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Summary. Let G be a (finite undirected) connected graph (with no loop or multiple
edge). The set & of all shortest paths in G is defined as the set of all paths £ in G with
the property that if ( is an arbitrary path in G joining the same pair of vertices as £, then
the lenght of £ does not exceed the length of (. While the definition of ./ is based on
determining the length of a path, Theorem 1 gives—metaphorically speaking—an “almost
non-metric” characterization of #: a characterization in which the length of a path greater
than oune is not considered. Two other theorems are derived from Theorem 1. One of them
(Theorem 3) gives a characterization of geodetic graphs.
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Let G be a (finite undirected) graph (with no loop or multiple edge). We denote
by V and E its vertex set and its edge set, respectively. Let G be connected. The
letters u, v, w, z, y and z (and the same letters with indices) will be reserved for
denoting elements of V. Let 2 denote the set of all sequences

(0) g,y ..., Uk

where k > 0. Further, instead of (0) we write ug...u;. If @ = vg...v, and
B =wg...wy, (Mm,n 2> 0), then we write

af =vg...Vpwo... Wy
Let * denote the empty sequence in the sense that a* = a = *a for every a €

ZU{*}. The small letters of Greek alphabet (possibly with indices) will be reserved
for denoting elements of 2 U {+}.
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A sequence %o . ..u(k > 0) is called a path in G if uo, ..., u; are mutually distinct
and {uj,uj41} € E for each j, 0 < j < k. Let 2 denote the set of all paths in G.

Ifa=uv...vm(m> 0) is a path in (G, then we put & = vy ...v9, A = vg,
Ba = v, and ||a|| = m (the number [la] is called the length of «). If 2 C 2, then
we denote by #(u,v) the set of all B € % with the property that A3 = v and Bf = v,
for every u and v. Since G is connected, Pz,y) # 0 for every z and y.

A sequence § is called a shortest path in G if € € 2 and [|€|| < [[¢|] for each
¢ € P(a¢,Be)- (Note that the notion of a shortest path is closely connected with the
notion of the interval function of a graph in the sense of [3]).

Let % denote the set of all shortest paths in . Consider arbitrary u and v.
Clearly, ||¢|| = ||#|| for every ¢, % € Suv). We put d(u,v) = ||¢|| for any £ € Fu,v).
(The function d is called the distance function of G. Note that a characterization of
the distance function of a connected graph was given in [2]).

The definition of the set .# of all shortest paths in G has been based on determining

~ the length of a path. The following theorem, which is the main result of the present
paper, gives—metaphorically speaking—an “almost non-metric” characterization of
#; namely a characterization of . in which ||€|| is not considered for any path ¢
with the property that ||£|| > 1.

A graph is called nontrivial if it has at least two vertices. In Theorem 1 (and other
theorems of the present paper) all the conventions stated above will be used.

Theorem 1. Let G be a nontrivial connected graph, and let 2 C £. Then
Z = & if and only if Z fulfils the following Axioms I-VIII (for arbitrary u, v, w, z,
Y, o, B,y and §):

I If {u,v} € E, then uv € 2.

Il Ifa € &, then & € X.

I If uav € &, then ua € &X.
IV If auPvy,ubv € £, then aubvy € Z.
V If u # v, then there exists ¢ such that upv € Z.
VI If uwvaw € &, then vw ¢ Z.
VII If wvaz, uByz, vufy € X, then vazy € #.
VIII If zy, uvazx € @, upyz ¢ £ for all p and uvpy & Z for all 3, then vazy € X.

- Proof. It isroutine to prove that if # = .%, then % fulfils Axioms I-VIII.

Conversely, let 2 fulfil Axioms I-VIII. Consider an arbitrary non-negative inte-
ger m which does not exceed the diameter of G. We will prove the following two
statements:

(1) Hw,s) € H(w,z) for every pair of w and z such that d(w,z) < m
and

(2m) R(w,:) C Hw,:) for every pair of w and z such that d(w, z) < m.
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We proceed by induction on m.

The case when m = 0 follows from Axioms I and III (or from Axioms V and III).
The case when m = 1 follows from Axioms I and VI.

Let now m > 2. The proof will be divided into two parts. In part A, combining
(1m=1) and (2,,—1) we will prove that (1,,) holds. In part B, combining (1,») and
(2m-1) we will prove that (2,,) holds.

A. Consider arbitrary u and v such that d(u,v) = m. Obviously, S, ) # 0.
Consider an arbitrary { € H(y,»). We want to prove that § € £.

As follows from Axiom V, there exists ( € %(y,,). We distinguish the following
cases and subcases.

A.l. Let £ and ¢ have a common vertex z different from u and v. Then

(3) there exist ay, aa, By, B2 such that § = uazasv and ( = uB; zP8v.

As follows from (1p,-1), ua;z, 2za0v € 2. According to Axiom IV, uazpv € #.
Similarly, we see that £ = uajzasv € Z.

