence on $\mathscr{R}_{N}[a, b]$, which is given by the sup-norm $\|\cdot\|_{[a, b]}$.

If a sequence of regulated functions $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}[a, b]$ converges uniformly to a function x_{0}, we write $x_{n} \rightarrow x_{0}$.
1.3. A set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ has uniform one-sided limits at a point $t_{0} \in[a, b]$, if for every $\varepsilon>0$ there is $\delta>0$ such that for every $x \in \mathscr{A}$ and $t \in[a, b]$ we have: If $t_{0}<t<t_{0}+\delta$ then $\left|x(t)-x\left(t_{0}+\right)\right|<\varepsilon$; if $t_{0}-\delta<t<t_{0}$ then $\mid x\left(t_{0}-\right)-$ $-x(t) \mid<\varepsilon$.

A set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ is called equiregulated, if it has uniform one-sided limits at every point $t_{0} \in[a, b]$.
1.4. Often it is useful to identify such regulated functions which have the same one-sided limits, and to deal e.g. only with left-continuous functions (see [3], p. 20 or [4], Def. 1.5): For $x \in \mathscr{R}_{N}[a, b]$ let us define $x^{-}(t)=x(t-)$ for $t \in(a, b], x^{-}(a)=$ $=x(a+)$. The set

$$
\mathscr{R}_{N}^{-}[a, b]=\left\{x \in \mathscr{R}_{N}[a, b] ; x^{-}=x\right\}
$$

is a closed linear subspace of $\mathscr{R}_{N}[a, b]$. Two functions $x, y \in \mathscr{R}_{N}[a, b]$ are considered equivalent if $x^{-}=y^{-}$; the class of equivalence of any function $x \in \mathscr{R}_{N}[a, b]$ contains precisely one function from $\mathscr{R}_{N}^{-}[a, b]$.

Let us recall several properties of regulated functions:
1.5. A function $x:[a, b] \rightarrow \mathbb{R}^{N}$ is regulated if and only if it is a uniform limit of a sequence of piecewise constant functions ([1], 7.3.2.1).
1.6. Every regulated function has an at most countable number of points of discontinuity ([1], 7.3.2.1).
1.7. Every regulated function from a compact interval $[a, b]$ to \mathbb{R}^{N} is bounded by a constant (a consequence of 1.5).
1.8. The normed linear space $\left(\mathscr{R}_{N}[a, b] ;\|\cdot\|\right)$ is a Banach space (a consequence of [1], 7.3.2.1 (2)).
1.9. Proposition. A function $x:[a, b] \rightarrow \mathbb{R}^{N}$ is regulated if and only if for every $\varepsilon>0$ there is a finite sequence

$$
a=t_{0}<t_{1}<\ldots<t_{n}=b
$$

such that

$$
\begin{align*}
& \text { if } t_{i-1}<t^{\prime}<t^{\prime \prime}<t_{i} \text { then }\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right|<\varepsilon \tag{1.1}\\
& \text { holds for every } i=1,2, \ldots, n .
\end{align*}
$$

Proof. (i) Assume that x is regulated. Let $\varepsilon>0$ be given. Let us denote by C the set of all $\tau \in(a, b]$ such that there is a finite sequence $a=t_{0}<t_{1}<\ldots<t_{k}=\tau$ satisfying (1.1) with k instead of n.

Since the limit $x(a+)$ exists, there is $\tau>a$ such that $|x(t)-x(a+)|<\varepsilon / 2$ for $t \in(a, \tau)$. Then for every $a<t^{\prime}<t^{\prime \prime}<\tau$ we have

$$
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq\left|x\left(t^{\prime \prime}\right)-x(a+)\right|+\left|x\left(t^{\prime}\right)-x(a+)\right|<\varepsilon
$$

Consequently $\tau \in C$. Denote $c=\sup C$; we have $c>a$.
Since the limit $x(c-)$ exists, there is $\delta>0$ such that $|x(t)-x(c-)|<\varepsilon / 2$ for every $t \in(c-\delta, c)$. Let us find a point $\tau \in C \cap(c-\delta, c)$. Since $\tau \in C$, there is a finite sequence $a=t_{0}<t_{1}<\ldots<t_{k}=\tau$ such that (1.1) holds with k instead of n. If we denote $t_{k+1}=c$, then (1.1) holds also for $n=k+1$, since

$$
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq\left|x\left(t^{\prime \prime}\right)-x(c-)\right|+\left|x\left(t^{\prime}\right)-x(c-)\right|<\varepsilon
$$

provided $t_{k}=\tau<t^{\prime}<t^{\prime \prime}<c=t_{k+1}$. Hence $c \in C$. Similarly as at the beginning of this proof it can be shown that if $c<b$ then there is $t>c$ which belongs to C. This is impossible, hence $c=b$.
(ii) Let $t \in[a, b]$ and $\varepsilon>0$ be given. Assume that there is a finite sequence $a=$ $=t_{0}<t_{i}<\ldots<t_{n}=b$ such that (1.1) holds.
In case that $t=t_{i}$ for some $i \in\{1,2, \ldots, n-1\}$, denote $\delta=\min \left\{t_{i+1}-t_{i}\right.$, $\left.t_{i}-t_{i-1}\right\}$.

In case $t=a$ we denote $\delta=t_{1}-t_{0}$; if $t=b$ then $\delta=t_{n}-t_{n-1}$. If $t \in\left(t_{i-1}, t_{i}\right)$ for some $i \in\{1,2, \ldots, n\}$, we denote

$$
\delta=\min \left\{t_{i}-t, t-t_{i-1}\right\}
$$

In any of the cases listed above we have the following:

$$
\begin{align*}
& \text { If } t^{\prime}, t^{\prime \prime} \in[a, b] \text { and their } t-\delta<t^{\prime}<t^{\prime \prime}<t \text { or } \tag{1.2}\\
& t<t^{\prime}<t^{\prime \prime}<t+\delta \text { then }\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right|<\varepsilon .
\end{align*}
$$

The Bolzano-Cauchy Theorem implies that if for every $\varepsilon>0$ there is $\delta>0$ such that (1.2) holds, then the limits $x(t-), x(t+)$ exist.
1.10. Definition. For every nondecreasing function $f:[a, b] \rightarrow[c, d]$ such that $f(a)=c, f(b)=d$ and $a<b, c<d$ let us define an "inverse function" $f_{-1}:[c, d] \rightarrow$ $\rightarrow[a, b]$ by the formula

$$
\begin{aligned}
& f_{-1}(s)=\inf \{t \in[a, b] ; f(t-) \leqq s \leqq f(t+)\} \text { for } s \in(c, d) \\
& f_{-1}(c)=a, \quad f_{-1}(d)=b
\end{aligned}
$$

(we assume that $f(a-)=f(a), f(b+)=f(b)$).
1.11. Proposition. Assume that $f:[a, b] \rightarrow[c, d]$ is a nondecreasing function, $f(a)=c, f(b)=d$. Then
(i) the function $f_{-1}:[c, d] \rightarrow[a, b]$ is nondecreasing and left-continuous on (c, d);
(ii) if f is left-continuous on (a, b) then $\left(f_{-1}\right)_{-1}=f$;
(iii) f_{-1} is continuous on $[c, d]$ if and only iff is increasing on $[a, b]$;
(iv) if f is increasing on $[a, b]$ then $f_{-1}(f(t))=t$ for $t \in[a, b]$.

Proof. (i) 1. For every nondecreasing function $\varphi:[\alpha, \beta] \rightarrow[\gamma, \delta]$ such that $\varphi(\alpha)=\gamma, \varphi(\beta)=\delta$ let us define a set

$$
\Psi_{\varphi}=\left\{(t, s) \in \mathbb{R}^{2} ; \quad t \in[\alpha, \beta], \quad \varphi(t-) \leqq s \leqq \varphi(t+)\right\}
$$

We will prove that Ψ_{φ} has the following properties:
(a) If $\left(t_{1}, s_{1}\right) \in \Psi_{\varphi}$ and $\left(t_{2}, s_{2}\right) \in \Psi_{\varphi}$, then either $t_{1} \leqq t_{2}$ and $s_{1} \leqq s_{2}$, or $t_{1} \geqq t_{2}$ and $s_{1} \geqq s_{2}$.
(b) Ψ_{φ} is a compact subset of \mathbb{R}^{2}.
ad (a): For $t_{1}<t_{2}$ we have $\varphi\left(t_{1}+\right) \leqq \varphi\left(t_{2}-\right)$. Then $s_{1} \leqq \varphi\left(t_{1}+\right) \leqq \varphi\left(t_{2}-\right) \leqq$ $\leqq s_{2}$. Similarly, if $t_{1}>t_{2}$ then $s_{1} \geqq s_{2}$. In case $t_{1}=t_{2}$ it is evident that either $s_{1} \leqq s_{2}$ or $s_{1} \geqq s_{2}$.
(b) To prove that Ψ_{φ} is compact, it is sufficient to verify that it is closed, because the boundedness is evident.

Assume that Ψ_{φ} is not closed. Then there is a sequence of pairs $\left(t_{n}, s_{n}\right)_{n=1}^{\infty}$ from Ψ_{φ} such that $\left(t_{n}, s_{n}\right) \rightarrow\left(t_{0}, s_{0}\right)$ and $\left(t_{0}, s_{0}\right) \notin \Psi_{\varphi}$. It is possible to find a subsequence $\left(t_{n_{k}}\right)_{k=1}^{\infty}$ which is monotone.

If $\left(t_{n_{k}}\right)$ is a nondecreasing sequence and $t_{n_{k}}<t_{0}$ for every integer k, then $\varphi\left(t_{n_{k}}\right) \rightarrow$ $\rightarrow \varphi\left(t_{0}-\right)$ for $k \rightarrow \infty$. Since $\varphi\left(t_{n_{k}}-\right) \leqq s_{n_{k}} \leqq \varphi\left(t_{0}-\right)$, we get $s_{n_{k}} \rightarrow \varphi\left(t_{0}-\right)$. Taking into account that $s_{n} \rightarrow s_{0}$, we obtain the equality $s_{0}=\varphi\left(t_{0}-\right)$ which implies that the pair $\left(t_{0}, s_{0}\right)=\left(t_{0}, \varphi\left(t_{0}-\right)\right)$ belongs to Ψ_{φ}. We have got a contradiction with $\left(t_{0}, s_{0}\right) \notin \Psi_{\varphi}$. Similarly, if the subsequence $\left(t_{n_{k}}\right)$ is nonincreasing and $t_{n_{k}}>t_{0}$ for every k, then $\left(t_{0}, s_{0}\right)=\left(t_{0}, \varphi\left(t_{0}+\right)\right) \in \Psi_{\varphi}$.

If there is k_{0} such that $t_{n k_{0}}=t_{0}$, we have $t_{n_{k}}=t_{0}$ for every $k \geqq k_{0}$. Then $\varphi\left(t_{0}-\right) \leqq$ $\leqq s_{n_{k}} \leqq \varphi\left(t_{0}+\right)$ holds for any $k \geqq k_{0}$; consequently $\varphi\left(t_{0}-\right) \leqq s_{0} \leqq \varphi\left(t_{0}+\right)$. We conclude that $\left(t_{0}, s_{0}\right) \in \Psi_{\varphi}$ which is a contradiction with $\left(t_{0}, s_{0}\right) \notin \Psi_{\varphi}$.
(c) Assume that Ψ_{φ} is not connected. Then there are two open disjoint sets $A, B \subset$ $\subset \mathbb{R}^{2}$ such that $\Psi_{\varphi} \cap A \neq \emptyset, \Psi_{\varphi} \cap B \neq \emptyset$ and $\Psi_{\varphi} \subset A \cup B$. Fot instance assume that $(\beta, \varphi(\beta)) \in B$. Let us denote

$$
\begin{align*}
& t_{A}=\sup \left\{t \in[\alpha, \beta] ; \text { there is } s \text { such that }(t, s) \in \Psi_{\varphi} \cap A\right\} \tag{1.3}\\
& s_{A}=\sup \left(\left\{s \in[\gamma, \delta] ;\left(t_{A}, s\right) \in \Psi_{\varphi} \cap A\right\} \cup\left\{\varphi\left(t_{A}-\right)\right\}\right)
\end{align*}
$$

If $s_{A}=\varphi\left(t_{A}-\right)$ then $\left(t_{A}, s_{A}\right) \in \Psi_{\varphi}$. If $s_{A}>\varphi\left(t_{A}-\right)$ then there is $s \geqq \varphi\left(t_{A}-\right)$ such that $\left(t_{A}, s\right) \in \Psi_{\varphi} \cap A$. For any $s \geqq \varphi\left(t_{A}-\right)$ such that $\left(t_{A}, s\right) \in \Psi_{\varphi} \cap A$ we have
$\varphi\left(t_{A^{\prime}}-\right) \leqq s \leqq \varphi\left(t_{A}+\right)$; hence also $\varphi\left(t_{A^{\prime}}-\right) \leqq s_{A} \leqq \varphi\left(t_{A}+\right)$ and we conclude that $\left(t_{A}, s_{A}\right) \in \Psi_{\varphi}$. Either $\left(t_{A}, s_{A}\right) \in A$, or $\left(t_{A}, s_{A}\right) \in B$. First assume that $\left(t_{A}, s_{A}\right) \in \Psi_{\varphi} \cap A$. Since A is open, there is $\varepsilon>0$ such that if $(t, s) \in \mathbb{R}^{2},\left|t-t_{A}\right|<\varepsilon,\left|s-s_{A}\right|<\varepsilon$, then $(t, s) \in A$.

In case that $s_{A}<\varphi\left(t_{A}+\right)$, every $s \in\left(s_{A}, \varphi\left(t_{A}+\right)\right) \cap\left(s_{A}, s_{A}+\varepsilon\right)$ satisfies $\left(t_{A}, s\right) \in A$. At the same time $\left(t_{A}, s\right) \in \Psi_{\varphi}$, and we get a contradiction with (1.3).The case $s_{A}=$ $=\varphi\left(t_{A}+\right)$ implies that $t_{\boldsymbol{A}} \neq \beta$, because $(\beta, \varphi(\beta)) \in B$. There is $\delta>0$ such that $\delta \leqq \varepsilon$ and if $t_{A}<t<t_{A}+\delta$ then $\varphi\left(t_{A}+\right) \leqq \varphi(t)<\varphi\left(t_{A}+\right)+\varepsilon$, and consequently $(t, \varphi(t)) \in A$. This is a contradiction with (1.3).
Now let us assume that $\left(t_{A}, s_{A}\right) \in \Psi_{\varphi} \cap B$. $\left(t_{A}, s_{A}\right)$ is different from $(\alpha, \varphi(\alpha))$, because $\Psi_{\varphi} \cap A \neq \emptyset$. There is $\eta>0$ such that if $(t, s) \in \mathbb{R}^{2},\left|t-t_{A}\right|<\eta,\left|s-s_{A}\right|<\eta$, then $(t, s) \in B$. In case $s_{A}>\varphi\left(t_{A}-\right)$ we have $\left(t_{A}, s\right) \in \Psi_{\varphi} \cap B$ for any $s \in$ $\in\left[\varphi\left(t_{A}-\right), s_{A}\right) \cap\left(s_{A}-\eta, s_{A}\right)$; this contradicts (1.3). In case $s_{A}=\varphi\left(t_{A}-\right)$ the point t_{A} is different from α, and there is $\lambda>0$ such that $\lambda \leqq \eta$ and if $t_{A}-\lambda<t<t_{A}$ then $\varphi\left(t_{A}-\right)-\eta<\varphi(t-) \leqq \varphi(t+) \leqq \varphi\left(t_{A}-\right)$. Then $(t, s) \in \Psi_{\varphi} \cap B$ holds for every $(t, s) \in \Psi_{\dot{\varphi}}$ such that $t_{A}-\lambda<t<t_{A}$. This contradicts (1.3). Since all the possibilities lead to a contradiction, we conclude that Ψ_{φ} is connected.
2. Let a nonempty, connected and compact set $\Psi \subset \mathbb{R}^{2}$ be given such that
if $\left(t_{1}, s_{1}\right) \in \Psi$ and $\left(t_{2}, s_{2}\right) \in \Psi$, then either $t_{1} \leqq t_{2}$ and $s_{1} \leqq s_{2}$, or $t_{1} \geqq t_{2}$ and $s_{1} \geqq s_{2}$.
The following properties of Ψ are evident:
(1.5) If $\left(t, s_{1}\right) \in \Psi,\left(t, s_{2}\right) \in \Psi$ and $s_{1}<s_{2}$, then the relations $\left(t^{\prime}, s\right) \in \Psi$ and $s_{1}<s<s_{2}$ imply that $t^{\prime}=t$. If $\left(t, s_{1}\right) \in \Psi,\left(t, s_{2}\right) \in \Psi$ and $s_{1}<s_{2}$, then $(t, s) \in \Psi$ for every $\quad s_{1} \leqq s \leqq s_{2}$.

Let us denote
$\alpha=\inf \{t \in \mathbb{R}$; there is $s \in \mathbb{R}$ such that $(t, s) \in \Psi\}$.
$\beta=\sup \{t \in \mathbb{R}$; there is $s \in \mathbb{R}$ such that $(t, s) \in \Psi\}$.
Then $-\infty<\alpha \leqq \beta<\infty$ and
for every $t \in[\alpha, \beta]$ the set $\{s \in \mathbb{R} ;(t, s) \in \Psi\}$ is nonempty and compact.
In the sequel assume that $\alpha<\beta$.
Let us define

$$
\begin{equation*}
\varphi(t)=\inf \{s \in \mathbb{R} ;(t, s) \in \Psi\} \text { for } t \in[\alpha, \beta), \tag{1.8}
\end{equation*}
$$

$$
\varphi(t)=\sup \{s \in \mathbb{R} ;(t, s) \in \Psi\} \quad \text { for } t=\beta .
$$

We will show that the function φ is nondecreasing on $[\alpha, \beta]$ and left-continuous on (α, β).

If $\alpha \leqq t_{1}<t_{2} \leqq \beta$, then for every s_{1}, s_{2} such that $\left(t_{1}, s_{1}\right) \in \Psi,\left(t_{2}, s_{2}\right) \in \Psi$ we have $s_{1} \leqq s_{2}$, because Ψ satisfies (1.4). Consequently $\varphi\left(t_{1}\right) \leqq \varphi\left(t_{2}\right)$ which means that φ is nondecreasing.

Since Ψ is compact, for every $t \in[a, b]$ the pair $(t, \varphi(t))$ belongs to Ψ. The compactness yields also $(t, \varphi(t-)) \in \Psi$ and $(t, \varphi(t+)) \in \Psi$. For any $t \in(a, b)$ we have $\varphi(t-) \leqq \varphi(t)$ because φ is nondecreasing; at the same time $\varphi(t)=\inf \{s ;(t, s) \in \Psi\} \leqq$ $\leqq \varphi(t-)$ because $(t, \varphi(t-)) \in \Psi$. Consequently $\varphi(t-)=\varphi(t)$ for any $t \in(\alpha, \beta)$.

Let us prove that if for the given set Ψ we define φ by (1.8) then $\Psi=\Psi_{\varphi}$. If $(t, s) \in \Psi_{\varphi}$ then $\alpha \leqq t \leqq \beta$ and $\varphi(t-) \leqq s \leqq \varphi(t+)$. Since $(t, \varphi(t-)) \in \Psi$ and $(t, \varphi(t+)) \in \Psi$, by (1.6) we have $(t, s) \in \Psi$. Hence $\Psi_{\varphi} \subset \Psi$.

Assume that there is $(t, s) \in \Psi \backslash \Psi_{\varphi}$. In case $t<\beta$ the definition (1.8) implies that $\varphi(t) \leqq s$. By the assumption $(t, s) \notin \Psi_{\varphi}$ we get $s>\varphi(t+)$. Then there is $t^{\prime}>t$ such that $\varphi(t+) \leqq \varphi\left(t^{\prime}\right)<s$; we have two pairs $(t, s),\left(t^{\prime}, \varphi\left(t^{\prime}\right)\right)$ which both belong to Ψ, however $t<t^{\prime}$ and $s>\varphi\left(t^{\prime}\right)$. This contradicts (1.4). Hence $\Psi=\Psi_{\varphi}$.
3. For a set $\Psi \subset \mathbb{R}^{2}$ let us denote $\Psi_{-1}=\left\{(s, t) \in \mathbb{R}^{2} ;(t, s) \in \Psi\right\}$.

Now we can prove Proposition 1.11:
(i) Assume that a function $f:[a, b] \rightarrow[c, d]$ is given such that f is nondecreasing on $[a, b]$, and $f(a)=c, f(b)=d$ and $a<b, c<d$. Let us consider the set Ψ_{f}. It is evident that the set $\left(\Psi_{f}\right)_{-1}$ has the same properties as $\Psi_{f}-$ it is connected, compact and (a) holds with $\left(\Psi_{f}\right)_{-1}$ instead of Ψ_{f}. Similarly as in (1.8) we can define such function φ that $\left(\Psi_{f}\right)_{-1}=\Psi_{\varphi}$, replacing $[\alpha, \beta]$ by $[c, d]$. The function φ is nondecreasing on $[c, d]$ and left-continuous on (c, d). Taking into account the definition of the inverse function f_{-1}, we immediately see that $f_{-1}=\varphi$.
(ii) Assuming that f is left-continuous on (a, b), from the evident equality $\left(\left(\Psi_{f}\right)_{-1}\right)_{-1}=\Psi_{f}$ we get $\left(f_{-1}\right)_{-1}=f$.
(iii) The function f_{-1} is increasing if and only if for every $t \in[a, b]$ there is precisely one s such that $(t, s) \in \Psi_{f}$. The latter means that Ψ_{f} is the graph of a continuous function, namely f.
(iv) is evident.
1.12. Lemma. (i) For every $n=0,1,2, \ldots$ let a nondecreasing function $f_{n} \in$ $\in \mathscr{R}_{1}^{-}[a, b]$ be given, and assume that

$$
\begin{align*}
& f_{n}(t) \rightarrow f_{0}(t) \text { for every } t \in[a, b] \text { and } f_{n}(t+) \rightarrow f_{0}(t+) \tag{1.9}\\
& \text { for every } t \in(a, b) .
\end{align*}
$$

Then the sequence of functions $f_{n}(t)$ converges to $f_{0}(t)$ uniformly on $[a, b]$.
(ii) If the function f_{0} is continuous, then the assumption

$$
\begin{equation*}
f_{n}(t) \rightarrow f_{0}(t) \text { for every } t \in[a, b] \tag{1.9}
\end{equation*}
$$

implies (1.9).
Proof. (i) It is sufficient to prove that the functions $f_{n}, n \in \mathbb{N}$ are equiregulated. Then they will belong to a compact set in $\mathscr{R}_{1}^{-}[a, b]$ and consequently $f_{n} \rightarrow f_{0}$.

