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OF ALMOST ALL SECTIONS x — /(*,*) 
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Summary. Let / be an open interval, X a topological space and Y a metric space. Some 
local conditions implying continuity and quasicontinuity of almost all sections x —> f(t,x) 
of a function f:IxX—+Y are shown. 
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Let R be the set of reals and let \x (resp. ft*) be the Lebesgue measure (resp. the 
outer Lebesgue measure) in R. The upper outer density dU)€(A,x) of a set A C R 
at a point x G R is defined as limsup/i*(_4 C\[x - h,x + h])/2h. If the set A is 

h—o 
measurable (in the Lebesgue sense) then upper outer density of A at a: is called the 
upper density of A at x and it is denoted as du(A,x). The corresponding lower limits 
are called lower outer density and lower density of A at x and denoted by d\te(A,x) 

and dt(A, x) respectively. The family of all measurable sets .4cR such that if x G A 

then di(A,x) = 1 is a topology called the density topology ^ [1, 5]. Moreover, the 
family J^e of all sets A e ^k such that /.i(A - intA) = 0 is a topology [5] (IntA 

denotes the Euclidean interior of A). Let / C R be an open interval, let (Ar, 2?) be 
a topological space, and let (Y, g) be a metric space. In [2] the following condition 
(ao) is introduced for a function f:IxX—*Y: 

(ao) f satisfies (ao) if for every point (t, x) E / x X there is a measurable set A(t, x) C 

I such that di(A(t,x),t) = 1 and the sections fs(x) = f(s,x), s G A(t,x), are 
^-equicontiuuous at x, i.e. for every e > 0 there is a set U G & such that x G U 

and f8(U) C K(fs(x),e) = {u £Y; g(f(s,x),u) < e) for every s G A(t,x). 

p Supported by KBN grant 2 1144 91 01 
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In [2] this condition is used to investigate Caratheodory's superposition h(t) = 
f(t,g(t)) and it is proved that if X = Y is a separable Banach space and if / 
satisfies the condition (QQ) then almost all sections ft are ^"-continuous. Moreover, 
if/ is a bounded function and all its sections fx(t) = f(t,x) are derivatives then all 
sections ft are continuous. In this article I examine some analogous conditions as 

(ao). 
A function / : / x X —-> Y satisfies the condition: 

(aj) if for every point (t,x) G / x X there is a measurable set A(t,x) C / such that 
du(A(t,x),t) > 0 and the sections / , , s G A(t,x), are ^-equicontinuous at x; 

(a2) if for every point (t,x) there is a measurable set A(t,x) C I such that 
du(A(t,x),t) > 0 and the sections fs, s G A(t,x), are ^-continuous at x; 

(as) if for every point (t,x) there is a measurable set A(t,x) C / such that 
du(A(t,x),t) > 0 and the sections / , , s G A(t,x), are /T-quasi-equicontinuous 
at x, i.e. for every e > 0 and for every ,^-open set U 3 x there is a nonempty 
/^-open set V C U such that fs(V) C K(f(s,x),e) for every s G -4(/,#); 

(bj) if for every point (t,x) there is a set A(t,x) C / having the Baire property 
and of the second category at t such that the sections fs, s G A(t,x), are 
^-equicontinuous at x; 

(b2) if for every point (t, x) there is a set A(t, x) C / having the Baire property and of 
the second category at t such that the sections fs, s G A(t, x), are ^"-continuous 
at x; 

(ba) if for every point (t,x) there is a set A(t,x) C / having the Baire property 

and of the second category at x such that the sections fs, s G A(t,x), are 

^"-quasi-equicontinuous at x. 

T h e o r e m 1. Suppose that (X; Z?) is a topological space having a countable basis 

of open sets. If the function f: I x X -+Y satisfies the condition (ci\) then there is 

a set Z C / of measure zero such that all sections ft, t G / — Z, are ^7-continuous. 