A.2. Let £ and ¢ have no common vertex different from u and v. Put n = ||(|].
Obviously, n > m = ||{||. There exist mutually distinct uy, ..., um, v1, ..., v, such
that
(4) E=up...umvy and (= ujv,...v;.

Clearly, u; = v and vy = v.
Recall that we want to prove that £ € 2. Suppose to the contrary that £ ¢ %.
Put & =¢§, G =, '

§i = Vn_igo.. VU .. Up—i42 ANd § = Up—ip2. . VilUm .. Um;—it2

for each i € {2,...,m + 1}. Clearly,

(5) Cm+1 = VUnem4l.. .- V1lUm ... Uy,

If {my1 € Z, then Axioms Il and IIT imply that £ = uy...upv; € £, which is a
contradiction. Hence (ny1 ¢ 2.

Since 1 ¢ 2 and ¢, € Z, there exists j € {1,...,m} such that (a) {; ¢ #,(; € Z
and (b) either ;41 € % or (j41 ¢ #Z. There exist mutually distinct zy, ..., zm,
Y1, - - -» Yn such that

(6) i=zy...e;my and (G =2y ... 0.

Clearly, {z1,...,Zm,¥,-- ¥} = {u1,...,um,v1,...,v,}. It is obvious that
d(zy, 1) < m.
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Let first d(z;,y:) < m. Since (; € Z, it follows from (2,,—1) that ¢j € S. Hence
m > d(z1,y1) = |I{jll = n > m, which is a contradiction.

Let now d(z1,41) = m. Then & € &. As follows from (1,,-1), z; ...z, € Z.
Since §; ¢ %2, Axiom IV implies that z;pz,y; ¢ 2 for all .

A.2.1. Suppose there exists ¥ such that z,yp¢z,m € #. Since §; € &, we have
d(z1,2m) = m — 1. According to (2,u-1), Z1¥n¥zm € . Thus y,¢z,, € &
and ||yn¥zm|| = m — 2 = d(yn,zm). This means that d(yn,y1) < m — 1. Since
Yn...Y1 € 2, it follows from (2,,—1) that yn...y1 € F. If d(yn,y1) < m —2, then
n < m — 1, which is a contradiction.

Assume that d(y,,y) = m—1. Since yp ¥z, € % and ||ynzm|| = m—2, we have
Yn¥Tmy1 € F. Since d(yn,y1) = m — 1, it follows from (1p,—1) that yvzny € Z.
Since 1Y, ...y; € X, Axiom IV implies that 2y, Y2, y1 € Z. Since z; ...z, € X,
Axiom IV implies that {; = z,...zny1 € £, which is a contradiction.

A.2.2. Suppose z1y ¥z, ¢ 2 for all ¥. Since zipz,,y1 € Z for all ¢ and
T1Yn ..-Y1 € Z, it follows from Axiom VIII that {j41 = yn ... y12m € Z. The fact
that (j+1 € £ implies that {j41 = ynz1...2p, € Z. Since 1Yn ... Y1, Yn .- . Y1Zm €
2, it follows from Axiom VII that §; = z;...z,y1 € #, which is a contradiction.

Thus £ € Z and (1,,) holds.

B. Consider arbitrary v and v such that d(u,v) = m. According to Axiom V,
Z(uv) # 0. Consider an arbitrary ( € %, ). We want to prove that ( € <.
Clearly, there exists £ € H{(y,v). We distinguish the following cases and subcases.

B.1. Let £ and ¢ have a common vertex z different from u and v. Then (3) holds.
As follows from (2pm,—1), 4Bz, 282v € . We can see that ( = ufBz08;v € <.

B.2. Let £ and ¢ have no common vertex different from u and v. Put n = |[|{[].
Obviously, n > m. There exist mutually distinct uy, ..., ¥, v, ..., vy such that
(4) holds. We wish to prove that n = m, and therefore, ( € . Suppose to the
contrary that n > m.

Define &, €1, .-+, €ém+1, Cm+1 in the same way as in A.2. Note that for (41, (5)
holds. Clearly, vy ...v,u; € 2. If (ny1 € @, then Axiom IV implies that

Un—m+1 - --VaU1V3 ... Upt; € X,

which contradicts the fact that 2 C 2. Hence (m+1 ¢ Z.

Since £, € % and () € %, there exists j € {1,...,m} such that (a) §; € &, (; € Z
and (b) either 41 € & or (j41 ¢ #. There exist mutually distinct z1, ..., Tm,
Y1, - - ., Yn such that (6) holds. According to (1mm), 21, ...2my1 € Z.

B.2.1. Suppose d(yn, Zm) < m—1. Then d(yn,y1) < m. If d(yn,y1) < m—1, then
(2m<1) implies that yn ...y; € &, and therefore n < m, which is a contradiction.
Thus we have d(yn,y1) = m. Since d(yn,zm) < m—1, we see that d(yn, ¥m) = m—1
and there exists ¢ such that y,pzmy1 € &.
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According to (1), YnpTmy; € 2. Since ZiYn...yn € #, Axiom IV implies
that £1Yn@Zmy1 € #. This means that z1YnPTm € #. Since §; € &, we have
d(z1,zm) = m — 1. As follows from (2m-1), T1YnPTm € . We get yopr, € &
and therefore, d(yn, Zm) = ||ynpzm|| = m — 2, which is a contradiction.