Let $t_{0} \in[a, b]$ and $\varepsilon>0$ be given. There is such $\delta>0$ that for every $t \in[a, b]$ we have; If $t_{0}-\delta \leqq t<t_{0}$ then $f_{0}\left(t_{0}\right)-f_{0}(t)<\varepsilon$; if $t_{0}<t \leqq t_{0}+\delta$ then $f_{0}(t)-$ $-f_{0}\left(t_{0}+\right)<\varepsilon$. By (1.9) there is an integer n_{0} such that

$$
\begin{aligned}
& \left|f_{n}\left(t_{0}-\delta\right)-f_{0}\left(t_{0}-\delta\right)\right|<\varepsilon, \quad\left|f_{n}\left(t_{0}\right)-f_{0}\left(t_{0}\right)\right|<\varepsilon \\
& \left|f_{n}\left(t_{0}+\right)-f_{0}\left(t_{0}+\right)\right|<\varepsilon \text { and }\left|f_{n}\left(t_{0}+\delta\right)-f_{0}\left(t_{0}+\delta\right)\right|<\varepsilon \\
& \text { for every } n \geqq n_{0} .
\end{aligned}
$$

If $t \in[a, b]$ is such that $t_{0}-\delta \leqq t<t_{0}$, then we have for every $n \geqq n_{0}$

$$
\begin{aligned}
& 0 \leqq f_{n}\left(t_{0}\right)-f_{n}(t) \leqq f_{n}\left(t_{0}\right)-f_{n}\left(t_{0}-\delta\right)=\left[f_{n}\left(t_{0}\right)-f_{0}\left(t_{0}\right)\right]+ \\
& +\left[f_{0}\left(t_{0}\right)-f_{0}\left(t_{0}-\delta\right)\right]+\left[f_{0}\left(t_{0}-\delta\right)-f_{n}\left(t_{0}-\delta\right)\right]<3 \varepsilon
\end{aligned}
$$

If $t \in[a, b]$ and $t_{0}<t \leqq t_{0}+\delta$, then we have for every $n \geqq n_{0}$

$$
\begin{aligned}
& 0 \leqq f_{n}(t)-f_{n}\left(t_{0}+\right) \leqq f_{n}\left(t_{0}+\delta\right)-f_{n}\left(t_{0}+\right)= \\
& =\left[f_{n}\left(t_{0}+\delta\right)-f_{0}\left(t_{0}+\delta\right)\right]+\left[f_{0}\left(t_{0}+\delta\right)-f_{0}\left(t_{0}+\right)\right]+ \\
& +\left[f_{0}\left(t_{0}+\right)-f_{n}\left(t_{0}+\right)\right]<3 \varepsilon
\end{aligned}
$$

(ii) Assume that f_{0} is continuous. Let $t \in[a, b)$ and $\varepsilon>0$ be given. Let us find such $\delta>0$ that $f_{0}(t+\delta)-f_{0}(t)<\varepsilon$. There is an integer n_{0} such that
$\left|f_{n}(t+\delta)-f_{0}(t+\delta)\right|<\varepsilon$ and $\left|f_{n}(t)-f_{0}(t)\right|<\varepsilon$
for every $n \geqq n_{0}$.
For $n \geqq n_{0}$ we have

$$
\begin{aligned}
& f_{n}(t+)-f_{0}(t+) \leqq f_{n}(t+\delta)-f_{0}(t)= \\
& =\left[f_{n}(t+\delta)-f_{0}(t+\delta)\right]+\left[f_{0}(t+\delta)-f_{0}(t)\right]<2 \varepsilon \\
& f_{n}(t+)-f_{0}(t+) \geqq f_{n}(t)-f_{0}(t)>-\varepsilon
\end{aligned}
$$

Consequently $f_{n}(t+) \rightarrow f_{0}(t+)=f_{0}(t)$.
1.13. Proposition. Assume that for every $n=0,1,2, \ldots$ a nondecreasing function $f_{n}:[a, b] \rightarrow[c, d]$ is given, $f_{n}(a)=c, f_{n}(b)=d, f_{n}$ is left-continuous on (a, b).
(i) If $f_{n}(t) \rightarrow f_{0}(t)$ for every $t \in[a, b]$ at which f_{0} is continuous, then $\left(f_{n}\right)_{-1}(s) \rightarrow$ $\rightarrow\left(f_{0}\right)_{-1}(s)$ for every $s \in[c, d]$ at which $\left(f_{0}\right)_{-1}$ is continuous, and vice versa.
(ii) If, moreover, f_{0} is increasing on $[a, b]$ then $\left(f_{n}\right)_{-1} \rightrightarrows\left(f_{0}\right)_{-1}$.

Proof. (i) We will prove that the condition

$$
\begin{equation*}
f_{n}(t) \rightarrow f_{0}(t) \text { for every } t \in[a, b] \text { such that } f_{0} \text { is continuous at } t \tag{1.10}
\end{equation*}
$$

is satisfied if and only if

$$
\begin{equation*}
\operatorname{dist}\left(\Psi_{f_{0}}, \Psi_{f_{n}}\right)=\sup _{(t, s) \in \Psi_{f_{0}}} \inf _{(\tau, \sigma) \in \Psi_{f_{n}}}\{|t-\tau|+|s-\sigma|\} \rightarrow 0 \quad \text { with } \quad n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

Assume that (1.10) holds. Let $\varepsilon>0$ be given. By Proposition 1.9 there is a finite sequence $a=t_{0}<t_{1}<\ldots<t_{k}=b$ such that (1.1) holds for $i=1,2, \ldots, k$. Assume that $t_{i}-t_{i-1}<\varepsilon / 2$ for $i=1,2, \ldots, k$. For every $i=1,2, \ldots, k$ let us find $\tau_{i} \in\left(t_{i-1}, t_{i}\right)$ such that f_{0} is continuous at τ_{i}. Denote $\tau_{0}=a, \tau_{k+1}=b$. Then $\tau_{i}-\tau_{i-1}<\varepsilon$ for $i=1,2, \ldots, k+1$.

Since $f_{n}\left(\tau_{i}\right) \rightarrow f_{0}\left(\tau_{i}\right)$ with $n \rightarrow \infty$ for every $i=0,1, \ldots, k+1$, there is an an integer n_{0} such that

$$
\begin{equation*}
\left|f_{n}\left(\tau_{i}\right)-f_{0}\left(\tau_{i}\right)\right|<\varepsilon \text { for every } i=0,1, \ldots, k+1, \quad n \geqq n_{0} . \tag{1.12}
\end{equation*}
$$

Let a pair $(\tilde{t}, \tilde{s}) \in \Psi_{f_{0}}$ be given. We want to show that

$$
\begin{equation*}
\inf \left\{|\tilde{t}-t|+|\tilde{s}-s| ;(t, s) \in \Psi_{f_{n}}\right\}<2 \varepsilon \text { for every } n \geqq n_{0} . \tag{1.13}
\end{equation*}
$$

There is $i \in\{1,2, \ldots, k+1\}$ such that $\tau_{i} \leqq \tilde{t} \leqq \tau_{i+1}$.
Let $n \geqq n_{0}$ be fixed. In case that $f_{n}\left(\tau_{i}\right) \leqq \tilde{s} \leqq f_{n}\left(\tau_{i+1}\right)$ let us denote $s=\tilde{s}$. In case $\tilde{s}<f_{n}\left(\tau_{i}\right)$ denote $s=f_{n}\left(\tau_{i}\right)$; if $\tilde{s}>f_{n}\left(\tau_{i+1}\right)$, let us denote $s=f_{n}\left(\tau_{i+1}\right)$.

In the case $\tilde{s}<f_{n}\left(\tau_{i}\right)$ we have the inequalities

$$
0<s-\tilde{s}=f_{n}\left(\tau_{i}\right)-\tilde{s} \leqq f_{n}\left(\tau_{i}\right)-f_{0}\left(\tau_{i}\right)<\varepsilon \quad(\text { we have used }(1.12))
$$

and

$$
\left.f_{0}\left(\tau_{i}\right) \leqq f_{0}(\tilde{t}) \leqq \tilde{s} \leqq f_{0}(\tilde{t}+)\right)
$$

Similarly in the case $\tilde{s}>f_{n}\left(\tau_{i+1}\right)$ we have

$$
0<\tilde{s}-s=\tilde{s}-f_{n}\left(\tau_{i+1}\right) \leqq f_{0}\left(\tau_{i+1}\right)-f_{n}\left(\tau_{i+1}\right)<\varepsilon
$$

Consequently in each of the three cases mentioned we have

$$
\begin{equation*}
|\tilde{s}-s|<\varepsilon \tag{1.14}
\end{equation*}
$$

Let us denote $t=\left(f_{n}\right)_{-1}(s)$. The inequality $f_{n}\left(\tau_{i}\right) \leqq s \leqq f_{n}\left(\tau_{i+1}\right)$ implies that $\tau_{i} \leqq t \leqq \tau_{i+1}$. By virtue of the inequalities $\tau_{i} \leqq t \leqq \tau_{i+1}$ and $\tau_{i+1}-\tau_{i}<\varepsilon$ we get $|\tilde{t}-\hat{t}|<\varepsilon$, which together with (1.14) yields (1.13). Then (1.11) holds.

Now let us assume that (1.11) holds. Let $t_{0} \in(a, b)$ be given such that f_{0} is continuous at t (we are not concerned with $t=a, t=b$ since the values $f_{n}(a), f_{n}(b)$ are fixed).

For a given $\varepsilon>0$ let us find $\delta>0$ such that

$$
\begin{equation*}
\text { if }\left|t-t_{0}\right| \leqq \delta \text { then }\left|f_{0}(t)-f_{0}\left(t_{0}\right)\right|<\varepsilon \tag{1.15}
\end{equation*}
$$

Denote $t^{\prime}=t_{0}-\delta, t^{\prime \prime}=t_{0}+\delta$. By (1.11) there is such an integer n_{0} that
$\inf \left\{|\tau-t|+|\sigma-s| ;(\tau, \sigma) \in \Psi_{f_{n}}\right\}<\delta$ for every $n \geqq n_{0},(t, s) \in \Psi_{f_{0}}$. Let $n \geqq n_{0}$ be fixed. Then there are $\left(\tau^{\prime}, \sigma^{\prime}\right),\left(\tau^{\prime \prime}, \sigma^{\prime \prime}\right) \in \Psi_{f_{n}}$ such that

$$
\begin{equation*}
\left|\tau^{\prime}-t^{\prime}\right|+\left|\sigma^{\prime}-f_{0}\left(t^{\prime}\right)\right|<\delta, \quad\left|\tau^{\prime \prime}-t^{\prime \prime}\right|+\left|\sigma^{\prime \prime}-f_{0}\left(t^{\prime \prime}\right)\right|<\delta \tag{1.16}
\end{equation*}
$$

We have $\tau^{\prime}<t^{\prime}+\delta=t_{0}, \tau^{\prime \prime}>t^{\prime \prime}-\delta=t_{0}$; hence $\tau^{\prime}<t_{0}<\tau^{\prime \prime}$. Using (1.16), we get

$$
f_{0}\left(t^{\prime}\right)-\delta<\sigma^{\prime} \leqq f_{n}\left(\tau^{\prime}+\right) \leqq f_{n}\left(t_{0}\right) \leqq f_{n}\left(\tau^{\prime \prime}\right) \leqq \sigma^{\prime \prime}<f_{0}\left(t^{\prime \prime}\right)+\delta .
$$

By (1.15) we have

$$
\begin{aligned}
& f_{0}\left(t_{0}\right)-2 \varepsilon<f_{0}\left(t^{\prime}\right)-\varepsilon \leqq f_{0}\left(t^{\prime}\right)-\delta \leqq \\
& \leqq f_{n}\left(t_{0}\right)<f_{0}\left(t^{\prime \prime}\right)+\delta<f_{0}\left(t_{0}\right)+2 \varepsilon .
\end{aligned}
$$

Consequently $\left|f_{0}\left(t_{0}\right)-f_{n}\left(t_{0}\right)\right|<2 \varepsilon$ for every $n \geqq n_{0}$.
Since evidently $\operatorname{dist}\left(\Psi_{f_{0}}, \Psi_{f_{n}}\right)=\operatorname{dist}\left(\left(\Psi_{f_{n}}\right)_{-1},\left(\Psi_{f_{n}}\right)_{-1}\right)$, the equivalence of (1.10), (1.11) immediately yields part (i) of Proposition 1.11.
(ii) If f_{0} is increasing, then $\left(f_{0}\right)_{-1}$ is continuous by Proposition 1.11 (iii). Lemma 1.12 implies that $\left(f_{n}\right)_{-1} \rightrightarrows\left(f_{0}\right)_{-1}$.
1.14. Let us denote by Λ the set of all continuous increasing functions $\lambda:[0,1] \rightarrow$ $\rightarrow[0,1]$ such that $\lambda(0)=0, \lambda(1)=1$. In [2], Chap. $6, \S 5$ we can find a metric space

$$
\mathscr{D}=\left\{x \in \mathscr{R}_{N} ; x(t)=x(t+) \text { for every } t \in[0,1), x(1-)=x(1)\right\}
$$

with the metric

$$
\varrho(x, y)=\inf \{\|x-y \circ \lambda\|+\|\operatorname{id}-\lambda\| ; \lambda \in \Lambda\}
$$

where $\mathrm{id}(t)=t$. The same metric can be introduced also in \mathscr{R}_{N}^{-}, only replacing the right-continuity in \mathscr{D} by the left-continuity in \mathscr{R}_{N}^{-}.

It is evident that a sequence $\left(f_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}^{-}$converges to $f_{0} \in \mathscr{R}_{N}^{-}$in the metric ϱ, if and only if there is a sequence

$$
\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \Lambda \text { such that } \lambda_{n} \rightrightarrows \text { id and } f_{n} \circ \lambda_{n} \rightrightarrows f_{0} .
$$

1.15. Lemma. Let sequences $\left(x_{n}\right)_{n=0}^{\infty} \subset \mathscr{R}_{N}^{-}$and $\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \Lambda$ be given such that $\lambda_{n}(t) \rightarrow t$ for every $t \in[0,1]$. If $x_{n} \circ \lambda_{n} \rightarrow x_{0}$ on $[0,1]$, then $x_{n}(t) \rightarrow x_{0}(t)$ holds for every $t \in(0,1)$ at which the function x_{0} is continuous.

Proof. Assume that x_{0} is continuous at $t \in(0,1)$. For a given $\varepsilon>0$ there is $\delta>0$ such that $\left|x_{0}(\tau)-x_{0}(t)\right|<\varepsilon$ for every $\tau \in(t-\delta, t+\delta)$.

By Proposition 1.13 (ii) the pointwise convergence $\lambda_{n}(t) \rightarrow t$ yields $\lambda_{n}^{-1} \rightrightarrows \mathrm{id}$. There is $n_{0} \in \mathbb{N}$ such that

$$
\left\|\lambda_{n}^{-1}-\mathrm{id}\right\|<\delta \text { and }\left\|x_{n} \circ \lambda_{n}-x_{0}\right\|<\varepsilon \text { for every } n \geqq n_{0}
$$

For any $n \geqq n_{0}$ we have the estimate

$$
\begin{aligned}
& \left|x_{n}(t)-x_{0}(t)\right|=\left|\left(x_{n} \circ \lambda_{n}\right)\left(\lambda_{n}^{-1}(t)\right)-x_{0}(t)\right| \leqq \\
& \leqq\left|\left(x_{n} \circ \lambda_{n}\right)\left(\lambda_{n}^{-1}(t)\right)-x_{0}\left(\lambda_{n}^{-1}(t)\right)\right|+\left|x_{0}\left(\lambda_{n}^{-1}(t)\right)-x_{0}(t)\right| \leqq \\
& \leqq\left\|x_{n} \circ \lambda_{n}-x_{0}\right\|+\left|x_{0}\left(\lambda_{n}^{-1}(t)\right)-x_{0}(t)\right|<2 \varepsilon .
\end{aligned}
$$

1.16. Let us denote by Q the set of all functions $q:[0,1] \rightarrow[0,1]$ satisfying the following conditions:
q is nondecreasing on $[0,1]$ and left-continuous on $(0,1] ;$
$0 \leqq q(t) \leqq t$ for every $t \in[0,1] ; q(1)=1 ;$
if $t \in(0,1)$ is such that $q(t+)<t$ then q is linear on some
neighborhood of t.
1.17. Lemma. Let $q \in Q$ be given. If $t \in(0,1)$ is a point such that $q(t)<t$, then there are $\alpha, \beta \in[0,1]$ such that $\alpha<t \leqq \beta$ and
(i) q is linear on $(\alpha, \beta]$ with slope less than 1 ;
(ii) $q(\alpha+)=\alpha \leqq q(t)$;
(iii) $q(\beta)<\beta$; if $\beta<1$ then $q(\beta+)=\beta$.

Proof. Let us fix τ such that $q(t)<\tau<t$. We have $q(\tau+) \leqq q(t)<\tau$; by (1.19) the function q has the form $q(s)=q(\tau)+c(s-\tau)$ for s belonging to a neighborhood of τ. Denote

$$
\begin{array}{llll}
\alpha=\inf \{\sigma \in[0, \tau] ; & q(s)=q(\tau)+c(s-\tau) & \text { for every } & s \in[\sigma, \tau]\} ; \tag{1.20}\\
\beta=\sup \{\sigma \in[\tau, 1] ; & q(s)=q(\tau)+c(s-\tau) & \text { for every } & s \in[\tau, \sigma]\}
\end{array}
$$

We have $\alpha<\tau<\beta$.
If $q(\alpha+)<\alpha$ then the function q should be linear on a neighbourhood of α, it will have the same form to the left as to the right. This contradicts (1.20), hence $q(\alpha+)=\alpha$. The same argument yields $q(\beta+)=\beta$ in case that $\beta<1$.

Let us verify that $\alpha<t \leqq \beta$. The first inequality follows from $\alpha<\tau<t$. If $t>\beta$ then $q(t) \geqq q(\beta+)$; consequently $\beta=q(\beta+) \leqq q(t)<\tau$ which contradicts $\tau<\beta$.

From $\alpha<\tau<t$ we get $\alpha=q(\alpha+) \leqq q(t)$. Then (ii) holds.
Let us prove that $q(\beta)<\beta$. The function q has on $(\alpha, \beta]$ the form

$$
\begin{gathered}
q(s)=q(t)+\frac{q(t)-\alpha}{t-\alpha}(s-t) \text { for } s \in(\alpha, \beta], \text { where } \frac{q(t)-\alpha}{t-\alpha}<1 \text { is the } \\
\text { slope of the linear function. }
\end{gathered}
$$

Then

$$
q(\beta)=q(t)+\frac{q(t)-\alpha}{t-\alpha}(\beta-t)<q(t)+1 \cdot(\beta-t)<\beta .
$$

1.18. Lemma. Let a sequence $\left(q_{n}\right)_{n=1}^{\infty} \subset Q$ be given. Assume that there is a function $q_{0} \in \mathscr{R}_{1}^{-}$such that $q_{0}(1)=1$ and $q_{n}(t) \rightarrow q_{0}(t)$ for every $t \in(0,1)$ at which q_{0} is continuous. Then $q_{0} \in Q$.

Proof. The function q_{0} is evidently nondecreasing and satisfies $0 \leqq q_{0}(t) \leqq t$ for every $t \in[0,1]$.

Let $t \in(0,1)$ be given such that $q_{0}(t+)<t$. Let us fix σ such that $q_{0}(t+)<\sigma<t$. There are $\tau^{\prime}, \tau^{\prime \prime} \in[0,1]$ such that $\sigma<\tau^{\prime}<t<\tau^{\prime \prime}, q_{0}$ is continuous at $\tau^{\prime}, \tau^{\prime \prime}$ and $q_{0}(s)<\sigma$ for every $s \in\left[\tau^{\prime}, \tau^{\prime \prime}\right]$. Since $q_{n}\left(\tau^{\prime}\right) \rightarrow q_{0}(\tau), q_{n}\left(\tau^{\prime \prime}\right) \rightarrow q_{0}\left(\tau^{\prime \prime}\right)$, there is an integer n_{0} such that

$$
q_{n}\left(\tau^{\prime}\right)<\sigma \text { and } q_{n}\left(\tau^{\prime \prime}\right)<\sigma \text { for every } n \geqq n_{0} .
$$

For every $s \in\left[\tau^{\prime}, \tau^{\prime \prime}\right]$ and $n \geqq n_{0}$ we have $q_{n}(s) \leqq q_{n}\left(\tau^{\prime \prime}\right)<\sigma<s$. According to Lemma 1.17^{\prime} the function q_{n} is linear on [$\left.\tau^{\prime}, \tau^{\prime \prime}\right]$ for $n \geqq n_{0}$. Consequently also q_{0} is linear on $\left[\tau^{\prime}, \tau^{\prime \prime}\right]$.
1.19. Lemma. Assume that a sequence $\left(q_{n}\right)_{n=0}^{\infty} \subset Q$ is given such that $q_{n}(t) \rightarrow q_{0}(t)$ for every $t \in[0,1]$ at which q_{0} is continuous. Then there is a sequence of continuous increasing functions $\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \Lambda$ such that $\lambda_{n} \rightrightarrows$ id and $q_{n} \circ \lambda_{n} \rightrightarrows q_{0}$.