P r o o f . Assume that the set B = {t G / ; ft is not continuous at some point 
x(t) G X} is of positive outer measure. Then there are a set C C B of positive 
outer measure and a positive number s such that for every t G C the oscillation 
osc/ t(x(*)) = inf{sup{g(f(t,u),f(t,v)); u,v G U};U G &>x(t) G U) > s. Let 
Ui, . . . , Un y . . . be an enumeration of all open sets of a basis of the topology Z? 

and let C„ = {t G C ; *(<) G Un} and Dn = {t G C„; rf/,e(Cn,0 < 1}, n = 1, 
2, . . . . Evidently, fi(Dn) = 0 for every n = 1, 2, . . . . Let D = C - (D, U D2 U . . . ) . 
Then f.i(C — D) = 0 and D C C is a set of positive outer measure. Let t G D 
be a point such that d^e(D,t) = 1. Since / satisfies the condition (ai), there is 
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a measurable set A(t,x(t)) C / such that du(A(t,x(t)),t) > 0 and the sections 
/ r , r G A(t,x(t)), are equicontinuous at x(t). Consequently, there is an integer 
n such that x(t) G Un and osc / r < ±s on Un for every r G -4(*,a;(0). Since 
/ G D = C - ( D i U D 2 u . . . ) = ( C - D , ) n ( C - D 2 ) n . . . ) w e have rf,,c({r € C; 
-r(r) £ Un},t) = 1. Observe that the set K = A(t,x(t)) n {r € C; x(r) G Un} ^ 0. 
If p G Z? then #(p) 6 Un and osc fp(xp) > s, in a contradiction with the fact that 
osc/p < 7jS on Un. This completes the proof. D 

T h e o r e m 2. Suppose that a topological space (X, 2?) has a countable basis of 

open sets. If the function f: I x X —+ Y satisfies the condition (a^) then there is a 

set Z C I of measure zero such that all sections ft, t G l — Z, are 3?-quasicontinuous, 

i.e. for every e > 0, for every x G X and for every set U G & with x G U there is a 

nonempty set V C U such that V G & and ft(V) C K(f(t,x),e) [6]. 

P r o o f . Let U\,..., Un,... be an enumeration of all open sets of a basis in X. 

Assume that the set B = {t G / ; ft is not ^-quasicontinuous at some point x(t) G 
X} is of positive outer measure. Consequently, there are a positive number s and 
a set Uk such that the set C = {t G B; x(t) G Uk and osc ft > s on V U {x(t)} 

for every nonempty set V G & such that V C U} is of positive outer measure. For 
n = 1, 2, . . . , let Cn = {t G C\ x(t) G Un}, Dn = {t G C n ; rf/>c(Cn,0 < 1}I and 
L) = C — (Di U I>2 U . . . ) . Evidently, D C C is of positive outer measure. Let 
t £ D be such that diye(D,t) = 1. Since / satisfies the condition (03) there are 
a measurable set A(t,x(t)) and a set Un C Uk such that di(A(t,x(t)),t) = 1 and 
osc / r < ^s on t/n U {x(t)} for every r G J 4 ( J , X ( 0 ) . Observe that d/ ) e(Cn ,0 = 1- So, 
yl(<,ic(0) n Cn £ 0. If p G A(t,x(t))C\Cn then x(p) G Un C Ufc and osc/p < \s on 
Un, in a contradiction with the fact that osc fp>son VU{x(p)} for every nonempty 
set V G & such that V C U&. This contradiction completes the proof. • 

T h e o r e m 3. Suppose that (X, &) is a topological space having a countable basis 

of open sets. If f: I x X —* Y satisfies the condition (b\) then there is a set Z C I 

of the first category such that all sections ft, t G / — Z, are ^-continuous. 

P r o o f . Assume that the set B = {t G / ; ft is not continuous at some point 
x(t) G X} is of the second category. Then there are a set C C B of the second 
category and a positive number s such that osc ft(x(t)) > s for each t G C. Let 
Ui, . . . , Un, . . . be an enumeration of all open sets of a basis in (X, &) and let 
Cn = {t G C; x(t) G Un}, a-id £>n = {< € C n ; Cn is of the first category at t}, 

