Mathematic Bohemia

Ladislav Nebeský
 A characterization of the set of all shortest paths in a connected graph

Mathematica Bohemica, Vol. 119 (1994), No. 1, 15-20

Persistent URL: http: //dml.cz/dmlcz/126208

Terms of use:

(C) Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

A CHARACTERIZATION OF THE SET OF ALL SHORTEST PATHS IN A CONNECTED GRAPH

Ladislav Nebeský, Praha

(Received May 27, 1992)

Summary. Let G be a (finite undirected) connected graph (with no loop or multiple edge). The set \mathscr{S} of all shortest paths in G is defined as the set of all paths ξ in G with the property that if ζ is an arbitrary path in G joining the same pair of vertices as ξ, then the lenght of ξ does not exceed the length of ζ. While the definition of \mathscr{S} is based on determining the length of a path, Theorem 1 gives-metaphorically speaking-an "almost non-metric" characterization of \mathscr{S} : a characterization in which the length of a path greater than one is not considered. Two other theorems are derived from Theorem 1. One of them (Theorem 3) gives a characterization of geodetic graphs.

Keywords: shortest paths, geodetic graphs
AMS classification: $05 \mathrm{C} 38,05 \mathrm{C} 12,05 \mathrm{C} 75$

Let G be a (finite undirected) graph (with no loop or multiple edge). We denote by V and E its vertex set and its edge set, respectively. Let G be connected. The letters u, v, w, x, y and z (and the same letters with indices) will be reserved for denoting elements of V. Let \mathscr{E} denote the set of all sequences

$$
\begin{equation*}
u_{0}, \ldots, u_{k} \tag{0}
\end{equation*}
$$

where $k \geqslant 0$. Further, instead of (0) we write $u_{0} \ldots u_{k}$. If $\alpha=v_{0} \ldots v_{m}$ and $\beta=w_{0} \ldots w_{n}(m, n \geqslant 0)$, then we write

$$
\alpha \beta=v_{0} \ldots v_{m} w_{0} \ldots w_{n}
$$

Let $*$ denote the empty sequence in the sense that $\alpha *=\alpha=* \alpha$ for every $\alpha \in$ $\mathscr{Z} \cup\{*\}$. The small letters of Greek alphabet (possibly with indices) will be reserved for denoting elements of $\mathscr{Z} \cup\{*\}$.

A sequence $u_{0} \ldots u_{k}(k \geqslant 0)$ is called a path in G if u_{0}, \ldots, u_{k} are mutually distinct and $\left\{u_{j}, u_{j+1}\right\} \in E$ for each $j, 0 \leqslant j<k$. Let \mathscr{P} denote the set of all paths in G.

If $\alpha=v_{0} \ldots v_{m}(m \geqslant 0)$ is a path in G, then we put $\bar{\alpha}=v_{m} \ldots v_{0}, A \alpha=v_{0}$, $B \alpha=v_{m}$ and $\|\alpha\|=m$ (the number $\|\alpha\|$ is called the length of α). If $\mathscr{R} \subseteq \mathscr{P}$, then we denote by $\mathscr{R}_{(u, v)}$ the set of all $\beta \in \mathscr{R}$ with the property that $A \beta=u$ and $B \beta=v$, for every u and v. Since G is connected, $\mathscr{P}_{(x, y)} \neq \emptyset$ for every x and y.

A sequence ξ is called a shortest path in G if $\xi \in \mathscr{P}$ and $\|\xi\| \leqslant\|\zeta\|$ for each $\zeta \in \mathscr{P}_{(A \xi, B \xi)}$. (Note that the notion of a shortest path is closely connected with the notion of the interval function of a graph in the sense of [3]).

Let \mathscr{S} denote the set of all shortest paths in G. Consider arbitrary u and v. Clearly, $\|\varphi\|=\|\psi\|$ for every $\varphi, \psi \in S_{(u, v)}$. We put $d(u, v)=\|\xi\|$ for any $\xi \in \mathscr{S}_{(u, v)}$. (The function d is called the distance function of G. Note that a characterization of the distançe function of a connected graph was given in [2]).