Proof. For every $k \in \mathbb{N}$ there are finitely many points $t \in(0,1)$ such that

$$
q_{0}(t+)-q_{0}(t) \geqq 1 / k .
$$

Let us denote all these points by $\beta_{1}^{k}, \beta_{2}^{k}, \ldots, \beta_{m_{k}}^{k}$; further let us denote $\beta_{0}^{k}=0$, $\beta_{m_{k}+1}^{k}=1$, and assume that

$$
0=\beta_{0}^{k}<\beta_{1}^{k}<\ldots<\beta_{m_{k}+1}^{k}=1 .
$$

By Lemma 1.17 for every $i=1,2, \ldots, m_{k}$ there is α_{i}^{k} such that $\beta_{i-1}^{k} \leqq \alpha_{i}^{k}<\beta_{i}^{k}$ and q_{0} is linear on $\left(\alpha_{i}^{k}, \beta_{i}^{k}\right], q_{0}\left(\alpha_{i}^{k}+\right)=\alpha_{i}^{k}$. We have

$$
\begin{equation*}
\beta_{i}^{k}-\alpha_{i}^{k}=q_{0}\left(\beta_{i}^{k}+\right)-q_{0}\left(\alpha_{i}^{k}+\right) \geqq q_{0}\left(\beta_{i}^{k}+\right)-q_{0}\left(\beta_{i}^{k}\right) \geqq 1 / k \tag{1.21}
\end{equation*}
$$

for $i=1,2, \ldots, m_{k}$. Denote $\alpha_{m_{k}+1}^{k}=1$.
Let us prove that

$$
\begin{equation*}
\text { if } t \in\left(\beta_{i-1}^{k}, \alpha_{i}^{k}\right) \text { for } i=1,2, \ldots, m_{k}+1 \text { then } t-q_{0}(t)<1 / k . \tag{1.22}
\end{equation*}
$$

Assume that $t-q_{0}(t) \geqq 1 / k$ for some $t \in\left(\beta_{i-1}^{k}, \alpha_{i}^{k}\right]$; then by Lemma 1.17 there is $t^{\prime} \geqq t$ such that q_{0} is linear on $\left(t, t^{\prime}\right)$ and $q_{0}\left(t^{\prime}\right)<t^{\prime}=q_{0}\left(t^{\prime}+\right)$. By the definition of α_{i}^{k} we have $t^{\prime} \leqq \alpha_{i}^{k}$. Then

$$
q_{0}\left(t^{\prime}+\right)-q_{0}\left(t^{\prime}\right)=t^{\prime}-q_{0}\left(t^{\prime}\right) \geqq t-q_{0}(t) \geqq 1 / k
$$

and the point t^{\prime} should belong to the set $\left\{\beta_{1}^{k}, \beta_{2}^{k}, \ldots, \beta_{m_{k}}^{k}\right\}$ which is not true.
For every $i=1,2, \ldots, m_{k}$ denote $t_{i}^{k}=\beta_{i}^{k}-1 / 4 k, \vartheta_{i}^{k}=\beta_{i}^{k}-1 / 2 k, s_{i}^{k}=\alpha_{i}^{k}+$ $+1 / 4 k$; by (1.21) we have $\vartheta_{i}^{k}>s_{i}^{k}$.
Let $i=0,1, \ldots, m_{k}$. In case $\beta_{i}^{k}=\alpha_{i+1}^{k}$ define $\tau_{i}^{k}=\beta_{i}^{k}+1 / 4 k=s_{i+1}^{k}$.
In case $\beta_{i}^{k}<\alpha_{i+1}^{k}$ let us find τ_{i}^{k} such that

$$
\beta_{i}^{k}<\tau_{i}^{k}<\alpha_{i+1}^{k}, \quad \tau_{i}^{k} \leqq \beta_{i}^{k}+1 / 4 k
$$

and q_{0} is continuous at τ_{i}^{k}.
There is an integer n_{k}^{1} such that for every $n \geqq n_{k}^{1}$ the function q_{n} is linear on each of the intervals $\left[s_{i}^{k}, t_{i}^{k}\right], i=1,2, \ldots, m_{k}$ and

$$
\begin{equation*}
\left|q_{n}(t)-q_{0}(t)\right|<1 / 4 k \quad \text { for every } \quad t \in\left[s_{i}^{k}, t_{i}^{k}\right], \quad i=1,2, \ldots, m_{k} \tag{1.23}
\end{equation*}
$$

Denote $\tau_{0}^{k}=0, s_{m_{k}+1}^{k}=1$.
Let $i=1,2, \ldots, m_{k}+1$. In case that $\beta_{i-1}^{k}<\alpha_{i}^{k}$, let us find a division

$$
\tau_{i-1}^{k}=\sigma_{i 0}^{k}<\sigma_{i 1}^{k}<\ldots<\sigma_{i i_{i}{ }^{k}}^{k}=s_{i}^{k}
$$

such that $\sigma_{i j}^{k}-\sigma_{i, j-1}^{k}<1 / 4 k$ for $i=1,2, \ldots, r_{i}^{k}$ and q_{0} is continuous at $\sigma_{i j}^{k}, j=$ $=0,1, \ldots, r_{i}^{k}$. In case $\beta_{i-1}^{k}=\alpha_{i}^{k}$ denote $r_{i}^{k}=0$.

There is an integer n_{k}^{2} such that $\left|q_{n}\left(\sigma_{i j}\right)-q_{0}\left(\sigma_{i j}\right)\right|<1 / 4 k$ for every $n \geqq n_{k}^{2}$, $i=1,2, \ldots, m_{k}+1, j=0,1, \ldots, r_{i}^{k}-1$.

Let us denote $n_{k}=\max \left\{n_{k}^{1}, n_{k}^{2}\right\}$. For $n=n_{k}, n_{k}+1, \ldots, n_{k+1}-1$ let us define a function $\lambda_{n} \in \Lambda$ in the following way:

For every $i=1,2, \ldots, m_{k}$ we have

$$
\begin{aligned}
& t_{i}^{k}-q_{n}\left(t_{i}^{k}\right)=\left[t_{i}^{k}-q_{0}\left(t_{i}^{k}\right)\right]+\left[q_{0}\left(t_{i}^{k}\right)-q_{n}\left(t_{i}^{k}\right)\right]>\left[t_{i}^{k}-q_{0}(\beta)\right]-1 / 4 k= \\
& =\left[\beta_{i}^{k}-q_{0}\left(\beta_{i}^{k}\right)\right]+\left[t_{i}^{k}-\beta_{i}^{k}\right]-1 / 4 k \geqq 1 / 2 k ; \\
& \tau_{i}^{k}-q_{n}\left(\tau_{i}^{k}\right)=\left[\tau_{i}^{k}-q_{0}\left(\tau_{i}^{k}\right)\right]+\left[q_{0}\left(\tau_{i}^{k}\right)-q_{n}\left(\tau_{i}^{k}\right)\right]<\left[\tau_{i}^{k}-q_{0}\left(\tau_{i}^{k}\right)\right]+ \\
& +1 / 4 k \leqq\left[\tau_{i}^{k}-q_{0}\left(\beta_{i}^{k}+\right)\right]+1 / 4 k=\left[\tau_{i}^{k}-\beta_{i}^{k}\right]+1 / 4 k \leqq 1 / 2 k .
\end{aligned}
$$

These inequalities yield

$$
\begin{equation*}
t_{i}^{k}-q_{n}\left(t_{i}^{k}\right)>1 / 2 k>\tau_{i}^{k}-q_{n}\left(\tau_{i}^{k}\right) \tag{1.24}
\end{equation*}
$$

Using Lemma 1.17 , we can find $\gamma_{i, n} \geqq t_{i}^{k}$ such that q_{n} is linear on $\left[t_{i}^{k}, \gamma_{i, n}\right]$ and $q_{n}\left(\gamma_{i, n}+\right)>q_{n}\left(\gamma_{i, n}\right)$. According to (1.24) it is impossible that q_{n} are linear on $\left[t_{i}^{k}, \tau_{i}^{k}\right]$. Hence

$$
t_{i}^{k} \leqq \gamma_{i, n}<\tau_{i}^{k}
$$

Let us define $\lambda_{n}\left(\beta_{i}^{k}\right)=\gamma_{i, n}, \lambda_{n}\left(\vartheta_{i}^{k}\right)=\vartheta_{i}^{k}, \lambda_{n}\left(\tau_{i}^{k}\right)=\tau_{i}^{k}, \lambda_{n}$ being linear on the intervals $\left[\vartheta_{i}^{k}, \beta_{i}^{k}\right],\left[\beta_{i}^{k}, \tau_{i}^{k}\right]$ for $i=1,2, \ldots, m_{k} ; \quad \lambda_{n}(t)=t$ for $t \in\left[0, \vartheta_{i}^{k}\right) \cup \bigcap_{i=2}^{m_{k}}\left(\tau_{i=1}^{k}, \vartheta_{i}^{k}\right) \cup$ $\cup\left(\tau_{m_{k}}^{k}, 1\right]$. The function λ_{n} is increasing and continuous, $\lambda_{n}(0)=0, \lambda_{n}(1)=1$. Since $t_{i}^{k} \leqq \gamma_{i, n}<\tau_{i}^{k}$ and $\tau_{i}^{k}-t_{i}^{k}<1 / 2 k$, we have $\left|\lambda_{n}\left(\beta_{i}^{k}\right)-\beta_{i}^{k}\right|<1 / 2 k$. Consequently
$\left\|\lambda_{n}-\mathrm{id}\right\|<1 / 2 k$ for $n=n_{k}, n_{k}+1, \ldots, n_{k+1}-1$.
Now we aim at proving that $q_{n} \circ \lambda_{n} \rightrightarrows q_{0}$. Assume that $n_{k} \leqq n<n_{k+1}$. Let $t \in\left[\vartheta_{i}^{k}, \beta_{i}^{k}\right], i=1,2, \ldots, m_{k}$. Then $\lambda_{n}(t) \in\left[\vartheta_{i}^{k}, \gamma_{i, n}\right]$, let us notice that q_{0} and q_{n} are lipschitzian with the constant 1 on $\left[g_{i}^{k}, \beta_{i}^{k}\right]$ and $\left[\vartheta_{i}^{k}, \gamma_{i, n}\right]$, respectively. We have

$$
\begin{aligned}
& \left|q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t)\right| \leqq\left[q_{n}\left(\lambda_{n}(t)\right)-q_{n}\left(\vartheta_{i}^{k}\right)\right]+ \\
& +\left|q_{n}\left(\vartheta_{i}^{k}\right)-q_{0}\left(\vartheta_{i}^{k}\right)\right|+\left|q_{0}\left(\vartheta_{i}^{k}\right)-q_{0}(t)\right|< \\
& <\left[\lambda_{n}\left(t-\vartheta_{i}^{k}\right]+1 / 4 k+\vartheta_{i}^{k}-t \leqq\right. \\
& \leqq 2 \cdot\left[\tau_{i}^{k}-\vartheta_{i}^{k}\right]+1 / 4 k \leqq 2 \cdot 3 / 4 k+1 / 4 k=7 / 4 k .
\end{aligned}
$$

Assume that $t \in\left(\beta_{i}^{k}, \tau_{i}^{k}\right] i=1,2, \ldots, m_{k}$; then $\lambda_{n}(t) \in\left(\gamma_{i, n}, \tau_{i}^{k}\right]$. We have

$$
\begin{aligned}
& \left.q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t) \leqq q_{n}\left(\tau_{i}^{k}\right)\right)-q_{0}(t)=\left[q_{n}\left(\tau_{i}^{k}\right)-q_{0}\left(\tau_{i}^{k}\right)\right]+ \\
& +\left[q_{0}\left(\tau_{i}^{k}\right)-q_{0}(t)\right]<1 / 4 k+\left[q_{0}\left(\tau_{i}^{k}\right)-q_{0}\left(\beta_{i}^{k}+\right)\right]= \\
& =1 / 4 k+\left[q_{0}\left(\tau_{i}^{k}\right)-\beta_{i}^{k}\right] \leqq 1 / 4 k+\left[\tau_{i}^{k}-\beta_{i}^{k}\right] \leqq 1 / 4 k+1 / 4 k=1 / 2 k ; \\
& q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t) \geqq q_{n}\left(\gamma_{i, n}+\right)-q_{0}(t)=\gamma_{i, n}-q_{0}(t) \geqq \gamma_{i, n}-t \geqq \\
& \geqq \gamma_{i, n}-\tau_{i}^{k} \geqq-1 / 2 k .
\end{aligned}
$$

Let $t \in\left(\sigma_{i j-1}^{k}, \sigma_{i j}^{k}\right], i=1,2, \ldots, m_{k}+1, j=0,1, \ldots, r_{i}^{k}-1$. Then

$$
\begin{aligned}
& q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t)=q_{n}(t)-q_{n}(t) \leqq q_{n}\left(\sigma_{i j}^{k}\right)-q_{0}\left(\sigma_{i j-1}^{k}\right)= \\
& =\left[q_{n}\left(\sigma_{i j}^{k}\right)-q_{0}\left(\sigma_{i j}^{k}\right)\right]+\left[\sigma_{i j}^{k}-\sigma_{i j-1}^{k}\right]+\left[\sigma_{i j-1}^{k}-q_{0}\left(\sigma_{i j-1}^{k}\right)\right]< \\
& <1 / 4 k+1 / 4 k+1 / k=3 / 2 k ; \\
& q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t)=q_{n}(t)-q_{0}(t) \geqq q_{n}\left(\sigma_{i j-1}^{k}\right)-q_{0}\left(\sigma_{i j}^{k}\right)= \\
& =\left[q_{n}\left(\sigma_{i j-1}^{k}\right)-q_{0}\left(\sigma_{i j-1}^{k}\right)\right]+\left[q_{0}\left(\sigma_{i j-1}^{k}\right)-q_{0}\left(\sigma_{i j}^{k}\right)\right]>-1 / 4 k+ \\
& +\left[q_{0}\left(\sigma_{i j-1}^{k}\right)-\sigma_{i j-1}^{k}\right]+\left[\sigma_{i j-1}^{k}-\sigma_{i j}^{k}\right]>-1 / 4 k-1 / k-1 / 4 k= \\
& =-3 / 2 k .
\end{aligned}
$$

Taking into account (1.23), we can conclude that

$$
\left|q_{n}\left(\lambda_{n}(t)\right)-q_{0}(t)\right|<2 / k \text { for every } t \in[0,1] \text { and } n \geqq n_{k} .
$$

1.20. Theorem. Assume that a sequence of increasing functions $\left(f_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{1}^{-}$ is given such that
$f_{n}(0)=0, f_{n}(1)=1$, the continuous part of f_{n} is increasing for every $n \in \mathbb{N}$;
for every $\varepsilon>0$ there is $\delta_{\varepsilon} \in(0, \varepsilon]$ such that the following holds: If $t \dot{\epsilon}[0,1)$ and $f_{n}(1)-f_{n}(t+)<\delta_{\varepsilon}$, then $f_{n}(t+)-$ $-f_{n}(t)<\varepsilon$.

Then there is a sequence of increasing continuous functions $\left(\varphi_{n}\right)_{n=1}^{\infty} \subset \Lambda$ such that

$$
\left\|\left(f_{n}\right)_{-1}-\varphi_{n}^{-1}\right\| \rightarrow 0 \quad \text { with } \quad n \rightarrow \infty,
$$

and the set $\left\{f_{n} \circ \varphi_{n}^{-1} ; n=1,2, \ldots\right\}$ is relatively compact in the metric space $\left(\mathscr{R}_{1}^{-} ; \varrho\right)$.
Proof. For a fixed integer n let us find an increasing function $g_{n} \in \mathscr{R}_{1}^{-}$such that $g_{n}(0)=0, g_{n}(1)=1, g_{n}$ has finitely many points of discontinuity and

$$
\begin{equation*}
\left\|f_{n}-g_{n}\right\|<1 / n \text { and }\left\|\left(f_{n}\right)_{-1}-\left(g_{n}\right)_{-1}\right\|<1 / n . \tag{1.27}
\end{equation*}
$$

The function g_{n} will be constructed in the following way:
There is a division $0=t_{0}<t_{1}<\ldots<t_{k}<t_{k+1}=1$ such that $t_{i}-t_{i-1}<1 / n$ for $i=1,2, \ldots, k+1$ and

$$
\left[f^{J}(1)-f^{J}(0)\right]-\sum\left[f\left(t_{i}+\right)-f\left(t_{i}\right)\right]=\sum\left[f^{J}\left(t_{i}\right)-f^{J}\left(t_{i-1}+\right)\right]<1 / n
$$

where we denote by f^{J}, f^{c} the jump part and the continuous part of f.
Let us define

$$
\begin{gathered}
g_{n}(0)=0, \quad g_{n}(t)=f_{n}\left(t_{i}\right)+\frac{f_{n}\left(t_{i}\right)-f_{n}\left(t_{i-1}+\right)}{f_{n}^{C}\left(t_{i}\right)-f_{n}^{C}\left(t_{i-1}\right)} \\
\cdot\left[f_{n}^{\mathrm{C}}(t)-f_{n}^{\mathrm{C}}\left(t_{i}\right)\right] \quad \text { for } \quad t \in\left(t_{i-1}, t_{i}\right], \quad i=1,2, \ldots, k+1 .
\end{gathered}
$$

We have

$$
\begin{equation*}
g_{n}\left(t_{i}\right)=f_{n}\left(t_{i}\right) \text { and } g_{n}\left(t_{i}+\right)=f_{n}\left(t_{i}+\right) \text { for } i=1,2, \ldots, k \tag{1.28}
\end{equation*}
$$

For $t \in\left(t_{i-1}, t_{i}\right]$ we have

$$
\begin{aligned}
& \left|g_{n}(t)-f_{n}(t)\right|= \\
& =\left|\left[f_{n}^{J}\left(t_{i}\right)-f_{n}^{J}\left(t_{i-1}+\right)\right]\left[f_{n}^{\mathrm{C}}(t)-f_{n}^{\mathrm{C}}\left(t_{i-1}+\right)\right]\right|<1 / n .
\end{aligned}
$$

Hence $\left\|g_{n}-f_{n}\right\|<1 / n$.
By virtue of (1.28), for every $s \in\left(f_{n}\left(t_{i-1}+\right), f_{n}\left(t_{i}\right)\right]=\left(g_{n}\left(t_{i-1}+\right), g_{n}\left(t_{i}\right)\right]$ both $\left(f_{n}\right)_{-1}(s)$ and $\left(g_{n}\right)_{-1}(s)$ belong to $\left(t_{i-1}, t_{i}\right]$. From the assumption $t_{i}-t_{i-1}<1 / n$ we conclude that

$$
\left|\left(f_{n}\right)_{-1}(s)-\left(g_{n}\right)_{-1}(s)\right|<1 / n .
$$

If $s \in\left(f_{n}\left(t_{i}\right), f_{n}\left(t_{i}+\right)\right]=\left(g_{n}\left(t_{i}\right), g_{n}\left(t_{i}+\right)\right]$, then $\left(f_{n}\right)_{-1}(s)=\left(g_{n}\right)_{-1}(s)=t_{i}$. We have found that $\left|\left(f_{n}\right)_{-1}(s)-\left(g_{n}\right)_{-1}(s)\right|<1 / n$ for every $s \in[0,1]$.

For every $i=1,2, \ldots, k$ let us find a point s_{i} satisfying

$$
\begin{equation*}
t_{i-1}<s_{i}<t_{i}, \quad t_{i}-1 / n<s_{i} \text { and } g_{n}\left(t_{i}\right)-g_{n}\left(s_{i}\right)<1 / n \tag{1.29}
\end{equation*}
$$

Denote $g_{n}\left(s_{i}\right)=\sigma_{i}, g_{n}\left(t_{i}\right)=\tau_{i}, g_{n}\left(t_{i}+\right)=\vartheta_{i}$.
Let us define a function $\varphi_{n} \in \Lambda$ as follows: For $t \in\left[0, s_{1}\right] \cup \bigcup_{i=2}^{k}\left(t_{i-1}, s_{i}\right] \cup\left(t_{k}, 1\right]$ we define $\varphi_{n}(t)=g_{n}(t)$. For $t \in\left(s_{i}, t_{i}\right], i=1,2, \ldots, k$ let us define

$$
\varphi_{n}(t)=g_{n}\left(s_{i}\right)+\frac{g_{n}\left(t_{i}+\right)-g_{n}\left(s_{i}\right)}{g_{n}\left(t_{i}\right)-g_{n}\left(s_{i}\right)} \cdot\left[g_{n}(t)-g_{n}\left(s_{i}\right)\right]=\sigma_{i}+\frac{\vartheta_{i}-\sigma_{i}}{\tau_{i}-\sigma_{i}} \cdot\left[g_{n}(t)-\sigma_{i}\right] .
$$

Further let us define $q_{n}=g_{n} \circ \varphi_{n}^{-1}$. The function q_{n} has the form

$$
\begin{aligned}
& q_{n}(s)=\sigma_{i}+\frac{\vartheta_{i}-\sigma_{i}}{\tau_{i}-\sigma_{i}} \cdot\left[s-\sigma_{i}\right] \text { for } s \in\left(\sigma_{i}, \vartheta_{i}\right], \\
& i=1,2, \ldots, k, \\
& q_{n}(s)=s \text { for } s \in\left[0, \sigma_{1}\right] \cup \bigcup_{i=2}^{k}\left(\vartheta_{i-1}, \sigma_{1}\right] \cup\left(\vartheta_{k}, 1\right] .
\end{aligned}
$$

It is evident that $q_{n} \in Q$.
Let $i=1,2, \ldots, k$. Since $g_{n}\left(s_{i}\right)=\sigma_{i}=\varphi_{n}\left(s_{i}\right), g_{n}\left(\tau_{i}+\right)=\vartheta_{i}=\varphi_{n}\left(\tau_{i}\right)$ and the functions g_{n}, φ_{n} are increasing, we have $\left(g_{n}\right)_{-1}\left(\sigma_{i}\right)=s_{i}=\varphi_{n}^{-1}\left(\sigma_{i}\right),\left(g_{n}\right)_{-1}\left(\vartheta_{i}\right)=$ $=t_{i}=\varphi_{n}^{-1}\left(\vartheta_{i}\right)$. Hence $s_{i} \leqq\left(g_{n}\right)_{-1}(s) \leqq t_{i}$ and $s_{i} \leqq \varphi_{n}^{-1}(s) \leqq t_{i}$ for every $s \in$ $\in\left(\sigma_{i}, \vartheta_{i}\right]$. Since $t_{i}-s_{i}<1 / n$ by (1.29), we obtain the estimate

$$
\left|\left(g_{n}\right)_{-1}(s)-\varphi_{n}^{-1}(s)\right|<1 / n \text { for every } s \in\left(\sigma_{i}, \vartheta_{i}\right]
$$

If $s \in\left[0, \sigma_{1}\right] \cup \bigcup_{1=2}^{k}\left(\vartheta_{i-1}, \sigma_{i}\right] \cup\left(\vartheta_{k}, 1\right]$ then $\left(g_{n}\right)_{-1}(s)=\varphi_{n}^{-1}(s)$. Consequently $\left\|\left(g_{n}\right)_{-1}-\varphi_{u}^{-1}\right\|<1 / n$. By (1.27) we have

$$
\begin{equation*}
\left\|\left(f_{n}\right)_{-1}-\varphi_{n}^{-1}\right\|<2 / n . \tag{1.30}
\end{equation*}
$$

Let us prove
If for $\varepsilon>0$ the value of δ_{ε} is taken from (1.26), then $q_{n}(s) \in(1-2 \varepsilon, 1)$ for every $s \in\left(1-\delta_{\varepsilon}, 1\right)$.
Let $s \in\left(1-\delta_{k}, 1\right)$. Either $s \in\left[0, \sigma_{1}\right] \cup \bigcup_{i=2}^{k}\left(\vartheta_{i-1}, \sigma_{i}\right] \cup\left(\vartheta_{k}, 1\right]$, then $q_{n}(s)=s$, and $q_{n}(s) \in\left(1-\delta_{e}, 1\right)$. Or $s \in\left(\sigma_{i}, \vartheta_{i}\right]$ for some $i \in\{1,2, \ldots, k\}$; then

$$
\begin{aligned}
& 1-q_{n}(s)=[1-s]+\left[s-\sigma_{i}\right] \cdot \frac{\vartheta_{i}-\tau_{i}}{\vartheta_{i}-\sigma_{i}} \leqq[1-s]+\left[\vartheta_{i}-\tau_{i}\right]= \\
& =[1-s]+\left[f_{n}\left(t_{i}+\right)-f_{n}\left(t_{i}\right)\right]<\delta_{\varepsilon}+\varepsilon \leqq 2 \varepsilon .
\end{aligned}
$$

If we define for every integer n functions $g_{n}, \varphi_{n}, q_{n}$ in this way, by (1.30) it is clear that $\left\|\left(f_{n}\right)_{-1}-\varphi_{n}^{-1}\right\| \rightarrow 0$. Let us prove that the set $\left\{f_{n} \circ \varphi_{n}^{-1} ; n \in \mathbb{N}\right\}$ is relatively compact in the metric space $\left(\mathscr{R}_{1}^{-} ; \varrho\right)$.Let $\left(f_{n_{i}} \circ \varphi_{n_{i}}^{-1}\right)_{i=1}^{\infty \infty}$ be an arbitrary subsequence. By Helly's Choice Theorem the sequence $\left(q_{n}\right)_{l=1}^{\infty}$ contains a pointwise convergent subsequence $q_{n_{i_{i}}}(s) \rightarrow q(s)$ for every $s \in[0,1]$. Let us define $q_{0}(0)=0, q_{0}(s)=q(s-)$ for $s \in(0,1]$. Let us prove that $q_{0}(1)=1$.