n = 1,2, Every set Dn, n = 1,2,..., is of the first category. Put D = C — 
(L>i U £>2 U . . . ) . Let t G D be a point. There is an open interval J C / such 
that < G «/ and every set K C J — D having the Baire property is of the first 
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category. Since / satisfies the condition (b\), there is a set A(t,x(t)) C J having 
the Baire property and of the second category at / and such that all sections fr, 
r E A(t,x(t)), are J^-equicontinuous at x(t). Consequently, there is an integer n 
such that x(t) E Un and for every r E A(t,x(t)) we have osc fr < ~s on Un. Since 
t E D = C — (Di U D2 U . . . ) , there is an open interval L C J such that t E L 
and every set K C L — {r E C; x(r) E Un} with the Baire property is of the first 
category. So the set E = A(t,x(t)) n {r E CO L\ x(r) E U,,} is nonempty. If p E E 
then x(p) E Un and osc fp(x(p)) > s, in a contradiction with the fact osc fp < ^s on 
Un • This contradiction finishes the proof. D 

T h e o r e m 4. Suppose that in a topological space (X, 2?) there is a countable 
basis of open sets. If a function f:IxX—> Y satisfies the condition (63) then 
there is a set Z C I of the first category such that all sections ft, t E / — Z, are 
3?-quasicontinuous. 

P r o o f . Assume that the set B = {t E I; ft is not ^"-quasicontinuous at some 
point x(t)} is of the second category. Then there are a positive number s and a 
nonempty set U E & such that the set C = {t E B\ x(t) E U and osc/ t > s on 
VU{ar(2)} for every nonempty set V C U such that V E &} is of the second category. 
Let U\,..., f/n,... be an enumeration of all open sets of a basis of the space (X, 3?). 

For n = 1, 2, . . . , put Cn = {t E C; x(t) E Un}, Dn = {t E C n ; Cn is of the first 
category at t}, and D = C — (D1UD2U...). Since every set Dn is of the first category, 
the set D C C is of the second category. Let t E D be a point. There is an open 
interval J C I such that / E J and every set K C J — D having the Baire property is 
of the first category. Since / satisfies the condition (63), there are a set A(t, x(t)) C J 

having the Baire property and of the second category at t and a set Un C U such 
that osc / r < TJS on Un U {x(t)} for every r E A(t,x(t)). Since t E D, there is an 
open interval L C J such that t E L and every set K C L — {r E C; x(r) E Un} with 
the Baire property is of the first category. Thus, the set E — A(t,x(t))C\{r E Cf)L] 

x(r) E Un} is nonempty. If p E E then x(p) E Un and osc fp < l>s on Un, in a 
contradiction with the fact that osc/p > s on V U {-c(p)} for every nonempty set 
V C U such that K E ^ . This contradiction completes the proof. • 

R e m a r k 1. The Continuum Hypothesis CH implies that there is a function / : 
R2 —• R satisfying the conditions (a2), (62) (with respect to the Euclidean metric in 
R = X = Y) and such that all its sections ft are not quasicontinuous. Really, there 
is a nonmeasurable set D c R 2 which has not the Baire property and which is such 
that all its sections Dt = {x E R; (<,#) E D} are singletons or contain two points. 
The construction of such set D is analogous to the construction of Sierpinski's set 
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in [7]. Then the function f(t,x) = 1 for (t,x) € D and f(t,x) = 0 otherwise satisfies 
the conditions (a2), (b2), but all its sections ft are not quasicontinuous. 

R e m a r k 2. Observe that all sections ft of the function / from Remark 1 are 
almost everywhere (with respect to the Lebesgue measure) continuous. CH implies 
that there exists a function g: R2 —• R satisfying the conditions (a2),(62) such that 
all its sections gt are not quasicontinuous at all points of sets of positive measure. 
Really, let ai , ..., aa, ..., a < Q, be a transfinite sequence of all reals such that 
a« 7-= a^ for a ^ /? (ot,/3 < Q and Q, denotes the first uncountable ordinal number). 
For every a < £1 there is a nowhere dense closed set Aa of positive measure such 
that ap is not in Aa for /3 < a. Let g(t, x) = 1 for t = aa and x G Aa, a < Q, and 
g{t,x) = 0 otherwise. Then g satisfies the conditions (a2), (62) and any section gt is 
not quasicontinuous at a point x £ Aa, where a is such that t — aa. 