The definition of the set \mathscr{S} of all shortest paths in G has been based on determining the length of a path. The following theorem, which is the main result of the present paper, gives-metaphorically speaking-an "almost non-metric" characterization of \mathscr{S}; namely a characterization of \mathscr{S} in which $\|\xi\|$ is not considered for any path ξ with the property that $\|\xi\|>1$.

A graph is called nontrivial if it has at least two vertices. In Theorem 1 (and other theorems of the present paper) all the conventions stated above will be used.

Theorem 1. Let G be a nontrivial connected graph, and let $\mathscr{R} \subseteq \mathscr{P}$. Then $\mathscr{X}=\mathscr{S}$ if and only if \mathscr{X} fulfils the following Axioms I-VIII (for arbitrary u, v, w, x, y, α, β, γ and $\delta):$

I If $\{u, v\} \in E$, then $u v \in \mathscr{R}$.
II If $\alpha \in \mathscr{R}$, then $\bar{\alpha} \in \mathscr{R}$.
III If $u \alpha v \in \mathscr{R}$, then $u \alpha \in \mathscr{R}$.
IV If $\alpha u \beta v \gamma, u \delta v \in \mathscr{R}$, then $\alpha u \delta v \gamma \in \mathscr{R}$.
V If $u \neq v$, then there exists φ such that $u \varphi v \in \mathscr{R}$.
VI If $u v \alpha w \in \mathscr{R}$, then $u w \notin \mathscr{R}$.
VII If $u v \alpha x, u \beta y x, v u \beta y \in \mathscr{R}$, then $v \alpha x y \in \mathscr{R}$.
VIII If $x y, u v \alpha x \in \mathscr{R}, u \varphi y x \notin \mathscr{R}$ for all φ and $u v \psi y \notin \mathscr{R}$ for all ψ, then $v \alpha x y \in \mathscr{R}$.
Proof. It is routine to prove that if $\mathscr{R}=\mathscr{S}$, then \mathscr{R} fulfils Axioms I-VIII.
Conversely, let \mathscr{R} fulfil Axioms I-VIII. Consider an arbitrary non-negative integer \boldsymbol{m} which does not exceed the diameter of G. We will prove the following two statements:
$\left(1_{m}\right) \quad \mathscr{S}_{(w, z)} \subseteq \mathscr{X}_{(w, z)}$ for every pair of w and z such that $d(w, z) \leqslant m$
and
$\left(2_{m}\right) \quad \mathscr{X}_{(w, z)} \subseteq \mathscr{S}_{(w, z)}$ for every pair of w and z such that $d(w, z) \leqslant m$.

We proceed by induction on m.
The case when $m=0$ follows from Axioms I and III (or from Axioms V and III). The case when $m=1$ follows from Axioms I and VI.

Let now $m \geqslant 2$. The proof will be divided into two parts. In part A, combining $\left(1_{m-1}\right)$ and $\left(2_{m-1}\right)$ we will prove that $\left(1_{m}\right)$ holds. In part B, combining (1_{m}) and (2_{m-1}) we will prove that $\left(2_{m}\right)$ holds.
A. Consider arbitrary u and v such that $d(u, v)=m$. Obviously, $\mathscr{S}_{(u, v)} \neq \emptyset$. Consider an arbitrary $\xi \in \mathscr{S}_{(u, v)}$. We want to prove that $\xi \in \mathscr{R}$.

As follows from Axiom V, there exists $\zeta \in \mathscr{R}_{(u, v)}$. We distinguish the following cases and subcases.
A.1. Let ξ and ζ have a common vertex z different from u and v. Then

$$
\begin{equation*}
\text { there exist } \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \text { such that } \xi=u \alpha_{1} z \alpha_{2} v \text { and } \zeta=u \beta_{1} z \beta_{2} v \tag{3}
\end{equation*}
$$