For a given $\varepsilon>0$ let us find δ_{ε} by (1.26). Let $s \in\left(1-\delta_{\varepsilon}, 1\right)$. Since $q_{n_{i_{1}}}(s) \rightarrow q(s)$, there is $l_{0} \in \mathbb{N}$ such that $\left|q_{n_{i_{1}}}(s)-q(s)\right|<\varepsilon$ for every $l \geqq l_{0}$. Let us fix $l \geqq l_{0}$ and denote $n=n_{i}$. Then $0 \leqq 1-q(s)=\left[1-q_{n}(s)\right]+\left[q_{n}(s)-q(s)\right]<\left[1-q_{n}(s)\right]+$ $+\varepsilon<3 \varepsilon$ according to (1.31). Consequently $q_{0}(1)=q(1-)=1$.
By Lemma 1.18 the function q_{0} belongs to Q and by Lemma 1.19 there is a sequence $\left(\lambda_{l}\right)_{l=1}^{\infty}$ such that $q_{n_{i_{1}}} \circ \lambda_{l} \rightrightarrows q_{0}$. Then $\left\|\left(f_{n_{i_{l}}} \circ \varphi_{n_{i_{1}}}^{-1}\right) \circ \lambda_{l}-q_{0}\right\| \leqq\left\|f_{n_{i_{l}}}-g_{n_{i_{l}}}\right\|+$ $+\left\|\left(g_{n_{i_{1}}} \circ \varphi_{n_{i_{l}}}^{-1}\right) \circ \lambda_{l}-q_{0}\right\|<1 / n_{i_{l}}+\left\|q_{n_{i_{1}}} \circ \lambda_{l}-q_{0}\right\| \rightarrow 0$ with $l \rightarrow \infty$. Hence the sequence $\left(f_{n_{i_{1}}} \circ \varphi_{n_{i_{1}}}^{-1}\right)_{l=1}^{\infty}$ is convergent in the metric space $\left(\mathscr{R}_{1}^{-} ; \varrho\right)$.
1.21. Theorem. Let a sequence of nondecreasing functions $\left(h_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{1}^{-}$be given such that $h_{n}(0)=0$. Assume that there is a nondecreasing continuous function $\eta:[0, \infty) \rightarrow[0, \infty), \eta(0)=0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right] \leqq \eta\left(h_{0}\left(t^{\prime \prime}\right)-h_{0}\left(t^{\prime}\right)\right) \tag{1.32}
\end{equation*}
$$

provided h_{0} is continuous at $t^{\prime}, t^{\prime \prime} ; 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1$.
Then there is a subsequence $\left(h_{n_{k}}\right)_{k=1}^{\infty}$, a sequence of increasing continuous functions $\left(v_{k}\right)_{k=1}^{\infty} \subset \Lambda$ and a function $v \in \mathscr{R}_{-}^{1}$ so that

$$
\begin{align*}
& \text { the functions } h_{n_{k}} \circ v_{-1}^{k} \text { are uniformly convergent } \tag{1.33}\\
& v_{k}(t) \rightarrow v(t) \text { for every } t \in[0,1] \text { at which } v \text { is continuous } \tag{1.34}\\
& v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right) \leqq t^{\prime \prime}-t^{\prime}+\eta\left(h_{0}\left(t^{\prime \prime}\right)-h_{0}\left(t^{\prime}\right)\right) \text { for every } t^{\prime}<t^{\prime \prime} \tag{1.35}
\end{align*}
$$

Proof. Let us define

$$
f_{n}(t)=\frac{t+h_{n}(t)}{1+h_{n}(1)} \text { for } n=1,2, \ldots
$$

Then $f_{n} \in \mathscr{R}_{1}^{-}, f_{n}(0)=0, f_{n}(1)=1$ and the continuous part of f_{n} is increasing.
The assumption (1.32) implies that there is K such that $1+h_{n}(1) \leqq K$ for every $n \in \mathbb{N}$.

If h_{0} is continuous at $t^{\prime}<t^{\prime \prime}$, then

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left[f_{n}\left(t^{\prime \prime}\right)-f_{n}\left(t^{\prime}\right)\right]=\underset{n \rightarrow \infty}{\lim \sup } \frac{t^{\prime \prime}-t^{\prime}+h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)}{1+h_{n}(1)} \leqq \tag{1.36}\\
& \leqq \limsup _{n \rightarrow \infty}\left[t^{\prime \prime}-t^{\prime}+h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right] \leqq t^{\prime \prime}-t^{\prime}+\eta\left(h_{0}\left(t^{\prime \prime}\right)-h_{0}\left(t^{\prime}\right)\right)
\end{align*}
$$

Let us verify the assumption (1.26) of Theorem 1.20. Since the function h_{0} is left-continuous at 1 and η is right-continuous at 0 , for a given $\varepsilon>0$ there is $\lambda \in$ $\in(0, \varepsilon / 2)$ such that

$$
\eta\left(h_{0}(1)-h_{0}(t)\right)<\varepsilon / 2 \quad \text { for every } \quad t \in(1-\lambda, 1) .
$$

Let $\tau \in(1-\lambda, 1-\lambda / 2]$ be fixed so that h_{0} is continuous at τ. By (1.36) we have

$$
\limsup _{n \rightarrow \infty}\left[f_{n}(1)-f_{n}(\tau)\right] \leqq[1-\tau]+\eta\left(h_{0}(1)-h_{0}(\tau)\right)<\varepsilon
$$

There is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
f_{n}(1)-f_{n}(\tau)<\varepsilon \text { for every } n \geqq n_{0} \tag{1.37}
\end{equation*}
$$

Let $n=1,2, \ldots, n_{0}-1$. There is $s_{n} \in(0,1)$ such that $f_{n}(1)-f_{n}\left(s_{n}\right)<\varepsilon$. Denote $\delta_{n}=f_{n}(1)-f_{n}\left(s_{n}\right)$. If $f_{n}(1)-f_{n}(t+)<\delta_{n}$ then $f_{n}(t+)>f_{n}\left(s_{n}\right)$, which implies $t \geqq s_{n}$. Consequently $f_{n}(t+)-f_{n}(t) \leqq f_{n}(1)-f_{n}\left(s_{n}\right)<\varepsilon$.
Denote $\delta_{\varepsilon}=\min \left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n_{0}-1}, \lambda / 2 K, \varepsilon\right\}$. Assume that $f_{n}(1)-f_{n}(t+)<\delta_{\varepsilon}$, $n \geqq n_{0}$. Then

$$
\begin{aligned}
& 1-t \leqq 1-t+h_{n}(1)-h_{n}(t+)=\left[f_{n}(1)-f_{n}(t+)\right]\left(1+h_{n}(1)\right) \leqq \\
& \leqq\left[f_{n}(1)-f_{n}(t+)\right] K<\delta_{\varepsilon} K \leqq \lambda / 2 .
\end{aligned}
$$

Then $t \in(1-\tau, 1)$. By (1.37) we have $f_{n}(t+)-f_{n}(t) \leqq f_{n}(1)-f_{n}(\tau)<\varepsilon$.
By Helly's Choice Theorem there is a function v_{0} and a subsequence $\left(f_{n_{k}}\right)_{k=1}^{\infty}$ such that $f_{n_{k}} \rightarrow v_{0}(t)$ for every $t \in[0,1]$. Define $v(0)=0, v(1)=1, v(t)=v_{0}(t-)$ for $t \in(0,1)$. From (1.36) we get (1.35); hence $v \in \mathscr{R}_{1}^{-}$.

Since the assumptions of Theorem 1.20 are satisfied, there is a sequence $\left(\varphi_{k}\right)_{k=1}^{\infty} \subset$ $\subset \Lambda$ such that $\left\|\left(f_{n_{k}}\right)_{-1}-\varphi_{k}^{-1}\right\| \rightarrow 0$ with $k \rightarrow \infty$ and the set $\left\{f_{n_{k}} \circ \varphi_{k}^{-1} ; k \in \mathbb{N}\right\}$ is relatively compact in $\left(\mathscr{R}_{1}^{-} ; \varrho\right)$. Consequently there is a subsequence which for simplicity will be denoted again by $\left(f_{n_{k}} \circ \varphi_{k}^{-1}\right)$, a function $q \in \mathscr{R}_{1}^{-}$and a sequence $\left(\lambda_{k}\right)_{k=1}^{\infty} \subset \Lambda$ such that

$$
\left(f_{n_{k}} \circ \varphi_{k}^{-1}\right) \circ \lambda_{k} \rightrightarrows q \quad \text { and } \quad \lambda_{k} \rightrightarrows \mathrm{id}
$$

Since $f_{n}\left(t^{\prime \prime}\right)-f_{n}\left(t^{\prime}\right) \geqq\left(t^{\prime \prime}-t^{\prime}\right) \mid K$ for every $t^{\prime}<t^{\prime \prime}, n \in \mathbb{N}$, we get $v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right) \geqq$ $\geqq\left(t^{\prime \prime}-t^{\prime}\right) / K$ for $t^{\prime}<t^{\prime \prime}$. Then the function v is increasing. Proposition 1.13 implies that $\left(f_{n_{k}}\right)_{-1} \rightrightarrows v_{-1}$. Then also $\varphi_{-1}^{k} \rightrightarrows v_{-1}$. By Proposition 1.13 we obtain that

$$
\begin{equation*}
\varphi_{k}(t) \rightarrow v(t) \text { provided } v \text { is continuous at } t \in[0,1] . \tag{1.38}
\end{equation*}
$$

Let us denote $v_{k}=\lambda_{k}^{-1} \circ \varphi_{k}$ for every $k \in \mathbb{N}$. Then $v_{k} \in \Lambda$; (1.38) implies (1.34).
Since the functions $f_{n_{k}} \circ v_{k}^{-1}$ are uniformly convergent, the functions $h_{n_{k}} \circ v_{k-1}$ are also uniformly convergent.
1.22. Proposition. For every nondecreasing function $x:[0,1] \rightarrow[0, \infty)$ such that $\lim _{r \rightarrow 0+} x(r)=0=x(0)$, there is a continuous concave increasing function $\eta:[0,1] \rightarrow$ $\rightarrow[0, \infty)$ such that $\eta(0)=0$ and $x(r) \leqq \eta(r)$ for every $r \in[0,1]$.

Proof. Denote $\mu(0)=0$ and define $\zeta_{0}=\sup \{\zeta \in \mathbb{R} ; x(r) \leqq x(1)-\zeta(1-r)$
for every $r \in[0,1]\}$. Since the function x is nondecreasing, we have $\zeta_{0} \geqq 0$. Define

$$
\mu(r)=\chi(1)-\zeta_{0}(1-r) \text { for } r \in\left[\frac{1}{2}, 1\right] .
$$

For $k=1,2, \ldots$ let us assume that the function μ has been defined on $\left[2^{-k}, 1\right]$. Denote

$$
\zeta_{k}=\sup \left\{\zeta \in \mathbb{R} ; x(r) \leqq \mu\left(2^{-k}\right)-\zeta\left(2^{-k}-r\right) \text { for every } r \in\left[0,2^{-k}\right]\right\}
$$

and define

$$
\mu(r)=\mu\left(2^{-k}\right)-\zeta_{k}\left(2^{-k}-r\right) \text { for } r \in\left[2^{-k-1}, 2^{-k}\right) .
$$

Obviously $0 \leqq \chi(r) \leqq \mu(r)$ for every $r \in[0,1]$, and the function μ is continuous on $(0,1]$ (it is piecewise linear). Since the function x is nondecreasing, we have $\zeta_{k} \geqq 0$ for every $k=0,1,2, \ldots$ and consequently the function μ is nondecreasing on $[0,1]$.

Let us show that the function μ is concave. For $k=0,1,2, \ldots, r \in\left[0,2^{-k-1}\right]$ we have the inequality

$$
\begin{aligned}
& x(r) \leqq \mu(r)=\mu\left(2^{-k}\right)-\zeta_{k}\left(2^{-k}-r\right)= \\
& =\left[\mu\left(2^{-k}\right)-\zeta_{k}\left(2^{-k}-2^{-k-1}\right)\right]-\zeta_{k}\left(2^{-k-1}-r\right)= \\
& =\mu\left(2^{k-1}\right)-\zeta_{k}\left(2^{-k-1}-r\right)
\end{aligned}
$$

Consequently $\zeta_{k+1} \geqq \zeta_{k}$, hence the function μ is concave on $(0,1]$. Since $\mu(r) \geqq 0$ on $(0,1]$ and $\mu(0)=0$, this function is concave on the whole interval [0,1].

Let us prove that $\mu(0+)=\lim _{r \rightarrow 0+} \mu(r)=0$. Let us denote $\beta=\mu(0+)$. Assume that $\beta>0$. Since $\chi(0+)=0$, there is $\delta>0$ such that $\chi(r)<\beta / 2$ for every $r \in(0, \delta)$. There is an integer k_{0} such that $2^{-k_{0}}<\delta$. Then for any $k \geqq k_{0}$ and $r \in\left(0,2^{-k}\right]$ we have

$$
\begin{aligned}
& x(r) \leqq x\left(2^{-k}\right)<\beta \cdot \frac{1}{2}=\mu(0+) \cdot \frac{1}{2} \leqq \\
& \leqq \mu\left(2^{-k}\right) \cdot \frac{1}{2}<\mu\left(2^{-k}\right)\left(\frac{1}{2}+2^{k-1} r\right)=\mu\left(2^{-k}\right)\left(1-2^{k-1}\left(2^{-k}-r\right)\right)= \\
& =\mu\left(2^{-k}\right)-\left[\mu\left(2^{-k}\right) \cdot 2^{k-1}\right]\left(2^{-k}-r\right) .
\end{aligned}
$$

Taking into account the definition of ζ_{k}, we find that

$$
\zeta_{k} \geqq \mu\left(2^{-k}\right) \cdot 2^{k-1}
$$

Then

$$
\begin{aligned}
& \beta=\mu(0+) \leqq \mu\left(2^{-k-1}\right)=\mu\left(2^{-k}\right)-\zeta_{k}\left(2^{-k}-2^{-k-1}\right) \leqq \\
& \leqq \mu\left(2^{-k}\right)-\left[\mu\left(2^{-k}\right) \cdot 2^{k-1}\right]\left(2^{-k}-2^{-k-1}\right)= \\
& =\mu\left(2^{-k}\right)\left(1-2^{k-1}\left(2^{-k}-2^{-k-1}\right)\right)=\mu\left(2^{-k}\right) \cdot 3 / 4
\end{aligned}
$$

holds for any integer $k \geqq k_{0}$. Passing to infinity with k, we obtain

$$
\mu(0+) \leqq \mu(0+) .3 / 4,
$$

which is a contradiction with $\beta>0$.
We have proved that μ is a continuous, concave and nondecreasing function. Then the function $\eta(r)=\mu(r)+r, r \in[0,1]$ satisfies the requirements of Proposition 1.22.

2. CHARACTERIZATIONS OF COMPACT SETS IN $\mathscr{R}_{N}[a, b]$

2.1. Lemma. Assume that the set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ is equiregulated. Then for every $\varepsilon>0$ there is a division $a=t_{0}<t_{1}<\ldots<t_{k}=b$ such that

$$
\begin{align*}
& \left|x(t)-x\left(t^{\prime}\right)\right| \leqq \varepsilon \text { for every } x \in \mathscr{A} \text { and }\left[t, t^{\prime}\right] \subset\left(t_{j-1}, t_{j}\right), \tag{2.1}\\
& j=1,2, \ldots, k .
\end{align*}
$$

Proof. By D let us denote the set of all $d \in(a, b]$ such that there is a division $a=t_{0}<t_{1} \ldots<t_{k}=d$ for which (2.1) holds.

There is $\delta_{1} \in(0, b-a]$ such that $|x(t)-x(a+)| \leqq \varepsilon / 2$ for every $x \in \mathscr{A}, t \in$ $\in\left(a, a+\delta_{1}\right)$; denote $d_{1}=a+\delta_{1}, a=t_{0}<t_{1}=d_{1}$. For [$\left.t, t^{\prime}\right] \subset\left(a, d_{1}\right)$ and $x \in \mathscr{A}$ we have the inequality $\left|x(t)-x\left(t^{\prime}\right)\right| \leqq|x(t)-x(a+)|+\left|x\left(t^{\prime}\right)-x(a+)\right| \leqq \varepsilon$. Hence $d_{1} \in D$. Denote $\tilde{d}=\sup D$. There is $\delta>0$ such that $|x(\tilde{d}-)-x(t)| \leqq \varepsilon / 2$ for every $x \in \mathscr{A}, t \in(\tilde{d}-\delta, \tilde{d}) \cap[a, b]$. Find $d \in D \cap(\tilde{d}-\delta, \tilde{d})$ and a division $a=t_{0}<t_{1} \ldots<t_{k}=d$ such that (2.1) holds. Denote $t_{k+1}=\tilde{d}$. For [$\left.t, t^{\prime}\right] \subset$ $\subset\left(t_{k}, t_{k+1}\right)$ and $x \in \mathscr{A}$ we have the inequality $\left|x(t)-x\left(t^{\prime}\right)\right| \leqq|x(t)-x(\tilde{d}-)|+$ $+\left|x\left(t^{\prime}\right)-x(\tilde{d}-)\right| \leqq \varepsilon$. Hence $\tilde{d} \in D$. If $\tilde{d}<b$ then it would be possible to find $d_{2} \in(d, b]$ such that $d_{2} \in D$ in similar way as d_{1} was defined. But this contradicts $\tilde{d}=\sup \boldsymbol{D}$ and consequently $\tilde{d}=b$.
2.2. Lemma. Assume that a set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ is equiregulated and for any $t \in[a, b]$ there is a number γ_{t} such that

$$
\begin{array}{llll}
|x(t)-x(t-)| \leqq \gamma_{t} & \text { holds for } & t \in(a, b] ; \tag{2.2}\\
|x(t+)-x(t)| \leqq \gamma_{t} & \text { holds for } & t \in[a, b) .
\end{array}
$$

Then there is $K>0$ such that $|x(t)-x(a)| \leqq K$ for every $x \in \mathscr{A}, t \in[a, b]$.
Proof. Denote by B the set of all $\tau \in(a, b]$ for which there is $K_{\tau}>0$ such that $|x(t)-x(a)| \leqq K_{\mathfrak{z}}$ for any $x \in \mathscr{A}, t \in[a, \tau]$. Since the set \mathscr{A} is equiregulated, there is $\delta>0$ such that $|x(t)-x(a+)| \leqq 1$ for every $x \in \mathscr{A}, t \in(a, a+\delta]$. For every $t \in(a, a+\delta]$ and $x \in \mathscr{A}$ we have the estimate

$$
|x(t)-x(a)| \leqq|x(t)-x(a+)|+|x(a+)-x(a)| \leqq 1+\gamma_{a}=K_{(a+\delta)} .
$$

Hence $(a, a+\delta] \subset B$. Denote $\tau_{0}=\sup B$.

There is $\delta^{\prime}>0$ such that $\left|x(t)-x\left(\tau_{0}-\right)\right| \leqq 1$ for every $x \in \mathscr{A}, t \in\left[\tau_{0}-\delta^{\prime}, \tau_{0}\right)$. Let us fix a point $\tau \in B \cap\left[\tau_{0}-\delta^{\prime}, \tau_{0}\right)$. For $x \in \mathscr{A}, t \in\left(\tau, \tau_{0}\right)$ we have

$$
\begin{aligned}
& |x(t)-x(a)| \leqq\left|x(t)-x\left(\tau_{0}-\right)\right|+\left|x\left(\tau_{0}-\right)-x(\tau)\right|+|x(\tau)-x(a)| \leqq \\
& \leqq 1+1+K_{\tau} ;
\end{aligned}
$$

then also $\left|x\left(\tau_{0}-\right)-x(a)\right| \leqq 2+K_{\tau}$ and

$$
\left|x\left(\tau_{0}\right)-x(a)\right| \leqq\left|x\left(\tau_{0}\right)-x\left(\tau_{0}-\right)\right|+\left(x\left(\tau_{0}-\right)-x(a) \mid \leqq \gamma_{\tau_{0}}+2+K_{\mathbf{t}} .\right.
$$

Hence $\tau_{0} \in B$ with $K_{\tau_{0}}=\gamma_{\tau_{0}}+2+K_{\tau}$.
For $\tau_{0}<b$ we can find $\delta^{\prime \prime}>0$ such that

$$
\left|x(t)-x\left(\tau_{0}+\right)\right| \leqq 1 \quad \text { for any } \quad x \in \mathscr{A}, \quad t \in\left(\tau_{0}, \tau_{0}+\delta^{\prime \prime}\right] .
$$

Then $|x(t)-x(a)| \leqq\left|x(t)-x\left(\tau_{0}+\right)\right|+\left|x\left(\tau_{0}+\right)-x\left(\tau_{0}\right)\right|+\left|x\left(\tau_{0}\right)-x(a)\right| \leqq 1+$ $+\gamma_{\tau_{0}}+K_{\tau_{0}}=K_{\left(\tau_{0}+\delta^{\prime \prime}\right.}$. Hence $\tau_{0}+\delta^{\prime \prime} \in B$ and we get a contradiction with the definition of B. Consequently $\tau_{0}=b \in B$.
2.3. Proposition. A set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ is relatively compact in the sup-norm topology if and only if it is equiregulated, satisfies (2.2) and there is $\alpha>0$ such that $|x(a)| \leqq \alpha$ for any $x \in \mathscr{A}$.