R e m a r k 3. Suppose that X = Y = R and consider X with the topology £?ae 

and Y with the Euclidean metric. There is a function / : R2 —• R satisfying the 
conditions (a\), (b\) (with respect to the topology !7at in X) and such that any 
section ft, t G R, is not ^-continuous. Really, let C C R be a Cantor set of measure 
zero and let g: R —• C be an one-to-one function. Put f(t,x) = 1 if t G R and 
x = g(t) and f(t, x) = 0 otherwise. Since / / (R 2 - (R x C)) = 0, for every (*,x) G R2 

we can take the set R — {t} as A(t,x). So, / satisfies the conditions (ai), (b\), but 
any section ft, t G R, is not ^-continuous at the point g(t). 

In connection with Remarks 1, 2, 3 we will prove the following: 

T h e o r e m 5. Let J C R be an open interval and let & be a topology in J such 

that every set Z G & is measurable and if x G Z then du(Z, x) > 0. Then for every 

function f: I x J —* Y satisfying the condition (a\) there is a set U C / of measure 

zero such that for every t G / — U the section ft is almost everywhere (with respect 

to the Lebesgue measure) f?-continuous. 

P r o o f . We may assume that / and J are of finite measure. Assume that 
Theorem 5 does not hold. Then there are a set B C / of positive outer measure and 
a positive number s such that for every t G B the set C(t) = {x G J; osc ft(x) > s} 
is of positive outer measure. Observe that the set D = (J ({t} x C(t)) is of positive 

t€B 
outer measure in / x J. Let $ i be the family of all sets K x L such that K C I 

is a measurable set of positive measure and L G & is a nonempty set such that 
osc/t < \s on L for every t G A'. Since / satisfies the condition (ai), the family 
$i is nonempty. Let si = sup{/z2(A' x i ) ; A ' x i G $ i } , where /i2 denotes the 
Lebesgue measure in R2. Evidently, 0 < s\ ^ / / 2( / x J). Let K\ x Li G $ i be 

such that / J 2 (A'I x Li) > £s i . If / i2((/ x J) - (A'i x Lj)) > 0 then we denote by 

53 



$2 the family of all sets (A x L) G $1 such that //2((A x L) - (A'l x Li)) > 0. 
The family <f>2 is nonempty. Really, for this let E C (/ x J) - (h x Ji) be an Fa 

set such that ^2((/ x J) - (A'] x Li) - E) = 0 and for every (t,x) G K we have 
* ( £ , , * ) = 1, * (£* ,*) = 1 (E* = {r G / ; (r, *) € K}) [3]. Let (/,*) G £? be a 
point. Since / satisfies the condition (ai), there is a measurable set A(t,x) C I 
and a nonempty set J(t,x) G & such that x G J(t,x), osc fr < ^s on J(t,x) for 
every r G -4(<,x) and du(A(t9x),t) > 0. Observe that n(J(t,x)n Er) > 0 for every 
r G J4(*, x) fl £*. So, J4(*,X) x J(t,x) G 4>2 and the family <f>2 is nonempty. Let 
s2 = sup{/i2((A' x L) - (A'i x Li)); (A x L) e $2}. Obviously, 0 < s2. Let 
A'2 x L2 G $2 be such that /i2((A2 x L2) - (A'i x Li)) > |B2 . In general, for n > 2, 
if/i2((I x J)-((A'i x L 1 ) U . . . U ( A n _ i x Ln_!)) > 0 we find a set An x Ln G 4>i 
such that 

0) /'2((A'n x Ln) - (J(A\- x Li)) > i*n, 
t<n 

where sn = sup {n2((K x L) - (J (A',- x Lt)) ; / \ x t G * i } . Since /*2(I x J) < 00, 

lim sn = 0. From this and from (i) it follows that ^2((I x J) — U(A'n x Ln)) = 0. 
n7*°° . . . . n 

Since D is of positive outer measure, there are an integer n and a point (t,x) G 
DD(Kn x L n ) . Consequently, osc/* < | s on Ln , in a contradiction with the fact 
that x G C(t) and osc ft(x) > s. This contradiction finishes the proof. • 

Evidently, the Euclidean topology ^ in R and the topology /5^ and the topology 
&ae satisfy the hypothesis of Theorem 5. 

P r o b l e m 1. Let (J, 2?) be the same as in Theorem 5 and let / : I x J —• Y 

satisfies the condition (61). If a set U C I of the first category and such that for 
every t G / — U the section ft is almost everywhere ^"-continuous? 