As follows from $\left(1_{m-1}\right), u \alpha_{1} z, z \alpha_{2} v \in \mathscr{R}$. According to Axiom IV, $u \alpha_{1} z \beta_{2} v \in \mathscr{R}$. Similarly, we see that $\xi=u \alpha_{1} z \alpha_{2} v \in \mathscr{R}$.
A.2. Let ξ and ζ have no common vertex different from u and v. Put $n=\|\zeta\|$. Obviously, $n \geqslant m=\|\zeta\|$. There exist mutually distinct $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$ such that

$$
\begin{equation*}
\xi=u_{1} \ldots u_{m} v_{1} \quad \text { and } \quad \zeta=u_{1} v_{n} \ldots v_{1} \tag{4}
\end{equation*}
$$

Clearly, $u_{1}=u$ and $v_{1}=v$.
Recall that we want to prove that $\xi \in \mathscr{R}$. Suppose to the contrary that $\xi \notin \mathscr{R}$.
Put $\xi_{1}=\xi, \zeta_{1}=\zeta$,

$$
\xi_{i}=v_{n-i+2} \ldots v_{n} u_{1} \ldots u_{m-i+2} \text { and } \zeta_{i}=v_{n-i+2} \ldots v_{1} u_{m} \ldots u_{m-i+2}
$$

for each $i \in\{2, \ldots, m+1\}$. Clearly,

$$
\begin{equation*}
\zeta_{m+1}=v_{n-m+1} \ldots v_{1} u_{m} \ldots u_{1} \tag{5}
\end{equation*}
$$

If $\zeta_{m+1} \in \mathscr{R}$, then Axioms II and III imply that $\xi=u_{1} \ldots u_{m} v_{1} \in \mathscr{R}$, which is a contradiction. Hence $\zeta_{m+1} \notin \mathscr{R}$.

Since $\xi_{1} \notin \mathscr{R}$ and $\zeta_{1} \in \mathscr{R}$, there exists $j \in\{1, \ldots, m\}$ such that (a) $\xi_{j} \notin \mathscr{R}, \zeta_{j} \in \mathscr{R}$ and (b) either $\xi_{j+1} \in \mathscr{R}$ or $\zeta_{j+1} \notin \mathscr{R}$. There exist mutually distinct x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} such that

$$
\begin{equation*}
\xi_{j}=x_{1} \ldots x_{m} y_{1} \quad \text { and } \quad \zeta_{j}=x_{1} y_{n} \ldots y_{1} \tag{6}
\end{equation*}
$$

Clearly, $\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}=\left\{u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right\}$. It is obvious that $d\left(x_{1}, y_{1}\right) \leqslant m$.

Let first $d\left(x_{1}, y_{1}\right)<m$. Since $\zeta_{j} \in \mathscr{R}$, it follows from $\left(2_{m-1}\right)$ that $\zeta_{j} \in S$. Hence $m>d\left(x_{1}, y_{1}\right)=\left\|\zeta_{j}\right\|=n \geqslant m$, which is a contradiction.

Let now $d\left(x_{1}, y_{1}\right)=m$. Then $\xi_{j} \in \mathscr{S}$. As follows from $\left(1_{m-1}\right), x_{1} \ldots x_{m} \in \mathscr{R}$. Since $\xi_{j} \notin \mathscr{R}$, Axiom IV implies that $x_{1} \varphi x_{m} y_{1} \notin \mathscr{R}$ for all φ.
A.2.1. Suppose there exists ψ such that $x_{1} y_{n} \psi x_{m} \in \mathscr{R}$. Since $\xi_{j} \in \mathscr{S}$, we have $d\left(x_{1}, x_{m}\right)=m-1$. According to $\left(2_{m-1}\right), x_{1} y_{n} \psi x_{m} \in \mathscr{S}$. Thus $y_{n} \psi x_{m} \in \mathscr{S}$ and $\left\|y_{n} \psi x_{m}\right\|=m-2=d\left(y_{n}, x_{m}\right)$. This means that $d\left(y_{n}, y_{1}\right) \leqslant m-1$. Since $y_{n} \ldots y_{1} \in \mathscr{R}$, it follows from $\left(2_{m-1}\right)$ that $y_{n} \ldots y_{1} \in \mathscr{S}$. If $d\left(y_{n}, y_{1}\right) \leqslant m-2$, then $n \leqslant m-1$, which is a contradiction.