Proof. It is well-known that a subset A of a Banach space X is relatively compact if and only if it is totally bounded, i.e. for every $\varepsilon>0$ there is a finite ε-net F for A - i.e. such a subset $F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of X that for every $x \in A$ there is $x_{n} \in F$ satisfying $\left\|x-x_{n}\right\| \leqq \varepsilon$.
(i) Assume that \mathscr{A} is relatively compact. Then it is bounded by a constant C; evidently (2.2) is satisfied with $\gamma_{t}=2 C$ for every $t \in[a, b]$.

Let $t_{0} \in[a, b]$ and $\varepsilon>0$ be given. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset \mathscr{R}_{N}[a, b]$ be a finite $\varepsilon / 3$-net for \mathscr{A}. For every $n=1,2, \ldots, k$ there is $\delta_{n}>0$ such that

$$
\begin{aligned}
& \left|x_{n}(t)-x_{n}\left(t_{0}+\right)\right|<\varepsilon / 3 \text { for } t \in\left(t_{0}, t_{0}+\delta_{n}\right) \cap[a, b] \text { and } \\
& \left|x_{0}\left(t_{0}-\right)-x_{n}(t)\right|<\varepsilon / 3 \text { for } t \in\left(t_{0}-\delta_{n}, t_{0}\right) \cap[a, b] .
\end{aligned}
$$

Denote $\delta=\min \left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$.
For arbitrary $x \in \mathscr{A}$ let us find x_{n} such that $\left\|x-x_{n}\right\| \leqq \varepsilon / 3$. For every $t \in$ $t \in\left(t_{0}, t_{0}+\delta\right) \cap[a, b]$ we have the inequality

$$
\begin{aligned}
& \left|x(t)-x\left(t_{0}+\right)\right| \leqq\left|x(t)-x_{n}(t)\right|+\left|x_{n}(t)-x_{n}\left(t_{0}+\right)\right|+ \\
& +\left|x_{n}\left(t_{0}+\right)-x\left(t_{0}+\right)\right| \leqq 2\left\|x-x_{n}\right\|+\left|x_{n}(t)-x_{n}\left(t_{0}+\right)\right|<\varepsilon,
\end{aligned}
$$

and similarly $\left|x\left(t_{0}-\right)-x(t)\right|<\varepsilon$ for $t \in\left(t_{0}-\delta, t_{0}\right) \cap[a, b]$.
(ii) Assume that \mathscr{A} is equiregulated, (2.2) holds and $|x(a)| \leqq \alpha$ for every $x \in \mathscr{A}$.

By Lemma 2.2 there is $K>0$ such that $|x(t)-x(a)| \leqq K$ for any $x \in \mathscr{A}$ and $t \in[a, b]$. Hence $|x(t)| \leqq|x(t)-x(a)|+|x(a)| \leqq K+\alpha$. If we denote $\gamma=K+\alpha$
then $\|x\| \leqq \gamma$ for any $x \in \mathscr{A}$.
Let $\varepsilon>0$ be given. By Lemma 2.1 there is a division $a=t_{0}<t_{1}<\ldots<t_{k}=b$ such that (2.1) holds, when ε is replaced by $\varepsilon / 2$.

Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ be a finite $\varepsilon / 2$-net of the compact set $\left\{\alpha \in \mathbb{R}^{N} ;|\alpha| \leqq \gamma\right\}$. Define $F=\left\{x:[a, b] \rightarrow \mathbb{R}^{N} ; x\right.$ is constant on $\left(t_{j-1}, t_{j}\right)$ for every $j=1,2, \ldots, k$ and $x(t) \in$ $\in\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ for every $\left.t \in[a, b]\right\}$. The set $F \subset \mathscr{R}_{N}[a, b]$ is evidently finite.

Let us verify that F is an ε-net for \mathscr{A}. Let $x \in \mathscr{A}$ be given. For every $n=0,1, \ldots, k$ there is $i_{n} \in\{1,2, \ldots, m\}$ such that $\left|x\left(t_{n}\right)-\alpha_{i_{n}}\right| \leqq \varepsilon$, for every $n=1,2, \ldots, k$ there is $j_{n} \in\{1,2, \ldots, m\}$ such that $\left|x\left(t_{n}-\right)-\alpha_{j_{n}}\right| \leqq \varepsilon / 2$.

Let us define $z\left(t_{n}\right)=\alpha_{i_{n}}, n=0,1, \ldots, k, z(t)=\alpha_{j_{n}}$ for $t \in\left(t_{n-1}, t_{n}\right)$ and any $n=1,2, \ldots, k$. Then $z \in F$ and $\left|z\left(t_{n}\right)-x\left(t_{n}\right)\right| \leqq \varepsilon,|z(t)-x(t)|=\left|\alpha_{j_{n}}-x(t)\right| \leqq$ $\leqq\left|\alpha_{j_{n}}-x\left(t_{n}-\right)\right|+\left|x\left(t_{n}-\right)-x(t)\right| \leqq \varepsilon$ for $t \in\left(t_{n-1}, t_{n}\right)$; hence $\|z-x\| \leqq \varepsilon$. We have proved that \mathscr{A} is totally bounded.
2.4. Corollary. A set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ si relatively compact if and only if it is equiregulated and for every $t \in[a, b]$ the set $\{x(t) ; x \in \mathscr{A}\}$ is bounded in \mathbb{A}^{N}.
Proof. If \mathscr{A} is relatively compact then it is equiregulated by Proposition 2.3 and evidently it is bounded.

Assume that \mathscr{A} is equiregulated and $|x(t)| \leqq \beta_{t}$ for $x \in \mathscr{A}, t \in[a, b]$.
Let $t \in(a, b)$ be given. There is $\delta>0$ such that $|x(\tau)-x(t-)| \leqq 1$ for $x \in \mathscr{A}$, $\tau \in(t-\delta, t)$ and $|x(\tau)-x(t+)| \leqq 1$ for $\tau \in(t, t+\delta)$. Let $\tau_{1} \in(t-\delta, t), \tau_{2} \in$ $\in(t, t+\delta)$ be fixed. Then

$$
\begin{aligned}
& |x(t)-x(t-)| \leqq|x(t)|+\left|x\left(\tau_{1}\right)\right|+\left|x(t-)-x\left(\tau_{1}\right)\right| \leqq \beta_{t}+\beta_{\tau_{1}}+1 ; \\
& |x(t+)-x(t)| \leqq\left|x(t+)-x\left(\tau_{2}\right)\right|+\left|x\left(\tau_{2}\right)\right|+|x(t)| \leqq 1+\beta_{\tau_{2}}+\beta_{t} .
\end{aligned}
$$

Let us denote $\gamma_{t}=1+\beta_{t}+\max \left\{\beta_{\tau_{1}}, \beta_{\tau_{2}}\right\}$. Analogously γ_{a}, γ_{b} can be defined.
Hence the condition (2.2) is fulfilled and \mathscr{A} is relatively compact by Proposition 2.3.
Remark. This result can be found also e.g. in [3].
2.5. By the symbol V let us denote the set of all increasing functions $v:[0,1] \rightarrow$ $\rightarrow[0,1]$ such that $v(0)=0, v(1)=1$. Any function $v \in V$ transforms the interval $\underset{\cup}{[0,1]} \underset{\bigcap}{\text { onto a subset }}(v(t), v(t+)]\}$. $\left.\bigcap_{\substack{t \in[0,1) \\ v(t)<v(t+)}}(v(t), v(t+)]\right\}$.
2.6. Definition. Let $v \in V$ be given. By the symbol L_{v} let us denote the set of all functions $y \in \mathscr{R}_{N}$ for which the following conditions hold:
(2.3) If $t \in(0,1]$ is a point such that $v(t-)<v(t)$ then the function y is leftcontinuous at the point $v(t-)$ and linear on the interval $[v(t-), v(t)]$.
(2.4) If $t \in[0,1)$ is a point such that $v(t)<v(t+)$ then the function y is rightcontinuous at $v(t+)$ and linear on $[v(t), v(t+)]$.
2.7. Definitiin. Let an increasing function $v \in V$ and a regulated function $x \in \mathscr{R}_{N}$ be given. A regulated function $y \in \mathscr{R}_{N}$ is called the linear prolongation of the function x along the function v, if $y \in L_{v}$ and $x(t)=y(v(t))$ for every $t \in[0,1]$.
2.8. Proposition. Let $v \in V$. If $y_{1}, y_{2} \in L_{v}$ are functions such that $y_{1}(v(t))=y_{2}(v(t))$ for every $t \in[a, b]$ where $[a, b] \subset[0,1]$, then $y_{1}(\tau)=y_{2}(\tau)$ for every $\tau \in[v(a), v(b)]$.

Proof. Denote $y=y_{1}-y_{2}$, then $y \in L_{v}$ and $y(v(t))=0$ for every $t \in[a, b]$. If $t \in(a, b]$ is such that $v(t-)<v(t)$ then $y(v(t-))=0$ by the assumption (2.3). Since the function y is linear on the interval $[v(t-), v(t)]$, it vanishes on all this interval. Similarly for every $t \in[a, b)$ such that $v(t)<v(t+)$ we have $y(v(t))=$ $=y(v(t+))=0$ and consequently $y(\tau)=0$ for every $\tau \in[v(t), v(t+)]$. Then $y_{1}(\tau)-$ $-y_{2}(\tau)=y(\tau)=0$ for every $\tau \in[v(a), v(b)]$.
2.9. Proposition. Let $v \in V$. Any function $x \in \mathscr{R}_{N}$ has exactly one linear prolongation along v.

Proof. For a given function $x \in \mathscr{R}_{N}$ let us define a function $y:[0,1] \rightarrow \mathbb{R}^{N}$ in the following way:

$$
\begin{align*}
& y(\tau)=x(t) \text { provided } \tau=v(t), t \in[0,1] \tag{2.5}\\
& \text { if } v(t-) \neq v(t) \text { then } y(\tau)=x(t-) \text { for } \tau=v(t-) \text { and } y \text { is linear on } \\
& {[v(t-), v(t)]} \\
& \text { if } v(t) \neq v(t+) \text { then } y(\tau)=x(t+) \text { for } \tau=v(t+) \text { and } y \text { is linear on } \\
& {[v(t), v(t+)] \text {. }}
\end{align*}
$$

To prove that y is regulated, it is sufficient to verify that

$$
\begin{array}{llll}
\lim _{\tau \rightarrow \tau_{0}-} y(\tau)=x\left(t_{0}-\right) & \text { for every } & \tau_{0}=v\left(t_{0}-\right), & t_{0} \in(0,1] ; \tag{2.6}\\
\lim _{\tau \rightarrow \tau_{0}+} y(\tau)=x\left(t_{0}+\right) & \text { for every } & \tau_{0}=v\left(t_{0}+\right), & t_{0} \in[0,1) .
\end{array}
$$

Let $t_{0} \in(0,1]$, denote $\tau_{0}=v\left(t_{0}-\right)$. For a given $\varepsilon>0$ there is $\delta>0$ such that $\left|x(t)-x\left(t_{0}-\right)\right|<\varepsilon$ for every $t \in\left(t_{0}-\delta, t_{0}\right)$. For arbitrary $\tau \in\left(v\left(t_{0}-\delta\right), v\left(t_{0}-\right)\right)$ we can find $t \in\left(t_{0}-\delta, t_{0}\right)$ such that $\tau \in[v(t-), v(t+)]$ (this interval contains only one point when v is continuous at t). If $\tau \in[v(t-), v(t)]$, there is $\lambda \in[0,1]$ such that $\tau=\lambda v(t-)+(1-\lambda) v(t)$; since y is linear on $[v(t-), v(t)]$, it has the form $y(\tau)=$ $=\lambda x(t-)+(1-\lambda) x(t)$. We get the inequality $\left|y(\tau)-x\left(t_{0}-\right)\right| \leqq \lambda \mid x(t-)-$ $-x\left(t_{0}-\right)|+(1-\lambda)| x(t)-x\left(t_{0}-\right) \mid<\varepsilon$. In the latter case $\tau \in[v(t), v(t+)]$ we can find $\mu \in[0,1]$ such that $\tau=\mu v(t)+(1-\mu) v(t+)$, and again we get $\mid y(\tau)-$ $-x\left(t_{0}-\right) \mid<\varepsilon$. Consequently $\lim y(\tau)=x\left(t_{0}-\right)$. The other equality in (2.6) can be verified analogously.

It is evident that $y \in L_{v}$. It follows from Proposition 2.8 that the linear prolongation is unique.
2.10. Proposition. Let $v \in V$. The linear prolongation of a function $x \in \mathscr{R}_{N}$ along v is continuous if and only if the condition

$$
\begin{array}{llll}
\text { if } t \in(0,1], & x(t-) \neq x(t) & \text { then } & v(t-) \neq v(t) \tag{2.7}\\
\text { if } t \in[0,1), & x(t) \neq x(t+) & \text { then } & v(t) \neq v(t+)
\end{array}
$$

holds.
Proof. Let us denote by y the linear prolongation of x along v. Assume that y is continuous. If $v(t-)=v(t)$ for some $t \in(0,1]$ then $x(t-)=\lim _{\tau \rightarrow t_{-}} y(v(\tau))=$
$=y(v(t))=x(t)$; if $v(t+)=v(t)$ for some $t \in[0,1)$ then $x(t+)=x(t)$. Hence (2.7) is satisfied.

Assume that the condition (2.7) holds. In order to verify that y is continuous, it is sufficient to whow that

$$
\left.\begin{array}{llll}
\lim _{\tau \rightarrow \tau_{0}-} y(\tau)=y\left(\tau_{0}\right) & \text { for every } & \tau_{0}=v\left(t_{0}-\right), & t_{0} \in(0,1]
\end{array}\right] \text { and }
$$

Let $t_{0} \in(0,1]$, denote $\tau_{0}=v\left(t_{0}-\right)$. If $v\left(t_{0}-\right) \neq v\left(t_{0}\right)$ then $y\left(\tau_{0}\right)=x\left(t_{0}-\right)$ by (1.6); from (1.7) we get $\lim _{\tau \rightarrow \tau^{-}} y(\tau)=x\left(t_{0}-\right)=y\left(\tau_{0}\right)$. If $v\left(t_{0}-\right)=v\left(t_{0}\right)$ then $x\left(t_{0}-\right)=$ $=x\left(t_{0}\right)$ by virtue of (2.7) and from (2.6) we get the equality $\lim y(\tau)=x\left(t_{0}\right)=$ $=y\left(\tau_{0}\right)$.
The equality $\lim _{\tau \rightarrow \tau_{0}+} y(\tau)=y\left(\tau_{0}\right)$ for $\tau_{0}=v\left(t_{0}+\right)$ can be verified analogously.
2.11. Proposition. Assume that $v \in V$. For every two functions $y_{1}, y_{2} \in L_{v}$ we have the equality

$$
\left\|y_{1}-y_{2}\right\|=\left\|y_{1} \circ v-y_{2} \circ v\right\| .
$$

Proof. Let us denote $y=y_{1}-y_{2}$. Evidently $\|y \circ v\| \leqq\|y\|$. If $\sigma=v(t), t \in$ $\in[0,1]$, then

$$
\begin{equation*}
|y(\sigma)|=|y(v(t))| \leqq\|y \circ v\| . \tag{2.8}
\end{equation*}
$$

If $\vartheta=v(t-)$ and $v(t-) \neq v(t)$ then the function y is continuous at $v(t-)$ due to (2.3); from (2.8) we get

$$
\begin{equation*}
|y(\vartheta)|=\lim _{s \rightarrow t^{-}}|y(v(s))| \leqq\|y \circ v\| . \tag{2.9}
\end{equation*}
$$

Since y is linear on $[v(t-), v(t)]$ and we have estimates (2.8), (2.9) for $\vartheta=v(t-)$, $\sigma=v(t)$, for every $\tau \in[v(t-), v(t)]$ the inequality $|y(\tau)| \leqq\|y \circ v\|$ holds.

Similarly $|y(\tau)| \leqq\|y \circ v\|$ for every $\tau \in[v(t), v(t+)]$ where $t \in[0,1)$ is such that $v(t) \neq v(t+)$. Hence $\|y\| \leqq\|y \circ v\|$.

It has been proved that $\left\|y_{1}-y_{2}\right\|=\|y\|=\|y \circ v\|=\left\|y_{1} \circ v-y_{2} \circ v\right\|$.
2.12. Proposition. Let functions $x \in \mathscr{R}_{N}$ and $v \in V$ be given, assume that there is a continuous increasing concave function $\eta:[0,1] \rightarrow[0, \infty), \eta(0)=0$ such that

$$
\begin{equation*}
\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq \eta\left(v\left(t_{2}\right)-v\left(t_{1}\right)\right) \text { for every } 0 \leqq t_{1}<t_{2} \leqq 1 \tag{2.10}
\end{equation*}
$$

Let the function $y \in L_{v}$ be the linear prolongation of the function x along v. Then

$$
\left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right| \leqq \eta\left(\tau_{2}-\tau_{1}\right) \quad \text { for every } \quad 0 \leqq \tau_{1}<\tau_{2} \leqq 1
$$

Proof. Let us denote by Z the closure of the set $\{\tau \in[0,1] ; \tau=v(t)$ for some $t \in[0,1]\}$. If $\tau_{1}, \tau_{2} \in[0,1]$ are points such that $\tau_{1}=v\left(t_{1}\right), \tau_{2}=v\left(t_{2}\right)$ and $t_{1}<t_{2}$, then (2.1) implies that

$$
\left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right|=\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq \eta\left(v\left(t_{2}\right)-v\left(t_{1}\right)\right)=\eta\left(\tau_{2}-\tau_{1}\right)
$$

Since the functions y, η are continuous, the inequality

$$
\begin{equation*}
\left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right| \leqq \eta\left(\tau_{2}-\tau_{1}\right) \tag{2.11}
\end{equation*}
$$

holds for every $\tau_{1}, \tau_{2} \in Z$ such that $\tau_{1}<\tau_{2}$.
(a) Assume that (a, b) is a component of the open set $(0,1) \backslash Z$, let $a \leqq \tau_{1}<\tau_{2} \leqq$ $\leqq b$. Since $a, b \in Z$, the inequality $|y(b)-y(a)| \leqq \eta(b-a)$ holds.
Either $(a, b)=(v(t-), v(t))$ or $(a, b)=(v(t), v(t+))$ for some $t \in[0,1]$. Since $y \in L_{v}$, the function y is linear on $[a, b]$; hence

$$
y\left(\tau_{2}\right)-y\left(\tau_{1}\right)=\frac{\tau_{2}-\tau_{1}}{b-a} \cdot[y(b)-y(a)]
$$

Owing to the fact that η is a concave function and $\eta(0)=0$, we get the inequality

$$
\begin{aligned}
& \left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right| \leqq \frac{\tau_{2}-\tau_{1}}{b-a} \cdot \eta(b-a) \leqq \eta\left(\frac{\tau_{2}-\tau_{1}}{b-a} \cdot(b-a)\right)= \\
& =\eta\left(\tau_{2}-\tau_{1}\right) .
\end{aligned}
$$

(b) It remains to consider the case when $\tau_{1}, \tau_{2} \in[0,1]$ are points such that $a \leqq$ $\leqq \tau_{1} \leqq b \leqq c \leqq \tau_{2} \leqq d$, where $a, b, c, d \in Z$ and the following holds: If $a<b$ then y is linear on $[a, b]$; if $c<d$ then y is linear on $[c, d]$. Let $\lambda_{1}, \lambda_{2} \in[0,1]$ be such that $\tau_{1}=\left(1-\lambda_{1}\right) a+\lambda_{1} b$ and $\tau_{2}=\left(1-\lambda_{2}\right) c+\lambda_{2} d$.

Since the function η is concave, (2.2) yields the estimate

$$
\begin{aligned}
& \left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right|= \\
& =\left|\left[\left(1-\lambda_{2}\right) y(c)+\lambda_{2} y(d)\right]-\left[\left(1-\lambda_{1}\right) y(a)+\lambda_{1} y(b)\right]\right|= \\
& =\mid\left(1-\lambda_{2}\right)\left[\left(1-\lambda_{1}\right)(y(c)-y(a))+\lambda_{1}(y(c)-y(b))\right]+ \\
& +\lambda_{2}\left[\left(1-\lambda_{1}\right)(y(d)-y(a))+\lambda_{1}(y(d)-y(b))\right] \mid \leqq \\
& \leqq\left(1-\lambda_{2}\right)\left[\left(1-\lambda_{1}\right) \eta(c-a)+\lambda_{1} \eta(c-b)\right]+ \\
& +\lambda_{2}\left[\left(1-\lambda_{1}\right) \eta(d-a)+\lambda_{1} \eta(d-b)\right] \leqq \eta\left(\tau_{2}-\tau_{1}\right) .
\end{aligned}
$$

2.13. Lemma. If two sets $M^{-} \subset(0,1]$ and $M^{+} \subset[0,1)$ are at most countable, there exists an increasing function $v \in V$ such that

$$
\begin{align*}
& M^{-}=\{t \in(0,1] ; v(t-) \neq v(t)\} \text { and } \tag{2.12}\\
& M^{+}=\{t \in[0,1) ; v(t) \neq v(t+)\} .
\end{align*}
$$

Proof. Let us order the sets M^{-}, M^{+}into sequences $M^{-}=\left\{s_{1}, s_{2}, \ldots\right\}, M^{+}=$ $=\left\{\sigma_{1}, \sigma_{2}, \ldots\right\}$ (finite sequences if the sets are finite). Let us take any sequences of positive numbers $\left\{r_{1}, r_{2}, \ldots\right\}$ and $\left\{\varrho_{1}, \varrho_{2}, \ldots\right\}$ such that $\sum r_{j}<\infty, \sum \varrho_{j}<\infty$. Let us define $w(t)=t+\sum_{0<s, \leq t} r_{j}+\sum_{0 \leq \sigma_{j}<t} \varrho_{j}$ for every $t \in[0,1]$. Then the function w is increasing, $w(0)=0,0<w(1)<\infty$. The function $v(t)=w(1)^{-1} w(t)$ belongs to V and satisfies (2.12).
2.14. Theorem. For an arbitrary function $x:[0,1] \rightarrow \mathbb{R}^{N}$ the following conditions are equivalent:
(i) The function x is regulated.
(ii) There is a continuous function $y:[0,1] \rightarrow \mathbb{R}^{N}$ and an increasing function $v \in V$ such that $x(t)=y(v(t))$ for every $t \in[0,1]$.
(iii) There is an increasing function $v:[0,1] \rightarrow[0,1]$ and a continuous increasing function $\eta:[0,1] \rightarrow[0, \infty)$ such that $\eta(0)=0$ and

$$
\begin{equation*}
\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq \eta\left(v\left(t_{2}\right)-v\left(t_{1}\right)\right) \quad \text { provided } \quad 0 \leqq t_{1}<t_{2} \leqq 1 . \tag{2.13}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). Let us denote

$$
\begin{align*}
& M^{-}=\{t \in(0,1] ; x(t-) \neq x(t)\} \text { and } \tag{2.14}\\
& M^{+}=\{t \in[0,1) ; x(t) \neq x(t+)\} .
\end{align*}
$$

By virtue of the property 1.6 the sets M^{-}, M^{+}are at most countable. By Lemma 2.13 there is a function $v \in V$ such that (2.12) holds. If $y \in L_{v}$ is the linear prolongation of x along v, it is continuous according to Proposition 2.10.
(ii) \Rightarrow (iii) The function η is a modulus of continuity of the function y.
(iii) \Rightarrow (i) Let $t_{0} \in(0,1]$. For an arbitrary $\varepsilon>0$ there is $\lambda>0$ such that $\eta(\lambda)<\varepsilon$ and there is $\delta>0$ such that $v\left(t_{0}-\right)-v\left(t_{0}-\delta\right) \leqq \lambda$. If $t_{0}-\delta \leqq t^{\prime}<t^{\prime \prime}<t_{0}$, then $v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right) \leqq v\left(t_{0}-\right)-v\left(t_{0}-\delta\right) \leqq \lambda$, hence $\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq \eta\left(v\left(t^{\prime \prime}\right)-\right.$ $\left.-v\left(t^{\prime}\right)\right) \leqq \eta(\lambda)<\varepsilon$. It is well-known that this implies the existence of the limit $\lim _{t \rightarrow t_{0}-} x(t)=x\left(t_{0}-\right)$. Similarly for every $t_{0} \in[0,1)$ the limit $x\left(t_{0}+\right)$ exists.
2.15. Remark. If the function x belongs to \mathscr{R}_{N}^{-}, the set M^{-}is empty and the set M^{+} does not contain the point 0 . Hence the function v in Theorem 2.14 is also leftcontinuous on (0,1] and right-continuous at 0 .