Theorem 6, IfX = Y = R and & = 5& [& = ^,e] and a function / : / x R -> ft 
satisfies the condition (03) [(63)] and a/i its sections /^(l) = f(l,x) are measurable 

[have the Baire property] then f is measurable [has the Baire property] as the function 

of two variables. 

P r o o f . For the proof of this theorem see the proofs of Theorems 2 and 4 from 

[4]. D 

R e m a r k 5. In [2] it is proven that if Y is a separable Banach space and a 
bounded function / : I x Y —• Y satisfies the condition (ao) and all its sections / * 
are derivatives then all sections ft are continuous. (/* is a derivative if for every 
t G J, lim(l/h) ff f(s)ds = f(t}x)). Obviously, it is also true for locally bounded 
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/ . We shall show that there is a function / : R2 —• R satisfying the condition (ao) 

and such that all its sections fx are derivatives and the section x •—• / (0 ,x) is 
not continuous. For this, let an = 1/n, bn = an — 4~n , cn = an + 4 " n , dn = 
1/n — l / (n + 1) and let gn (n = 1 , 2 , . . . ) be defined as follows: gn(t) = 0**4* for 
t = ak) k > n, gn(t) = 0 for t ^ cn or t G [o,+i,6jk], * ^ n, gn(0) = 1, #n is 
linear in the intervals [&fc,afc] and [afc,Cfc], and gn(t) = gn(—t) for t < 0. Then the 
function /(£,£) = gn(x)gn(t) min(\x - bn\,\x - cn\) for ar G [bn,cn], n = 1,2,..., and 
f(t,x) = 0 otherwise, satisfies required conditions. 

In connection with Remark 5 we have also: 

R e m a r k 6. Let X = y = R and & = ^ . There is a bounded function / : 
R2 —> R satisfying the condition (ai), having derivatives as its sections fx, x G R, 
and such that its section x H-> / ( 0 , X ) is discontinuous. For this, let an = 1/n, bn = 
i ( a n + 1 + a n ) , cn = 6n + 10~n, Jn = an - lO-"1 and let gn, n = 1, 2, ..., be defined as 
follows: gn(t) = 1 for t G [ajk+i, 6*], fc ̂  n, £ n (0 = 0 for t G [<*,<**], i ^ n, or * ^ ai , 
gn is linear in the intervals [bk,Ck] and [J;k,ajk], Ar ^ n, gn(0) = ^ and gn(t) = <7n(—*) 
for t < 0. Then the function f(t, x) = gn(t)gn(x) min(|z + 4" n - an |, |an + 4 " n - x|) 
for x G [an - 4~ n , a n + 4" n ] , n = 1, 2, . . . , and f(t,x) = 0 otherwise, satisfies all 
required conditions. 

T h e o r e m 7, Let J C R be an open interval, & = !7t and let (Y,Q) be a metric 

space. If a function f: I x J —• Y satisfies the condition (ai) and all its sections fx 

are ^-continuous then all sections / t , i 6 R, are ^-continuous. 

P r o o f . If Theorem 7 does not hold then there are t G I, x G J and s > 0 
such that osc ft (x) > bs. Consequently, there is a sequence of points xn G J such 
that lim xn = x and Q(f(t,xn),f(t,x)) > 2s for n = V 2, — Since / satisfies 

n-->oo 

the condition (a\) there are a measurable set A(t,x) C I and an open set A' C J 

such that du(A(t,x),t) > 0, x G K and osc/t < |B on K for each £ G A(t,x). Let 

xn G A'. Since the sections t •-» f(t,xn) and £ H-V f(t,x) are /^-continuous, there 

is a measurable set B C I such that d\(B,t) = 1, Q(f(r,xn),f(t,xn)) < \s, and 

Q(f(r,x),f(t,x)) < ±s for each r G B . Evidently, B n -4(*,.r) # 0 . Let p G B n 

,4(*,*). Then 2B < Q(f(t,xn), f(t,x)) ^ Q(f(t, xn),f(p,xn)) + Q(f(p,xn), f(p,x)) + 

Q(f(p, x), f(tj -*>*)) < ^ s + hs+ 2s = I s ' ^ m s c o n t radiction completes the proof. • 
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