Assume that $d\left(y_{n}, y_{1}\right)=m-1$. Since $y_{n} \psi x_{m} \in \mathscr{S}$ and $\left\|y_{n} \psi x_{m}\right\|=m-2$, we have $y_{n} \psi x_{m} y_{1} \in \mathscr{S}$. Since $d\left(y_{n}, y_{1}\right)=m-1$, it follows from $\left(1_{m-1}\right)$ that $y_{n} \psi x_{m} y_{1} \in \mathscr{R}$. Since $x_{1} y_{n} \ldots y_{1} \in \mathscr{R}$, Axiom IV implies that $x_{1} y_{n} \psi x_{m} y_{1} \in \mathscr{R}$. Since $x_{1} \ldots x_{m} \in \mathscr{R}$, Axiom IV implies that $\xi_{j}=x_{1} \ldots x_{m} y_{1} \in \mathscr{R}$, which is a contradiction.
A.2.2. Suppose $x_{1} y_{n} \psi x_{m} \notin \mathscr{R}$ for all ψ. Since $x_{1} \varphi x_{m} y_{1} \notin \mathscr{R}$ for all φ and $x_{1} y_{n} \ldots y_{1} \in \mathscr{R}$, it follows from Axiom VIII that $\zeta_{j+1}=y_{n} \ldots y_{1} x_{m} \in \mathscr{R}$. The fact that $\zeta_{j+1} \in \mathscr{R}$ implies that $\xi_{j+1}=y_{n} x_{1} \ldots x_{m} \in \mathscr{R}$. Since $x_{1} y_{n} \ldots y_{1}, y_{n} \ldots y_{1} x_{m} \in$ \mathscr{R}, it follows from Axiom VII that $\xi_{j}=x_{1} \ldots x_{m} y_{1} \in \mathscr{R}$, which is a contradiction.

Thus $\xi \in \mathscr{R}$ and (1_{m}) holds.
B. Consider arbitrary u and v such that $d(u, v)=m$. According to Axiom V, $\mathscr{R}_{(u, v)} \neq \emptyset$. Consider an arbitrary $\zeta \in \mathscr{R}_{(u, v)}$. We want to prove that $\zeta \in \mathscr{S}$. Clearly, there exists $\xi \in \mathscr{S}_{(u, v)}$. We distinguish the following cases and subcases.
B.1. Let ξ and ζ have a common vertex z different from u and v. Then (3) holds. As follows from $\left(2_{m-1}\right), u \beta_{1} z, z \beta_{2} v \in \mathscr{S}$. We can see that $\zeta=u \beta_{1} z \beta_{2} v \in \mathscr{S}$.
B.2. Let ξ and ζ have no common vertex different from u and v. Put $n=\|\zeta\|$. Obviously, $n \geqslant m$. There exist mutually distinct $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$ such that (4) holds. We wish to prove that $n=m$, and therefore, $\zeta \in \mathscr{S}$. Suppose to the contrary that $n>m$.

Define $\xi_{1}, \zeta_{1}, \ldots, \xi_{m+1}, \zeta_{m+1}$ in the same way as in A.2. Note that for ζ_{m+1}, (5) holds. Clearly, $v_{1} \ldots v_{n} u_{1} \in \mathscr{R}$. If $\zeta_{m+1} \in \mathscr{R}$, then Axiom IV implies that