2.16. Lemma. If a set $\mathscr{A} \subset \mathscr{R}_{N}$ is equiregulated then the sets

$$
\left.\begin{array}{lllll}
M^{-} & =\{t \in(0,1] ; & \text { there is } & x \in \mathscr{A} & \text { such that } \tag{2.15}
\end{array} x(t-) \neq x(t)\right\} \quad \text { and }
$$

are at most countable.
Proof. Only the set M^{-}will be dealt with - the proof for M^{+}is quite analogous. For every $j \in \mathbb{N}$ let us denote

$$
M_{j}=\{t \in(0,1] ; \text { there is } x \in \mathscr{A} \text { such that }|x(t)-x(t-)| \geqq 1 / j\}
$$

Since $M^{-}=\bigcup_{j=1}^{\infty} M_{j}$, it is sufficient to prove that the set M_{j} is finite for every $j \in \mathbb{N}$.
Assume that there is j such that the set M_{j} is infinite. Let us choose a strictly monotone sequence $\left(t_{n}\right)_{n=1}^{\infty} \subset M_{j}$ and denote its limit by t_{0}. For instance, assume that the sequence $\left(t_{n}\right)$ is decreasing.
For every $n \in \mathbb{N}$ there is $x_{n} \in \mathscr{A}$ such that $\left|x_{n}\left(t_{n}\right)-x_{n}\left(t_{n}-\right)\right| \geqq 1 / j$. Since the set \mathscr{A} is equiregulated, there is $\delta>0$ such that

$$
\left|x(t)-x\left(t_{0}+\right)\right| \leqq 1 / 3 j \quad \text { for every } \quad x \in \mathscr{A}, \quad t \in\left(t_{0}, t_{0}+\delta\right)
$$

There is $n_{0} \in \mathbb{N}$ such that $t_{n} \in\left(t_{0}, t_{0}+\delta\right)$ for every $n \geqq n_{0}$. If $n \geqq n_{0}$ then

$$
\begin{aligned}
& 1 / j \leqq\left|x_{n}\left(t_{n}\right)-x_{n}\left(t_{n}-\right)\right| \leqq \\
& \leqq\left|x_{n}\left(t_{n}\right)-x_{n}\left(t_{0}+\right)\right|+\left|x_{n}\left(t_{n}-\right)-x_{n}\left(t_{0}+\right)\right| \leqq 2 / 3 j
\end{aligned}
$$

which is a contradiction; hence M_{j} is finite.
2.17. Theorem. For any set of regulated functions $\mathscr{A} \subset \mathscr{R}_{N}$ the following properties are equivalent:
(i) \mathscr{A} is equiregulated and satisfies (2.2).
(ii) There is an increasing function $v \in V$ and an increasing continuous function $\eta:[0, \infty) \rightarrow[0, \infty), \eta(0)=0$ such that

$$
\begin{align*}
& \left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq \eta\left(v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right)\right) \quad \text { for every } \quad x \in \mathscr{A}, \tag{2.16}\\
& 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1
\end{align*}
$$

(iii) There is $v \in V$ and an equicontinuous set $\mathscr{B} \subset \mathscr{C}_{N}$ such that $\mathscr{A} \subset \mathscr{B} \circ v$, i.e. for every $x \in \mathscr{A}$ there is a continuous function $y \in \mathscr{B}$ such that $x=y \circ v$.

Proof. (i) \Rightarrow (ii) By Lemma 2.16 the sets M^{-}, M^{+}defined in (2.15) are at most countable. By Lemma 2.13 we can construct a function $v \in V$ such that (2.12) holds. This function is defined so that

$$
\begin{equation*}
v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right) \geqq c\left(t^{\prime \prime}-t^{\prime}\right), \quad 0 \leqq t^{\prime}<t^{\prime \prime}<1 \tag{2.17}
\end{equation*}
$$

for some $c>0$. For every $r>0$ let us define

$$
x(r)=\sup \left\{\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| ; x \in \mathscr{A}, 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1, v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right) \leqq r\right\}
$$

For $t^{\prime}<t^{\prime \prime}$ let us denote $r=v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right)$. Then

$$
\begin{equation*}
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq x(r)=x\left(v\left(t^{\prime \prime}\right)-v\left(t^{\prime}\right)\right) \quad \text { for any } \quad x \in \mathscr{A} . \tag{2.18}
\end{equation*}
$$

Lemma 2.2 implies that $x(r)<\infty$ for every $r>0$. The function x is evidently nondecreasing on $(0, \infty)$.

Let us prove that $x(0+)=0$. For every $r>0$ there is $x_{r} \in \mathscr{A}$ and $t_{r}^{\prime}<t_{r}^{\prime \prime}$ such that

$$
v\left(t_{r}^{\prime \prime}\right)-v\left(t_{r}^{\prime}\right) \leqq r \quad \text { and } \quad\left|x_{r}\left(t_{r}^{\prime \prime}\right)-x_{r}\left(t_{r}^{\prime}\right)\right| \geqq \frac{1}{2} \varkappa(r) .
$$

By (2.17) we have

$$
t_{r}^{\prime \prime}-t_{r}^{\prime} \leqq \frac{1}{c}\left[v\left(t_{r}^{\prime \prime}\right)-v\left(t_{r}^{\prime}\right)\right] \leqq \frac{1}{c} r ;
$$

hence $t_{r}^{\prime \prime}-t_{r}^{\prime} \rightarrow 0$ with $r \rightarrow 0$.
Since the nets $\left(t_{r}^{\prime}\right)_{r>0}$ and $\left(t_{r}^{\prime \prime}\right)_{r>0}$ are contained in the compact interval $[0,1]$, there are convergent subsequences

$$
\begin{equation*}
t_{r_{n}}^{\prime} \rightarrow t_{0} \quad \text { and } \quad t_{r_{n}}^{\prime \prime} \rightarrow t_{0} \quad \text { with } \quad r_{n} \rightarrow 0 \tag{2.19}
\end{equation*}
$$

Denote $x_{r_{n}}=x_{n}, t_{r_{n}}^{\prime}=t_{n}^{\prime}, t_{r_{n}}^{\prime \prime}=t_{n}^{\prime \prime}$ for $n \in \mathbb{N}$.
Since the set \mathscr{A} is equiregulated, for every $\varepsilon>0$ there is $\delta_{\varepsilon}>0$ such that we have for every $x \in \mathscr{A}, t \in[0,1]$:

$$
\begin{align*}
& \text { if } t_{0}-\delta_{\varepsilon}<t<t_{0} \text { then }\left|x\left(t_{0}-\right)-x(t)\right|<\varepsilon ; \tag{2.20}\\
& \text { if } t_{0}<t<t_{0}+\delta_{\varepsilon} \text { then }\left|x(t)-x\left(t_{0}+\right)\right|<\varepsilon .
\end{align*}
$$

(a) Assume that the sequence $\left(r_{n}\right)$ can be found so that $t_{n}^{\prime}=t_{0}$ for every $n \in \mathbb{N}$. Then

$$
v\left(t_{n}^{\prime \prime}\right)-v\left(t_{0}\right) \leqq r_{n} \rightarrow 0 ; \text { consequently } v\left(t_{0}+\right)-v\left(t_{0}\right)=0
$$

Then $t_{0} \notin M^{+}$and $x\left(t_{0}+\right)=x\left(t_{0}\right)$ holds for every $x \in \mathscr{A}$. If for a given $\varepsilon>0$ the integer n is big enough so that $t_{n}^{\prime \prime}<t_{0}+\delta_{\varepsilon}$, then (2.20) yields

$$
x\left(r_{n}\right) \leqq 2\left|x_{n}\left(t_{n}^{\prime \prime}\right)-x_{n}\left(t_{0}\right)\right|<2 \varepsilon .
$$

(b) Similarly, if $t_{n}^{\prime \prime}=t_{0}$ for every $n \in \mathbb{N}$, then $v\left(t_{0}\right)-v\left(t_{n}^{\prime}\right) \leqq r_{n}$, hence $v\left(t_{0}\right)$ -$-v\left(t_{0}-\right)=0$, and $x\left(t_{0}\right)=x\left(t_{0}-\right)$ for every $x \in \mathscr{A}$. Then $x\left(r_{n}\right) \leqq 2 \mid x_{n}\left(t_{0}\right)-$ $-x_{n}\left(t_{n}^{\prime}\right) \mid<2 \varepsilon$ for every n such that $t_{0}-\delta_{\varepsilon}<t_{n}^{\prime}$.
(c) If we can find sequences $\left(t_{n}^{\prime}\right),\left(t_{n}^{\prime \prime}\right)$ such that $t_{n}^{\prime}<t_{0}<t_{n}^{\prime \prime}$, the inequality $v\left(t_{n}^{\prime \prime}\right)-$
$-v\left(t_{n}^{\prime}\right) \leqq r_{n} \rightarrow 0$ implies $v\left(t_{0}+\right)-v\left(t_{0}^{-}\right)=0$. Hence $t_{0} \notin M^{-} \cup M^{+}$and $x\left(t_{0}-\right)=$ $=x\left(t_{0}\right)=x\left(t_{0}+\right)$ for any $x \in \mathscr{A}$.

If for $\varepsilon>0$ an integer n satisfies $t_{0}-\delta_{\varepsilon}<t_{n}^{\prime}<t_{0}<t_{n}^{\prime \prime}<t_{0}+\delta_{\varepsilon}$, then

$$
x\left(r_{n}\right) \leqq 2\left[\left|x_{n}\left(t_{n}^{\prime \prime}\right)-x_{n}\left(t_{0}\right)\right|+\left|x_{n}\left(t_{0}\right)-x_{n}\left(t_{n}^{\prime}\right)\right|\right]<4 \varepsilon .
$$

(d) Assume that $t_{n}^{\prime}<t_{n}^{\prime \prime}<t_{0}$ for every $n \in \mathbb{N}$. If for a given $\varepsilon>0$ the inequality $t_{0}-\delta_{\varepsilon}<t_{n}^{\prime}$ holds, then

$$
x\left(r_{n}\right) \leqq 2\left[\left|x_{n}\left(t_{n}^{\prime \prime}\right)-x_{n}\left(t_{0}-\right)\right|+\left|x_{n}\left(t_{0}-\right)-x_{n}\left(t_{n}^{\prime}\right)\right|\right]<4 \varepsilon .
$$

(e) Similarly in the case of $t_{0}<t_{n}^{\prime}<t_{n}^{\prime \prime}$ we get:

$$
\text { if } t_{n}<t_{0}+\delta_{\varepsilon} \text { then } x\left(r_{n}\right)<4 \varepsilon .
$$

We conclude that $\chi\left(r_{n}\right) \rightarrow 0$ with $n \rightarrow \infty$ in each of the cases mentioned. Consequently $\chi(0+)=0$.

By Proposition 1.22 there is an increasing continuous function $\eta:[0, \infty) \rightarrow[0, \infty)$. such that $\eta(0)=0$ and $x(r) \leqq \eta(r)$ for every $r>0$. Then from (2.18) we obtain (2.16).
(ii) \Rightarrow (iii) According to Proposition 1.22 the function η in (2.16) can be replaced by a concave increasing function $\tilde{\eta}$ such that $\eta(r) \leqq \tilde{\eta}(r)$ for $r \in[0,1]$. From (2.16) we get

$$
\begin{array}{llll}
|x(t+)-x(t)| \leqq \eta(v(t+)-v(t)) & \text { for any } & x \in \mathscr{A}, & t \in[0,1) ; \\
|x(t)-x(t-)| \leqq \eta(v(t)-v(t-)) & \text { for any } & x \in \mathscr{A}, & t \in(0,1] .
\end{array}
$$

Consequently (2.7) is satisfied for any $x \in \mathscr{A}$.
Let us denote by \mathscr{B} the set of the linear prolongations of all functions from \mathscr{A} along v. Then $\mathscr{A}=\mathscr{B} \circ v$ holds. According to Proposition 2.11 all functions from \mathscr{B} are continuous. Moreover, by Proposition 2.12 every $y \in \mathscr{B}$ satisfies

$$
\left|y\left(\tau^{\prime \prime}\right)-y\left(\tau^{\prime}\right)\right| \leqq \tilde{\eta}\left(\tau^{\prime \prime}-\tau^{\prime}\right) \quad \text { for } \quad 0 \leqq \tau^{\prime}<\tau^{\prime \prime} \leqq 1
$$

The function $\tilde{\eta}$ is a uniform modulus of continuity of the set \mathscr{B}.
(iii) \Rightarrow (i) If $\mathscr{A} \subset \mathscr{B} \circ v$ where $\mathscr{B} \subset \mathscr{C}_{N}$ is an equicontinuous set, it is well-known that there is such $K>0$ that $|y(\tau)-y(0)| \leqq K$ for every $\tau \in[0,1], y \in \mathscr{B}$. Then (2.2) is satisfied.

Let us prove that the set \mathscr{A} is equiregulated. Let $\varepsilon>0$ be given. There is $\lambda>0$ such that the following holds: If $\left|\tau^{\prime \prime}-\tau^{\prime}\right| \leqq \lambda$ then $\left|y\left(\tau^{\prime \prime}\right)-y\left(\tau^{\prime}\right)\right|<\varepsilon$ for any $y \in \mathscr{B}$.

Let $t_{0} \in(0,1]$ be given, denote $\tau_{0}=v\left(t_{0}-\right)$. There is $\delta>0$ such that $v\left(t_{0}-\right)-$ $-v\left(t_{0}-\delta\right) \leqq \lambda$. For any $t \in\left(t_{0}-\delta, t_{0}\right)$ denote $\tau=v(t)$. Then $\tau_{0}-\tau<\lambda$. If $x=y \circ v$ then $\left.\left|x\left(t_{0}-\right)-x(t)\right|=\mid y\left(v\left(t_{0}-\right)\right)-y(v(t))\right)\left|=\left|y\left(\tau_{0}\right)-y(\tau)\right|<\varepsilon\right.$. Similarly for every $t_{0} \in[0,1)$ there is $\delta>0$ such that $\left|x(t)-x\left(t_{0}+\right)\right|<\varepsilon$ for any $x \in \mathscr{A}$, $t \in\left(t_{0}, t_{0}+\delta\right)$. Hence the set \mathscr{A} is equiregulated.

Now we will formulate an important theorem about various characterizations of relatively compact sets in \mathscr{R}_{N}.
2.18. Theorem. For any set of regulated functions $\mathscr{A} \subset \mathscr{R}_{N}$ the following properties are equivalent:
(i) \mathscr{A} is relatively compact in the sup-norm topology in \mathscr{R}_{N}.
(ii) \mathscr{A} is equiregulated, satisfies (2.2) and
(2.21) \quad there is $\alpha>0$ such that $|x(0)| \leqq \alpha$ for any $x \in \mathscr{A}$.
(iii) The set \mathscr{A} satisfies (2.16) and (2.21).
(iv) There is $v \in V$ and a compact set of continuous functions $\mathscr{B} \subset \mathscr{C}_{N}$ such that $\mathscr{A} \subset \mathscr{B} \circ \boldsymbol{v}$.

Proof. The equivalence (i) \Leftrightarrow (ii) was established in Proposition 2.3. Here we will give another proof of (ii) \Rightarrow (i), proving successively the implications (ii) \Rightarrow \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). Now let us use only the fact that (i) \Rightarrow (ii) was proved in Proposition 2.3.
(ii) \Rightarrow (iii) is the same as (i) \Rightarrow (ii) in Theorem 2.17, together with the assumption (2.21).
(iii) \Rightarrow (iv): By (ii) \Rightarrow (iii) in Theorem 2.17 there is $v \in V$ and an equicontinuous set $\mathscr{B}_{1} \subset \mathscr{C}_{N}$ such that $\mathscr{A}=\mathscr{B}_{1} \circ v$. By (2.21) the inequality $|y(0)| \leqq \alpha$ holds for every $y \in \mathscr{B}_{1}$. By the Arzelà-Ascoli Theorem the set \mathscr{B}_{1} is relatively compact in \mathscr{C}_{N}. Then there is a compact set $\mathscr{B} \subset \mathscr{C}_{N}$ such that $\mathscr{B}_{1} \subset \mathscr{B}$; hence $\mathscr{A} \subset \mathscr{B} \circ v$.
(iv) \Rightarrow (i) Let $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{A}$ be an arbitrary sequence; for any $n \in \mathbb{N}$ there is $y_{n} \in \mathscr{B}$ such that $x_{n}=y_{n} \circ v$. Since the set \mathscr{B} is compact, there is a convergent subsequence $y_{n_{k}} \rightrightarrows y_{0}$. Then $x_{n_{k}}=y_{n_{k}} \circ v \rightrightarrows y_{0} \circ v$; hence $\left(x_{n_{k}}\right)$ is a Cauchy subsequence. Consequently \mathscr{A} is relatively compact.

3. POINTWISE CONVERGENCE OF REGULATED FUNCTIONS

3.1. It is well-known that functions of bounded variation have a nice property expressed in Helly's Choice Theorem:

Assume that for a sequence $\left(z_{n}\right)_{n=1}^{\infty} \subset B V_{N}[a, b]$ there are positive numbers γ, K such that $\left|z_{n}(a)\right| \leqq \gamma$ and $\operatorname{var}_{a}^{b} z_{n} \leqq K$ holds for every $n \in \mathbb{N}$. Then there is a function z_{0} and a subsequence $\left(z_{n_{k}}\right)_{k=1}^{\infty}$ such that $z_{n_{k}}(t) \rightarrow z_{0}(t)$ holds for every $t \in[a, b]$. The function z_{0} is of bounded variation and

$$
\operatorname{var}_{a}^{b} z_{0} \leqq \liminf _{n \rightarrow \infty} \operatorname{var}_{a}^{b} z_{n}
$$

In order to extend this result to the space $\mathscr{R}_{N}[a, b]$, it is possible to reason in this way: Let a sequence of regulated functions $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}[a, b]$ be given such that $\left|x_{n}(a)\right| \leqq \gamma$ for any $n \in \mathbb{N}$. Assume that in an arbitrary close "neighbourhood" (in the sup-norm) of the sequence $\left(x_{n}\right)$ we can find a sequence $\left(z_{n}\right)$ the members of which have uniformly bounded variations. Then we can find a pointwise convergent subsequence $\left(z_{n_{k}}\right)$, using Helly's Choice Theorem. Since the functions $z_{n_{k}}, k \in \mathbb{N}$ are "near" to the functions $x_{n_{k}}, k \in \mathbb{N}$, we can expect that the subsequence $\left(x_{n_{k}}\right)$ is "almost" pointwise convergent. More precisely:

Assume that for every $\varepsilon>0$ there is a sequence $\left(z_{n}^{\varepsilon}\right)_{n=1}^{\infty} \subset B V_{N}[a, b]$ and a number $K_{\varepsilon}>0$ such that

$$
\left\|x_{n}-z_{n}^{\varepsilon}\right\|_{[a, b]} \leqq \varepsilon \text { and } \operatorname{var}_{a}^{b} z_{n}^{\varepsilon} \leqq K_{\varepsilon} \text { holds for any } n \in \mathbb{N} .
$$

Let $\left(\varepsilon_{m}\right)_{m=1}^{\infty}$ be an arbitrary sequence of positive numbers such that $\varepsilon_{m} \rightarrow 0$. For every $m \in \mathbb{N}$ the sequence $\left(z_{n}^{\varepsilon_{m}}\right)_{n=1}^{\infty}$ contains a pointwise convergent subsequence (by Helly's Choice Theorem). Using diagonalization process, we can find an increasing sequence of indices $\left(n_{k}\right)_{k=1}^{\infty}$ such that

$$
z_{n_{k}}^{\varepsilon_{m}}(t) \rightarrow z_{0}^{\varepsilon_{m}}(t) \text { holds for every } t \in[a, b] \text { and } m \in \mathbb{N} .
$$

Let us show that $\left(z_{0}^{\varepsilon_{m}}\right)_{m=1}^{\infty}$ is a Cauchy sequence in the sup-norm topology. Let $\eta>0$ be given. There is $m_{0} \in \mathbb{N}$ such that $\varepsilon_{m}<\eta / 4$ for any $m \geqq m_{0}$. Let $m, p \geqq m_{0}$ and $t \in[a, b]$ be fixed. There is $k \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|z_{n_{k}}^{\varepsilon_{m}}(t)-z_{0}^{\varepsilon_{m}}(t)\right|<\eta / 4 \text { and }\left|z_{n_{k}}^{\varepsilon_{p}}(t)-z_{0}^{\varepsilon_{p}}(t)\right|<\eta / 4 . \text { Then } \\
& \left|z_{0}^{\varepsilon_{m}}(t)-z_{0}^{\varepsilon_{p}}(t)\right| \leqq\left|z_{0}^{\varepsilon_{m}}(t)-z_{n_{k}}^{\varepsilon_{m}}(t)\right|+\left|z_{0}^{\varepsilon_{p}}(t)-z_{n_{k}}^{\varepsilon_{p}}(t)\right|+ \\
& +\left|z_{n_{k}}^{\varepsilon_{m}}(t)-x_{n_{k}}(t)\right|+\left|z_{n_{k}}^{\varepsilon_{p}}(t)-x_{n_{k}}(t)\right|<\eta / 4+\eta / 4+\varepsilon_{m}+\varepsilon_{p}<\eta .
\end{aligned}
$$

We find that $\left\|z_{0}^{\varepsilon_{m}}-z_{0}^{\varepsilon_{p}}\right\|<\eta$ holds for any $m, p \geqq m_{0}$. Hence $\left(z_{0}^{\varepsilon_{m}}\right)_{m=1}^{\infty}$ is a Cauchy sequence and it has a uniform limit x_{0}. It is easy to verify that $x_{n_{k}}(t) \rightarrow x_{0}(t)$ for every $t \in[a, b]$. In this way we have found a subsequence of $\left(x_{n}\right)$ which is pointwise convergent.
3.2. Definition. For an arbitrary function $x:[a, b] \rightarrow \mathbb{R}^{N}$ and a positive number $\varepsilon>0$ let us define

$$
\varepsilon-\operatorname{var}_{a}^{b} x=\inf \left\{\operatorname{var}_{a}^{b} z ; z \in B V_{N}[a, b],\|x-z\|_{[a, b]} \leqq \varepsilon\right\}
$$

We set $\inf \emptyset=\infty$.
3.3. Definition. We say that a set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ has uniformly bounded ε-variations, when for every $\varepsilon>0$ there is a number $K_{\varepsilon}>0$ such that ε-var ${ }_{a}^{b} x \leqq K_{\varepsilon}$ for every $x \in \mathscr{A}$.
3.4. Proposition. A function $x:[a, b] \rightarrow \mathbb{R}^{N}$ is regulated if and only if ε - $\operatorname{var}_{a}^{b} x<$ $<\infty$ for every $\varepsilon>0$.