B.2.2. Suppose d(yn,Zm) = m. Then d(Yn,Zm) = m and ypz;...2m € &. By
virtue of (1), YnZ1...Zm € @. Since z;..-Tm¥Y1, T1Yn ... Y1 € 4, it follows from
Axiom VIl that y, ... y1x,, € 2. Clearly, 41 = YnZ1 ... Zm and (41 = Yn .. . Y1 T
We have §j4+1 € & and (j41 € @, which is a contradiction.

Thus ¢ € . and (2,,,) holds. The proof of the theorem is complete. a

If a nontrivial connected graph G is bipartite, then a simpler “almost non-metric”
characterization of . can be given.

Theorem 2. Let G be a nontrivial connected bipartite graph, and let # C 2.
Then # = . if and only if Z fulfils Axioms I-IV and the following Axiom IX (for
arbitrary u, v, w, a, 3, ¥ and §):

IX If vw € # and v # u # w, then there exists ¢ such that either upvw € £ or
upwy € X.

Proof. Let Z = . Theorem 1 implies that % fulfils Axioms I-IV. It is
routine to show that £ fulfils Axiom IX.

Conversely, let £ fulfil Axioms [-1V and IX. In the sections of the proof designated
as (v)—(viii) we will show that % fulfils Axioms V-VIII, respectively.

(v) Consider arbitrary u and v such that u # v. We want to prove that Z(u ) # 0.
If d(u,v) = 1, then the result follows from Axiom I. Let d(u,v) > 2. There exists w
such that vw € #. According to Axiom IX, there exists ¢ such that either upwv € 2
or upvw € Z. If upwv € #, then Z(y,v) # 0. If upvw € Z, then the same result
follows from Axiom III. Hence £ fulfils Axiom V.

(vi) Consider arbitrary u, v, w and a such that uvaw € £. We want to prove
that uw ¢ 2. On the contrary, let uw € #. As follows from Axiom IX, there exists
v such that either vpuw € 2 or vpwu € . Let first vpuw € #. Since uvaw € %,
Axiom IV implies that vpuvaw € %2, which contradicts the fact that Z C Z?. Let
now vowu € #. Combining Axioms Il and IV, we get vwpvaw € #, which is a
contradiction, too. We get uw ¢ #Z. lence # fulfils Axiom VI.

(vii) Consider arbitrary u, v, &, y, « and # such that wvaz, ufyz, vufy € Z.
Axiom IX implies that there exists ¢ such that either voyz € Z or vpzy € Z2.
Let first vpyr € #£. Axiom IV implies that vufByz € #£. Since uwvar € %, Axiom
IV implies that vuvaz € %, which is a contradiction. Let now vpzy € #. Since
uvaz € Z, it follows from Axioms II-1V that vazy € #. Hence £ fulfils Axiom VII.

(viii) Assume that there exist u, v, z, y and a such that zy, uvaz € X, upyz ¢ Z
for all ¢ and uvyy ¢ £ for all . Combining Axioms Il and 1X, we get that there
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exist § and v such that u3zy, vuyy € Z. Axiom IV implies that vufBzy € . Since
uvaz € Z, it follows from Axiom IV that vuvazy € %, which is a contradiction.
This means that 2 fulfils Axiom VIII.

As follows from Theorem 1, 2 = %, which completes the proof. a

Note that a result very similar to Theorem 2 was originally proved by the present
author in [4].

A graph G is called geodetic if it is connected and there exists exactly one path
in Hu,v), for each pair of vertices u and v. (Cf. [1], p. 55, for example).

We will give a characterization of geodetic graphs:

Theorem 3. A nontrivial connected graph G is geodetic if and only if there exists
Z C P such that # fulfils Axioms I, I1, Il and the following Axioms X and XI (for
arbitrary-u, v, z, y and «):

X If u # v, then there exists exactly one ¢ such that upv € 2.

XI If zy, uvax € Z, y # v and uvyy ¢ Z for all ¢, then vazy € X.

Proof. Let G be geodetic. Put 2 = .. Then it is easy to see that % fulfils
Axioms I, II, I1I, X and XI. )

Conversely, suppose there exists £ C £ such that 2 fulfils Axioms I, II, 111, X
and XI. Axiom X implies that £ fulfils Axioms IV, V and VI. Axiom XI implies that
Z fulfils Axiom VIII.

Suppose there exist u, v, z, y, « and @ such that wvar, uByz, vufy € Z. Accord-
ing to Axiom X, uvaz = ufByz. Hence there exists ¥ such that uvyyzr € #. Axioms
Il and III imply that vyy € #Z. According to Axiom X, vyy = vufy. Therefore
uvuByzr € %, which is a contradiction. This means that % fulfils Axiom VII.

It follows from Theorem 1 that £ = &. Axiom X implies that G is geodetic,
which completes the proof. a
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