Proof. If the function x is regulated, then the property 1.5 implies that for every $\varepsilon>0$ there is a piecewise constant function $z:[a, b] \rightarrow \mathbb{R}^{N}$ such that $\|x-z\| \leqq \varepsilon$. Of course, the function z has bounded variation.

Now let us assume that $1 / n-\operatorname{var}_{a}^{b} x<\infty$ fot every $n \in \mathbb{N}$. Then for every $n \in \mathbb{N}$ there is $z_{n} \in B V[a, b]$ such that $\left\|x-z_{n}\right\| \leqq 1 / n$. Since the functions z_{n} are regulated, it follows from 1.8 that $x \in \mathscr{R}_{N}[a, b]$.
3.5. Proposition. For every function $x \in \mathscr{R}[a, b]$ and positive number ε there is a function $z \in B V_{N}[a, b]$ such that $\|x-z\| \leqq \varepsilon$ and $\operatorname{var}_{a}^{b} z=\varepsilon-\operatorname{var}_{a}^{b} x$.

Proof. For every $k \in \mathbb{N}$ there is a function $z_{k} \in B V_{N}[a, b]$ such that $\left\|x-z_{k}\right\| \leqq \varepsilon$ and

$$
\varepsilon-\operatorname{var}_{a}^{b} x \leqq \operatorname{var}_{a}^{b} z_{k}<\varepsilon-\operatorname{var}_{a}^{b} x+1 / k
$$

Hence ε - $\operatorname{var}_{a}^{b} x=\lim _{k \rightarrow \infty} \operatorname{var}_{a}^{b} z_{k}$.
Since the sequence $\left(z_{k}\right)_{k=1}^{\infty}$ is bounded and its members have uniformly bounded variations, by Helly's Choice Theorem there is a subsequence $\left(z_{k_{j}}\right)_{j=1}^{\infty}$ and a function z such that

$$
\begin{aligned}
& z_{k_{j}}(t) \rightarrow z(t) \text { for any } t \in[a, b], \text { and } \operatorname{var}_{a}^{b} z \leqq \liminf _{j \rightarrow \infty} \operatorname{var}_{a}^{b} z_{k_{j}}= \\
& =\varepsilon-\operatorname{var}_{a}^{b} x .
\end{aligned}
$$

On the other hand, since obviously $\|x-z\| \leqq \varepsilon$, it follows from Definition 3.2 that $\varepsilon-\operatorname{var}_{a}^{b} x \leqq \operatorname{var}_{a}^{b} z$. This completes the proof of the equality $\varepsilon-\operatorname{var}_{a}^{b} x=\operatorname{var}_{a}^{b} z$.
3.6. Proposition. Assume that the members of a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}[a, b]$ have uniformly bounded ε-variations. If $x_{n}(t) \rightarrow x_{0}(t)$ for every $t \in[a, b]$, then the function x_{0} is regulated and

$$
\begin{equation*}
\varepsilon-\operatorname{var}_{a}^{b} x_{0} \leqq \liminf _{n \rightarrow \infty} \varepsilon-\operatorname{var}_{a}^{b} x_{n} \text { for every } \varepsilon>0 \tag{3.1}
\end{equation*}
$$

Proof. For every $\varepsilon>0$ there is $K_{\varepsilon}>0$ such that ε-var ${ }_{a}^{b} x_{n} \leqq K_{\varepsilon}$ holds for any $n \in \mathbb{N}$. Let $\varepsilon>0$ be fixed. There is a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ such that

$$
\liminf _{n \rightarrow \infty} \varepsilon-\operatorname{var}_{a}^{b} x_{n}=\lim _{k \rightarrow \infty} \varepsilon-\operatorname{var}_{a}^{b} x_{n_{k}}
$$

By Proposition 3.5 for any $k \in \mathbb{N}$ there is $z_{k}^{\varepsilon} \in B V_{N}[a, b]$ such that $\left\|x_{n_{k}}-z_{k}^{\varepsilon}\right\| \leqq \varepsilon$ and ε-var ${ }_{a}^{b} x_{n_{k}}=\operatorname{var}_{a}^{b} z_{k}^{\varepsilon}$. By Helly's Choice Theorem there is a subsequence $\left(z_{k j}^{\varepsilon}\right)_{j=1}^{\infty}$ and a function z_{0}^{ε} such that $z_{k_{j}}^{\varepsilon}(t) \rightarrow z_{0}^{\varepsilon}(t)$ for every $t \in[a, b]$, and $\operatorname{var}_{a}^{b} z_{0}^{\varepsilon} \leqq$ $\leqq \underset{j \rightarrow \infty}{\liminf } \operatorname{var}_{a}^{b} z_{k_{j}}^{e}$. Let $t \in[a, b]$ and $\eta>0$ be given. There is an integer j such that
$\left|x_{n_{k_{j}}}(t)-x_{0}(t)\right|<\eta / 2$ and $\left|z_{k_{j}}^{\varepsilon}(t)-z_{0}^{\varepsilon}(t)\right|<\eta / 2$. Then $\left|x_{0}(t)-z_{0}^{\varepsilon}(t)\right| \leqq$
$\leqq\left|x_{0}(t)-x_{n_{k_{j}}}(t)\right|+\left|x_{n_{k_{j}}}(t)-z_{k_{j}}^{\varepsilon}(t)\right|+\left|z_{k_{j}}^{\varepsilon}(t)-z_{0}^{\varepsilon}(t)\right|<\eta / 2+\varepsilon+\eta / 2=\varepsilon+\eta$.
Since this estimate holds for any t and η, we conclude that $\left\|x_{0}-z_{0}^{\varepsilon}\right\| \leqq \varepsilon$. Definition 3.2 yields $\varepsilon-\operatorname{var}_{a}^{b} x_{0} \leqq \operatorname{var}_{a}^{b} z_{0}^{\varepsilon}$. Further $\operatorname{var}_{a}^{b} z_{0}^{\varepsilon} \leqq \liminf _{j \rightarrow \infty} \operatorname{var}_{a}^{b} z_{k_{j}}^{\varepsilon}=\underset{j \rightarrow \infty}{\liminf } \varepsilon-\operatorname{var}_{a}^{b} x_{n_{k_{j}}}=$ $=\lim _{k \rightarrow \infty} \varepsilon-\operatorname{var}_{a}^{b} x_{n_{k}}=\liminf _{n \rightarrow \infty} \varepsilon-\operatorname{var}_{a}^{b} x_{n}$. Hence (3.1) holds. Moreover, it is evident that $\liminf \varepsilon-\operatorname{var}_{a}^{b} x_{n} \leqq K_{\varepsilon}$; then ε - $\operatorname{var}_{a}^{b} x_{0}$ is finite for every $\varepsilon>0$. By Proposition 3.4 $n \rightarrow \infty$
the function x_{0} is regulated.
3.7. Proposition. If a set $\mathscr{A} \subset \mathscr{R}_{N}[a, b]$ has uniformly bounded ε-variations, then there is $\alpha>0$ such that $\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq \alpha$ for any $x \in \mathscr{A}, a \leqq t_{1}<t_{2} \leqq b$.

Moreover, if the set $\{x(a) ; x \in \mathscr{A}\}$ is bounded, then there is $\beta>0$ such that $\|x\| \leqq \beta$ for any $x \in \mathscr{A}$.

Proof. There is $K>0$ such that $1-\operatorname{var}_{a}^{b} x \leqq K$ for any $x \in \mathscr{A}$. For arbitrary $x \in \mathscr{A}$ there is $z \in B V_{N}[a, b]$ such that $\|x-z\| \leqq 1$ and $\operatorname{var}_{a}^{b} z \leqq K$. If $a \leqq t_{1}<$ $<t_{2} \leqq b$ then

$$
\begin{aligned}
& \left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq\left|x\left(t_{2}\right)-z\left(t_{2}\right)\right|+\left|z\left(t_{2}\right)-z\left(t_{1}\right)\right|+\left|z\left(t_{1}\right)-x\left(t_{1}\right)\right| \leqq \\
& \leqq 2\|x-z\|+\operatorname{var}_{t_{1}}^{t_{2}} z \leqq 2+K=\alpha .
\end{aligned}
$$

If there is $\gamma>0$ such that $|x(a)| \leqq \gamma$ for any $x \in \mathscr{A}$, then

$$
|x(t)| \leqq|x(a)|+|x(t)-x(a)| \leqq \gamma+\alpha=\beta \quad \text { for every } \quad x \in \mathscr{A}
$$

$t \in[a, b]$. Consequently $\|x\| \leqq \beta$.
Using the notion of ε-variation, let us formulate the main theorem of this section, which is an analogue of Helly's Choice Theorem in the space of regulated functions.
3.8. Theorem. Assume that the sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}[a, b]$ has uniformly bounded ε-variations and that there is $\gamma>0$ such that $\left|x_{n}(a)\right| \leqq \gamma$ for every $n \in \mathbb{N}$. Then there is a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ and a function $x_{0} \in \mathscr{R}_{N}[a, b]$ such that $x_{n_{k}}(t) \rightarrow$ $\rightarrow x_{0}(t)$ for every $t \in[a, b]$.

An outline of the proof is given in 3.1. However, this proof will not be presented in detail at this moment, because Theorem 3.8 will be proved later in another way.

In the following we will work on the interval $[0,1]$, because the notion of linear prolongation will be used, which was defined for the interval $[0,1]$. Of course, all results can be simply transferred to an arbitrary compact interval $[a, b]$.
3.9. Lemma. Assume that an equicontinuous set $\mathscr{B} \subset \mathscr{C}_{N}$ is given. Then for any $\varepsilon>0$ there is $K_{\varepsilon}>0$ such that for every $y \in \mathscr{B}$ there is a function $\zeta:[0,1] \rightarrow \mathbb{R}^{N}$ which is lipschitzian with the constant K_{ε} and such that $\|y-\zeta\|<\varepsilon$.

Proof. For a given $\varepsilon>0$ let us find $\delta>0$ such that

$$
\text { if }\left|\tau^{\prime \prime}-\tau^{\prime}\right|<\delta \text { then }\left|y\left(\tau^{\prime \prime}\right)-y\left(\tau^{\prime}\right)\right|<\varepsilon / 2
$$

holds for every $y \in \mathscr{B}$.
Let $0=\tau_{1}<\tau_{2}<\ldots<\tau_{k}=1$ be a division such that

$$
\delta / 2 \leqq \tau_{i}-\tau_{i-1}<\delta \quad \text { for } \quad i=1,2, \ldots, k
$$

For any $y \in \beta$ let us define a function $\zeta:[0,1] \rightarrow \mathbb{R}^{N}$ such that $\zeta\left(\tau_{i}\right)=y\left(\tau_{i}\right)$ for $i=0,1, \ldots, k$ and ζ is linear on each of the intervals $\left[\tau_{i-1}, \tau_{i}\right], i=1,2, \ldots, k$; i.e.

$$
\zeta(\tau)=y\left(\tau_{i-1}\right)+\frac{y\left(\tau_{i}\right)-y\left(\tau_{i-1}\right)}{\tau_{i}-\tau_{i-1}} \cdot\left(\tau-\tau_{i-1}\right) \text { for } \tau \in\left[\tau_{i-1}, \tau_{i}\right] .
$$

For $i=1,2, \ldots, k$ we have

$$
\left|\frac{y\left(\tau_{i}\right)-y\left(\tau_{i-1}\right)}{\tau_{i}-\tau_{i-1}}\right| \leqq \frac{2}{\delta} \cdot\left|y\left(\tau_{i}\right)-y\left(\tau_{i-1}\right)\right|<\frac{2}{\delta} \cdot \frac{\varepsilon}{2}=\frac{\varepsilon}{\delta} .
$$

Hence ζ is lipschitzian with the constant $K_{\varepsilon}=\varepsilon / \delta$. If $\tau \in\left[\tau_{i-1}, \tau_{i}\right]$ then

$$
\begin{aligned}
& |\zeta(\tau)-y(\tau)|=\left|y\left(\tau_{i-1}\right)+\frac{y\left(\tau_{i}\right)-y\left(\tau_{i-1}\right)}{\tau_{i}-\tau_{i-1}} \cdot\left(\tau-\tau_{i-1}\right)-y(\tau)\right| \leqq \\
& \leqq\left|y\left(\tau_{i-1}\right)-y(\tau)\right|+\left|y\left(\tau_{i}\right)-y\left(\tau_{i-1}\right)\right|<\varepsilon .
\end{aligned}
$$

Consequently $\|\zeta-y\|<\varepsilon$.
3.10. Theorem. For an arbitrary set of regulated functions $\mathscr{A} \subset \mathscr{R}_{N}$ the following conditions are equivalent:
(i) The set \mathscr{A} has uniformly bounded ε-variations.
(ii) There is an increasing continuous function $\eta:[0,1] \rightarrow[0, \infty), \eta(0)=0$ such that for every $x \in \mathscr{A}$ there is an increasing function $v_{x} \in V$ satisfying

$$
\begin{align*}
& \left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq \eta\left(v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right)\right) \text { for } 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1 \text {; } \tag{3.2}\\
& v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right) \leqq \frac{1}{2}\left(t^{\prime \prime}-t^{\prime}\right) \text { for } 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1 ; \tag{3.3}
\end{align*}
$$

if x is continuous at 0 or 1 , then v_{x} is continuous at 0 or 1, respectively; and
(3.5) if the set \mathscr{A} has uniform one-sided limits at 0 and 1 , then also the set $\left\{v_{x}, x \in \mathscr{A}\right\}$ has uniform one-sided limits at 0 and 1 .
(iii) There is an equicontinuous set $\mathscr{B} \subset \mathscr{C}_{N}$ such that for any $x \in \mathscr{A}$ there are $y_{x} \in \mathscr{B}$ and $v_{x} \in V$ satisfying $x=y_{x} \circ v_{x}$ (this can be written as $\mathscr{A} \subset \mathscr{B} \circ V$).

Proof. (i) \Rightarrow (ii) By Proposition 3.7 there is $\alpha>0$ such that

$$
\begin{equation*}
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq \alpha \quad \text { holds for any } \quad x \in \mathscr{A}, \quad 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1 \tag{3.6}
\end{equation*}
$$

For any $j \in \mathbb{N}$ there is $K_{j}>0$ such that $1 / j-\operatorname{var}_{0}^{1} x \leqq K_{j}$ for every $x \in \mathscr{A}$.
Let $x \in \mathscr{A}$ be given. For any integer j there is $z_{x, j} \in B V_{N}$ such that

$$
\begin{equation*}
\left\|x-z_{x, j}\right\| \leqq 1 / j \text { and } \operatorname{var}_{0}^{1} z_{x, j} \leqq K_{j} . \tag{3.7}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\tau_{x, j}=\sup \left\{\tau \in\left(0, \frac{1}{4}\right]:|x(t)-x(0+)| \leqq 1 / 2 j \text { for every } t \in(0, \tau]\right\}, \tag{3.8}
\end{equation*}
$$

$$
\sigma_{x, j}=\inf \left\{\sigma \in\left[\frac{3}{4}, 1\right) ;|x(1-)-x(t)| \leqq 1 / 2 j \text { for every } t \in[\sigma, 1)\right\} .
$$

Evidently $\tau_{x, j}>0$ and $\sigma_{x, j}<1$.
Let us define

$$
\begin{align*}
& \zeta_{x, j}(0)=x(0) ; \quad \zeta_{x, j}(t)=x(0+)+\frac{x\left(\tau_{x, j}-\right)-x(0+)}{\tau_{x, j}}, t \text { for } t \in\left(0, \tau_{x, j}\right) ; \tag{3.9}\\
& \zeta_{x, j}(t)=z_{x, j}(t) \text { for } t \in\left[\tau_{x, j}, \sigma_{x, j}\right] \\
& \zeta_{x, j}(t)=x(1-)+\frac{x(1-)-x\left(\sigma_{x, j}+\right)}{1-\sigma_{x, j}}(t-1) \text { for } t \in\left(\sigma_{x, j}, 1\right), \\
& \zeta_{x, j}(1)=x(1) .
\end{align*}
$$

For $t \in\left(0, \tau_{x, j}\right)$ we have

$$
\left|\zeta_{x, j}(t)-x(t)\right| \leqq\left|x\left(\tau_{x, j}-\right)-x(0+)\right|+|x(t)-x(0+)| \leqq 1 / j .
$$

Similarly

$$
\left|\zeta_{x, j}(t)-x(t)\right| \leqq 1 / j \quad \text { for any } \quad t \in\left(\sigma_{x, j}, 1\right)
$$

Hence

$$
\begin{equation*}
\left\|\zeta_{x, j}-x\right\| \leqq 1 / j . \tag{3.10}
\end{equation*}
$$

By (3.6), (3.7) and (3.10) we have an estimate

$$
\begin{aligned}
& \operatorname{var}_{0}^{1} \zeta_{x, j}=\operatorname{var}_{0}^{\tau \tau, j} \zeta_{x, j}+\operatorname{var}_{\tau_{x, j}}^{\sigma_{x, j}} z_{x, j}+\operatorname{var}_{\tau_{x, j}}^{1} \zeta_{x, j} \leqq \\
& \leqq|x(0+)-x(0)|+\left|x\left(\tau_{x, j}-\right)-x(0+)\right|+\left|z_{x, j}\left(\tau_{x, j}\right)-x\left(\tau_{x, j}-\right)\right|+ \\
& \left.+\operatorname{var}_{0}^{1} z_{x, j}+\left|x\left(\sigma_{x, j}+\right)-z_{x, j}\left(\sigma_{x, j}\right)\right|+|x(1-)-x| \sigma_{x, j}+\right) \mid+ \\
& +|x(1)-x(1-)| \leqq 6 \alpha+2\left\|z_{x, j}-x\right\|+\operatorname{var}_{0}^{1} z_{x, j} \leqq 6 \alpha+2 j+K_{j} .
\end{aligned}
$$

If we denote

$$
\begin{equation*}
M_{j}=6 \alpha+2 / j+K_{j}, \tag{3.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{var}_{0}^{1} \zeta_{x, j} \leqq M_{j} \tag{3.12}
\end{equation*}
$$

Using (3.10), (3.11) we find that $\zeta_{x, j}$ has similar properties as $z_{x, j}$ in (3.7), but moreover it has a special form near the endpoints of the interval $[0,1]$.

Let us define

$$
\begin{equation*}
v_{x, j}(t)=\operatorname{var}_{0}^{t} \zeta_{x, j} \quad \text { for } t \in[0,1] \tag{3.13}
\end{equation*}
$$

From (3.12) it follows that

$$
\begin{equation*}
0 \leqq v_{x, j}(t) \leqq M_{j} \quad \text { holds for any } t \in[0,1] \tag{3.14}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
v_{x}(t)=a_{x} t+\sum_{j=1}^{\infty} 2^{-j-1} \cdot\left(1 / M_{j}\right) v_{x, j}(t) \text { for } t \in[0,1] \tag{3.15}
\end{equation*}
$$

where the number $a_{x} \in[1 / 2,1]$ is chosen so that $v_{x}(1)=1$. We have the inequality

$$
\begin{equation*}
v_{x, j}\left(t^{\prime \prime}\right)-v_{x, j}\left(t^{\prime}\right) \leqq 2^{j+1} M_{j}\left[v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right)\right] \text { for } t^{\prime}<t^{\prime \prime} \tag{3.16}
\end{equation*}
$$

From (3.14) it follows that the series in (3.15) is uniformly absolutely convergent. Since $a_{x} \geqq 1 / 2$, the property (3.3) is evident.
Assume that x is continuous from the right at 0 . Since $\zeta_{x, j}$ is linear on $\left(0, \tau_{x, j}\right)$ and $\zeta_{x, j}(0)=x(0), \zeta_{x, j}(0+)=x(0+)$, it is evident that $\zeta_{x, j}$ are, as well as $v_{x, j}$, continuous at 0 for every $j \in \mathbb{N}$.

For a given $\varepsilon \in(0,1)$ there is an integer j_{0} such that $2^{-j_{0}-1}<\varepsilon / 4$. For $j=$ $=1,2, \ldots, j_{0}$ denote

$$
\delta_{j}=\varepsilon \cdot \tau_{x, j}
$$

Further, denote

$$
\begin{equation*}
\delta=\min \left\{\frac{\varepsilon}{4 a_{x}}, \delta_{1}, \delta_{2}, \ldots, \delta_{j_{0}}\right\} \tag{3.17}
\end{equation*}
$$

By (3.11) we have $\alpha>M_{j}$. If $t \in(0, \delta)$, then

$$
\begin{equation*}
v_{x, j}(t)=\left|x\left(\tau_{x, j}-\right)-x(0)\right| \cdot \frac{t}{\tau_{x, j}} \leqq \alpha \cdot \frac{\delta}{\tau_{x, j}}<M_{j} \cdot \frac{\delta_{j}}{\tau_{x, j}} \leqq M_{j} \varepsilon \tag{3.18}
\end{equation*}
$$

By (3.14), (3.17) and (3.18) we get an estimate

$$
\begin{aligned}
& \left|v_{x}(t)-v_{x}(0)\right|=v_{x}(t) \leqq \\
& \leqq a_{x} t+\sum_{j=1}^{j_{0}} 2^{-j-1} \cdot \frac{1}{M_{j}} \cdot v_{x, j}(t)+\sum_{j=j_{0}+1}^{\infty} 2^{-j-1} \leqq \\
& \leqq a_{x} \delta+\sum_{j=1}^{j_{0}} 2^{-j-1} \cdot \frac{1}{M_{j}} \cdot M_{j} \varepsilon+2<a_{x} \cdot \frac{\varepsilon}{4 a_{x}}+2^{-1} \varepsilon+\varepsilon / 4=\varepsilon
\end{aligned}
$$

Consequently v_{x} is right-continuous at the point 0 . Similarly it can be proved that if x is left-continuous at 1 , then v_{x} is left-continuous at 1 . Hence (3.4) holds.

For $r>0$ let us define

$$
\begin{align*}
& x(r)=\sup \left\{\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right|, \text { where } x \in \mathscr{A}\right. \tag{3.19}\\
& \left.0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1, v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right) \leqq r\right\}
\end{align*}
$$

Evidently the inequality

$$
\begin{equation*}
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq x\left(v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right)\right) \tag{3.20}
\end{equation*}
$$

holds for every $x \in \mathscr{A}, 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1$.

It is obvious that the function x is nondecreasing. Let us prove that $x(0+)=0$.
On the contrary, assume that $x(0+)=\varkappa>0$. Let us find $j \in \mathbb{N}$ such that $2 / j<x / 4$. Denote

$$
\begin{equation*}
r=x / 4 \cdot 2^{-j-1} \cdot \frac{1}{M_{j}} . \tag{3.21}
\end{equation*}
$$

Since $\chi(r) \geqq \chi(0+)=\chi$, there are $x \in \mathscr{A}$ and $t^{\prime}<t^{\prime \prime}$ such that

$$
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right|>x / 2 \quad \text { and } \quad v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right) \leqq r .
$$

By (3.10), (3.13), (3.16) and (3.21) we have

$$
\begin{aligned}
& \frac{1}{2} x<\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq 2\left\|x-\zeta_{x, j}\right\|+\left|\zeta_{x, j}\left(t^{\prime \prime}\right)-\zeta_{x, j}\left(t^{\prime}\right)\right| \leqq \\
& \leqq 2 / j+\left[v_{x, j}\left(t^{\prime \prime}\right)-v_{x, j}\left(t^{\prime}\right)\right] \leqq 2 / j+2^{j+1} \cdot M_{j}\left(v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right)\right)< \\
& <x / 4+2^{j+1} \cdot M_{j} \cdot r=x / 2
\end{aligned}
$$

which is a contradiction with $x>0$. By Proposition 1.22 there is a continuous increasing function $\eta:[0,1] \rightarrow[0, \infty)$ such that $\eta(0)=0, x(r) \leqq \eta(r)$ for any $r \in(0,1]$. Now we can get (3.2) from (3.20).

In this part of the proof it remains to prove (3.5). Assume that the set \mathscr{A} has uniform one-sided limits at the points 0,1 . Let $\lambda \in(0,1)$ be given. There is $j^{\prime} \in \mathbb{N}$ such that

$$
\frac{1}{2 j^{\prime}}<\lambda \leqq \frac{1}{2\left(j^{\prime}-1\right)}
$$

Then also $2^{-j^{\prime}}<\lambda$. For any $j=1,2, \ldots, j^{\prime}-1$ there is $\Delta_{j}>0$ such that

$$
\begin{align*}
& |x(t)-x(0+)|<\lambda \text { for any } t \in\left(0, \Delta_{j}\right), \quad x \in \mathscr{A}, \tag{3.22}\\
& |x(1-)-x(t)|<\lambda \text { for any } t \in\left(1-\Delta_{j}, 1\right), \quad x \in \mathscr{A} .
\end{align*}
$$

Denote $\Delta_{0}=\min \left\{1 / 4, \Delta_{1}, \Delta_{2}, \ldots, \Delta_{j^{\prime}-1}\right\}$. Let $x \in \mathscr{A}$ and $j \in\left\{1,2, \ldots, j^{\prime}-1\right\}$ be given. Since

$$
\Delta_{0} \leqq \Delta_{j}, \quad \Delta_{0} \leqq \frac{1}{4} \quad \text { and } \quad \lambda \leqq \frac{1}{2\left(j^{\prime}-1\right)} \leqq \frac{1}{2 j}
$$

(3.22) together with (3.8) imply that $\tau_{x, j} \geqq \Delta_{0}$ and $\sigma_{x, j} \leqq 1-\Delta_{0}$. Denote $\Delta=$ $=\Delta_{0} . \lambda$; then $\Delta \leqq \lambda / 4$.

Let $x \in \mathscr{A}$ and $t \in(0, \Delta)$ be given. Since $t \in\left(0, \tau_{x, j}\right)$ for any $j=1,2, \ldots, j^{\prime}-1$, by the definitions of $\zeta_{x, j}$ and $v_{x, j}$ we have an estimate

$$
\begin{equation*}
\left|v_{x, j}(t)-v_{x, j}(0+)\right|=\left|x\left(\tau_{x, j}-\right)-x(0+)\right| \cdot \frac{t}{\tau_{x, j}} \leqq \frac{1}{j} \cdot \frac{\Delta}{\Delta_{0}} \leqq \lambda . \tag{3.23}
\end{equation*}
$$

Since $M_{j}>6 \alpha$ by (3.11), we get by (3.14) and (3.23)

$$
\begin{aligned}
& \left|v_{x}(t)-v_{x}(0+)\right|=a_{x} t+\sum_{j=1}^{\infty} 2^{-j-1} \cdot \frac{1}{M_{j}}\left[v_{x, j}(t)-v_{x, j}(0+)\right] \leqq \\
& \leqq a_{x} \Delta+\sum_{j=1}^{j^{\prime}-1} 2^{-j-1} \cdot \frac{1}{M_{j}} \cdot \lambda+\sum_{j=j^{\prime}}^{\infty} 2^{-j-1} \cdot \frac{1}{M_{j}} \cdot v_{x, j}(t) \leqq \\
& \leqq \Delta+\sum_{j=1}^{j^{\prime}-1} 2^{-j-1} \cdot \frac{\lambda}{6 \alpha}+\sum_{j=j^{\prime}}^{\infty} 2^{-j-1}<\frac{\lambda}{4}+\frac{\lambda}{12 \alpha}+2^{-j^{\prime}}<\lambda \cdot\left(\frac{5}{4}+\frac{1}{12 \alpha}\right) .
\end{aligned}
$$

Consequently the set $\left\{v_{x} ; x \in \mathscr{A}\right\}$ has uniform right-sided limits at 0 . Similarly we can prove that it has uniform left-sided limits at 1 ; hence (3.5) holds.
(ii) \Rightarrow (iii) By Proposition 1.22 there is a continuous increasing concave function $\tilde{\eta}:[0,1] \rightarrow[0, \infty)$ such that $\tilde{\eta}(0)=0$ and $\eta(r) \leqq \tilde{\eta}(r), r \in[0,1]$. Then the inequality

$$
\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leqq \tilde{\eta}\left(v_{x}\left(t_{2}\right)-v_{x}\left(t_{1}\right)\right), \quad 0 \leqq t_{1}<t_{2} \leqq 1
$$

holds for every $x \in \mathscr{A}$.
For $x \in \mathscr{A}$ let us denote by y_{x} the linear prolongation of the function x along v_{x}. Denote $\mathscr{B}=\left\{y_{x} ; x \in \mathscr{A}\right\}$. It follows from Proposition 2.12 that

$$
\left|y_{x}\left(\tau_{2}\right)-y_{x}\left(\tau_{1}\right)\right| \leqq \tilde{\eta}\left(\tau_{2}-\tau_{1}\right), \quad 0 \leqq \tau_{1}<\tau_{2} \leqq 1
$$

This means that the set \mathscr{B} is equicontinuous. Evidently $\mathscr{A}=\left\{y_{x} \circ v_{x} ; x \in \mathscr{A}\right\} \subset$ $\subset \mathscr{B} \circ V$.
(iii) \Rightarrow (i) For a given $\varepsilon>0$ let us find the number K_{ε} by Lemma 3.9. For any $x \in \mathscr{A}$ there are $y \in \mathscr{B}$ and $v \in V$ such that $x=y \circ v$. By Lemma 3.9 there is $\zeta \in \mathscr{C}_{N}$ which is K_{ε}-lipschitzian and such that $\|\zeta-y\|<\varepsilon$. Denote $z=\zeta \circ v$. Then

$$
\|z-x\|=\|\zeta \circ v-y \circ v\| \leqq\|\zeta-y\|<\varepsilon
$$

and $\operatorname{var}_{0}^{1} z \leqq \operatorname{var}_{0}^{1} \zeta \leqq K_{\varepsilon}$. Consequently $\varepsilon-\operatorname{var}_{0}^{1} x \leqq K_{\varepsilon}$.
Using Theorem 3.10 and the well-known Arzelà-Ascoli Theorem, we obtain an important theorem which is an analogue of Theorem 2.18.
3.11. Theorem. For an arbitrary set of regulated functions $\mathscr{A} \subset \mathscr{R}_{N}$ the following conditions are equivalent:
(i) The set \mathscr{A} has uniformly bounded ε-variations and there is $\gamma>0$ such that $|x(0)| \leqq \gamma$ holds for any $x \in \mathscr{A}$.
(ii) There is an increasing continuous function $\eta:[0,1] \rightarrow[0, \infty), \eta(0)=0$ such that for every $x \in \mathscr{A}$ there is an increasing function $v_{x} \in V$ satisfying (3.3), (3.4) and

$$
\left|x\left(t^{\prime \prime}\right)-x\left(t^{\prime}\right)\right| \leqq \eta\left(v_{x}\left(t^{\prime \prime}\right)-v_{x}\left(t^{\prime}\right)\right) \text { for } 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1
$$

and
(3.24) there is such $\beta>0$ that $\|x\| \leqq \beta$ holds for any $x \in \mathscr{A}$.
(iii) There is a set $\mathscr{B} \subset \mathscr{C}_{N}$ which is compact in the sup-norm topology so that for every $x \in \mathscr{A}$ there are $y_{x} \in \mathscr{B}$ and $v_{x} \in V$ satisfying $x=y_{x} \circ v_{x}$ (i.e. $\mathscr{A} \subset B \circ V$).

Proof. (i) \Rightarrow (ii) The property (3.24) follows from Proposition 3.7, the remaining part follows from Theorem 3.10.
(ii) \Rightarrow (iii) Let us denote by \mathscr{B}_{0} the set of the linear prolongations y_{x} along v_{x} of all functions x from \mathscr{A}. By Theorem 3.10 the set \mathscr{B}_{0} is equicontinuous. By Proposition 2.11 and (3.24) we have

$$
\left\|y_{x}\right\| \leqq \beta \quad \text { for any } \quad y_{x} \in \mathscr{B}_{0}
$$

Since \mathscr{B}_{0} is equicontinuous and bounded, by the Arzelà-Ascoli Theorem the set \mathscr{B}_{0} is relatively compact in the sup-norm topology on \mathscr{C}_{N}. If we denote by \mathscr{B} the closure of \mathscr{B}_{0}, then \mathscr{B} is compact and $\mathscr{A} \subset \mathscr{B} \circ V$.
(iii) \Rightarrow (i) follows immediately from Theorem 3.10.

At this moment we have an effective tool for proving a theorem formulated earlier.
3.8. Theorem. Assume that the sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset \mathscr{R}_{N}[a, b]$ has uniformly bounded ε-variations, and that there is $\gamma>0$ such that $\left|x_{n}(a)\right| \leqq \gamma$ for every $n \in \mathbb{N}$. Then there is a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ and a function $x_{0} \in \mathscr{R}_{N}[a, b]$ such that $x_{n_{k}}(t) \rightarrow x_{0}(t)$ for every $t \in[a, b]$.

Proof. Let us define

$$
x_{n}^{\prime}(t)=x_{n}(a+(b-a) t) \text { for any } t \in[0,1], \quad n \in \mathbb{N} .
$$

Evidently the set $\left\{x_{n}^{\prime} ; n \in \mathbb{N}\right\}$ has uniformly bounded ε-variations and $\left|x_{n}^{\prime}(0)\right| \leqq \gamma$ for $n \in \mathbb{N}$. By Theorem 3.11 there is a compact set $\mathscr{B} \subset \mathscr{C}_{N}$ such that for every $n \in \mathbb{N}$ there are $y_{n} \in \mathscr{B}$ and $v_{n} \in V$ satisfying $x_{n}^{\prime}=y_{n} \circ v_{n}$. Since \mathscr{B} is compact, there is $y_{0} \in \mathscr{C}_{N}$ and a uniformly convergent subsequence $\left(y_{n_{k}}\right)_{k=1}^{\infty}$ such that $y_{n_{k}} \rightrightarrows y_{0}$. By Helly's Choice Theorem there is a nondecreasing function v_{0} and a subsequence of $\left(v_{n_{k}}\right)_{k=1}^{\infty}$ which will be denoted again by $\left(v_{n_{k}}\right)$, such that $v_{n_{k}}(t) \rightarrow v_{0}(t)$ for any $t \in[0,1]$.

If we define

$$
x_{0}^{\prime}=y_{0} \circ v_{0} \quad \text { and } \quad x_{0}(t)=x_{0}^{\prime}\left(\frac{t-a}{b-a}\right) \text { for } t \in[a, b]
$$

then

$$
\begin{aligned}
& x_{n_{k}}^{\prime}(t) \rightarrow x_{0}^{\prime}(t) \text { for any } t \in[0,1], \text { and } x_{n_{k}}(t) \rightarrow x_{0}(t) \text { for any } \\
& t \in[a, b] .
\end{aligned}
$$

3.12. If we compare the results of the second and third sections, we can feel some relationship between the uniform convergence of regulated functions and the pointwise convergence of such regulated functions which have uniformly bounded ε-variations.

It would be an interesting result if an arbitrary sequence of pointwise convergent functions having uniformly bounded variations could be transformed to another sequence of regulated functions which is uniformly convergent, and if this transformation could be made by compositions with continuous increasing functions. More formally, if $x_{n}(t) \rightarrow x_{0}(t)$ for $t \in[0,1]$ and the functions $x_{n}, n \in \mathbb{N}$ have uniformly bounded ε-variations, we would like to find continuous increasing functions $w_{n} \in \Lambda$, $n \in \mathbb{N}$ such that the functions $\xi_{n}=x_{n} \circ w_{n}^{-1}$ were uniformly convergent, or at least equiregulated. Such result would be useful in the theory of ordinary differential and integral equations.

Regrettably, this is not true; but a result like this takes place for some subsequence of $\left(x_{n}\right)$. This result will be formulated now for the space \mathscr{R}_{N}^{-}.
3.13. Theorem. Assume that a sequence $\left(x_{n}\right)_{n=0}^{\infty} \subset \mathscr{R}_{N}^{-}$has uniformly bounded ε-variations and that it has uniform one-sided limits at the points 0,1 . Assume that

$$
x_{n}(t) \rightarrow x_{0}(t) \text { for any } t \in[0,1] \text { at which } x_{0} \text { is continuous } .
$$

Then there is a subsequence $\left(x_{n}^{k}\right)_{k=1}^{\infty}$, a sequence of regulated functions $\left(\xi_{k}\right)_{k=0}^{\infty} \subset$ $\subset \mathscr{R}_{N}^{-}$, a sequence of increasing continuous functions $\left(w_{k}\right)_{k=1}^{\infty} \subset \Lambda$ and an increasing function $w_{0} \in V \cap \mathscr{R}_{1}^{-}$such that

$$
\begin{align*}
& x_{n}^{k}=\xi_{k} \circ w_{k} \text { for any } k \in \mathbb{N}, \quad x_{0}=\xi_{0} \circ w_{0} \text { and } \tag{3.25}\\
& \xi_{k} \rightrightarrows \xi_{0}, \quad w_{k}(t) \rightarrow w_{0}(t) \text { for every } t \in[0,1] \text { at which } w_{0} \tag{3.26}\\
& \text { is continuous. }
\end{align*}
$$

Proof. By Theorem 3.11 there is a compact set $\mathscr{B} \subset \mathscr{C}_{N}$ and for any $n \in \mathbb{N}$ there are $y_{n} \in \mathscr{B}$ and $v_{n} \in V$ such that $x_{n}=y_{n} \circ v_{n}$, and (3.3) (3.4), (3.5) hold.

For any $n \in \mathbb{N}$ let us denote $v_{n}^{\prime}(0)=0, v_{n}^{\prime}(t)=v_{n}(t-)$ for $t \in(0,1]$. Since $v_{n}(0+)=$ $=v_{n}(0)=0$ and $v_{n}(1-)=v_{n}(1)=1$ by (3.4), we have $v_{n} \in V \cap \mathscr{R}_{1}^{-}$. Since $x_{n} \in \mathscr{R}_{N}^{-}$ and y_{n} is continuous, we find that

$$
x_{n}(t)=\lim _{\tau \rightarrow t_{-}} x_{n}(\tau)=\lim _{\tau \rightarrow t_{-}} y_{n}\left(v_{n}(\tau)\right)=y_{n}\left(v_{n}(t-)\right)=y_{n}\left(v_{n}^{\prime}(t)\right) \text { for } t \in(0,1]
$$

Hence $x_{n}=y_{n} \circ v_{n}^{\prime}$ where $v_{n}^{\prime} \in V \cap \mathscr{R}_{1}^{-}$.
By Helly's Choice Theorem there is a subsequence $\left(v_{n_{k}}^{\prime}\right)_{k=1}^{\infty}$ and a function v_{0}^{\prime} such that $v_{n_{k}}^{\prime}(t) \rightarrow v_{0}^{\prime}(t)$ for any $t \in[0,1]$. From (3.3) it follows that v_{0}^{\prime} is increasing.

By (3.5) the functions $v_{n}, n \in \mathbb{N}$ have uniform one-sided limits at 0 and 1 . Hence for a given $\lambda>0$ there is $\delta>0$ such that $\left|v_{n}(t)-v_{n}(0+)\right|=v_{n}(t)<\lambda / 2$ holds for
any $t \in(0, \delta), n \in \mathbb{N}$. Let $t \in(0, \delta)$ be given. There is an integer k such that $\mid v_{n_{k}}^{\prime}(t)$ -$-v_{0}^{\prime}(t) \mid<\lambda / 2$. Let us find $\tau \in[t, \delta)$ such that $v_{n_{k}}$ is continuous at τ. Then

$$
\left|v_{0}^{\prime}(t)-v_{0}^{\prime}(0)\right|=v_{0}^{\prime}(t) \leqq\left|v_{n_{k}}^{\prime}(t)-v_{0}^{\prime}(t)\right|+v_{n_{k}}(\tau)<\lambda .
$$

Hence v_{0}^{\prime} is continuous at 0 , and similarly v_{0}^{\prime} is also continuous at 1 . If we define $w_{0}(0)=0, w_{0}(t)=v_{0}^{\prime}(t-)$ for $t \in(0,1]$, then $w_{0} \in V \cap \mathscr{R}_{1}^{-}$and

$$
\begin{equation*}
v_{n_{k}}^{\prime}(t) \rightarrow w_{0}(t) \text { for any } t \in[0,1] \text { at which } w_{0} \text { is continuous. } \tag{3.27}
\end{equation*}
$$

If we replace f_{n} by $v_{n_{k}}^{\prime}$, then the assumption (1.25) of Theorem 1.20 is satisfied.
By (3.27) the assumption (1.32) of Theorem 1.21 is satisfied when h_{n}, h_{0}, η are replaced by $v_{n_{k}}^{\prime}, w_{0}$, id. As is shown in the proof of Theorem 1.21, the assumption (1.26) of Theorem 1.20 is satisfied. By Theorem 1.20 there is a sequence $\left(v_{k}\right)_{k=1}^{\infty} \subset \Lambda$ such that $\left\|\left(v_{n_{k}}^{\prime}\right)_{-1}-v_{k}^{-1}\right\| \rightarrow 0$ and the set $\left\{v_{n_{k}}^{\prime} \circ v_{k}^{-1} ; k \in \mathbb{N}\right\}$. is relatively compact in the metric space $\left(\mathscr{R}_{1}^{-} ; \varrho\right)$. Then

$$
v_{k}(t) \rightarrow w_{0}(t) \text { for every } t \in[0,1] \text { at which } w_{0} \text { is continuous. }
$$

Let us denote $q_{k}=v_{n_{k}}^{\prime} \circ v_{k}^{-1}, k \in \mathbb{N}$.
There is a subsequence of $\left(q_{k}\right)$ which for simplicity will be denoted again by $\left(q_{k}\right)$, and a sequence $\left(\lambda_{k}\right)_{k=1}^{\infty} \subset \Lambda$ such that $\lambda_{k} \rightrightarrows$ id and $q_{k} \circ \lambda_{k} \rightrightarrows q_{0} \in \mathscr{R}_{1}^{-}$.

Since the sequence $\left(y_{n_{k}}\right)$ is contained in a compact set $\mathscr{B} \subset \mathscr{C}_{N}$, there is $y_{0} \in \mathscr{C}_{N}$ and a subsequence which will be denoted again by $y_{n_{k}}$, such that $y_{n_{k}} \rightrightarrows y_{0}$.

Let us denote $\xi_{k}=y_{n_{k}} \circ q_{k} \circ \lambda_{k}$ for any $k \in \mathbb{N}, \xi_{0}=y_{0} \circ q_{0} ; w_{k}=\lambda_{k}^{-1} \circ v_{k}$ for $k \in \mathbb{N}$. Then (3.25), (3.26) hold.

References

[1] G. Aumann: Reelle Funktionen. Springer-Verlag, Berlin, Heidelberg, New York 1969.
[2] I. I. Gichman, A. V. Skorochod: Theory of Stochastic Processes (Russian). Nauka, Moskva 1971.
[3] Ch. S. Hönig: Volterra-Stieltjes-Integral equations. North Holland, American Elsevier 1975.
[4] Ch. S. Hönig: Equations integrales generalisées et aplications. Publications mathématiques d'Orsay, Orsay 1982.

Souhrn

REGULOVANÉ FUNKCE

Dana Fraňková

První kapitola sestává z pomocných výsledkủ o neklesajících reálných funkcích. Druhá kapitola přináši novou charakterizaci relativně kompaktních množin regulovaných funkcí v supremální topologii, třetí kapitola obsahuje mimo jiné analogii Hellyovy věty o výběru v prostoru regulovaných funkeí.

Author's address: Lužická 1054, 25082 Úvaly u Prahy.