$$
v_{n-m+1} \ldots v_{2} v_{1} v_{2} \ldots v_{n} u_{1} \in \mathscr{R}
$$

which contradicts the fact that $\mathscr{R} \subseteq \mathscr{P}$. Hence $\zeta_{m+1} \notin \mathscr{R}$.
Since $\xi_{1} \in \mathscr{S}$ and $\zeta_{1} \in \mathscr{R}$, there exists $j \in\{1, \ldots, m\}$ such that (a) $\xi_{j} \in \mathscr{S}, \zeta_{j} \in \mathscr{R}$ and (b) either $\xi_{j+1} \notin \mathscr{S}$ or $\zeta_{j+1} \notin \mathscr{R}$. There exist mutually distinct x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} such that (6) holds. According to $\left(1_{m}\right), x_{1}, \ldots x_{m} y_{1} \in \mathscr{R}$.
B.2.1. Suppose $d\left(y_{n}, x_{m}\right) \leqslant m-1$. Then $d\left(y_{n}, y_{1}\right) \leqslant m$. If $d\left(y_{n}, y_{1}\right) \leqslant m-1$, then $\left(2_{m-1}\right)$ implies that $y_{n} \ldots y_{1} \in \mathscr{S}$, and therefore $n \leqslant m$, which is a contradiction. Thus we have $d\left(y_{n}, y_{1}\right)=m$. Since $d\left(y_{n}, x_{m}\right) \leqslant m-1$, we see that $d\left(y_{n}, x_{m}\right)=m-1$ and there exists φ such that $y_{n} \varphi x_{m} y_{1} \in \mathscr{S}$.

According to $\left(1_{m}\right), y_{n} \varphi x_{m} y_{1} \in \mathscr{R}$. Since $x_{1} y_{n} \ldots y_{1} \in \mathscr{R}$, Axiom IV implies that $x_{1} y_{n} \varphi x_{m} y_{1} \in \mathscr{R}$. This means that $x_{1} y_{n} \varphi x_{m} \in \mathscr{R}$. Since $\xi_{j} \in \mathscr{S}$, we have $d\left(x_{1}, x_{m}\right)=m-1$. As follows from $\left(2_{m-1}\right), x_{1} y_{n} \varphi x_{m} \in \mathscr{S}$. We get $y_{n} \varphi x_{m} \in \mathscr{S}$ and therefore, $d\left(y_{n}, x_{m}\right)=\left\|y_{n} \varphi x_{m}\right\|=m-2$, which is a contradiction.
B.2.2. Suppose $d\left(y_{n}, x_{m}\right) \geqslant m$. Then $d\left(y_{n}, x_{m}\right)=m$ and $y_{n} x_{1} \ldots x_{m} \in \mathscr{S}$. By virtue of $\left(1_{m}\right), y_{n} x_{1} \ldots x_{m} \in \mathscr{R}$. Since $x_{1} \ldots x_{m} y_{1}, x_{1} y_{n} \ldots y_{1} \in \mathscr{R}$, it follows from Axiom VII that $y_{n} \ldots y_{1} x_{m} \in \mathscr{R}$. Clearly, $\xi_{j+1}=y_{n} x_{1} \ldots x_{m}$ and $\zeta_{j+1}=y_{n} \ldots y_{1} x_{m}$. We have $\xi_{j+1} \in \mathscr{S}$ and $\zeta_{j+1} \in \mathscr{R}$, which is a contradiction.

Thus $\zeta \in \mathscr{S}$ and $\left(2_{m}\right)$ holds. The proof of the theorem is complete.
If a nontrivial connected graph G is bipartite, then a simpler "almost non-metric" characterization of \mathscr{S} can be given.

Theorem 2. Let G be a nontrivial connected bipartite graph, and let $\mathscr{R} \subseteq \mathscr{P}$. Then $\mathscr{R}=\mathscr{S}$ if and only if \mathscr{R} fulfils Axioms I-IV and the following Axiom IX (for arbitrary $u, v, w, \alpha, \beta, \gamma$ and δ):
IX If $v w \in \mathscr{R}$ and $v \neq u \neq w$, then there exists φ such that either $u \varphi v w \in \mathscr{R}$ or $u \varphi w v \in \mathscr{R}$.

Proof. Let $\mathscr{R}=\mathscr{S}$. Theorem 1 implies that \mathscr{R} fulfils Axioms I-IV. It is routine to show that \mathscr{R} fulfils Axiom IX.

Conversely, let \mathscr{R} fulfil Axioms I-IV and IX. In the sections of the proof designated as (v)-(viii) we will show that \mathscr{R} fulfils Axioms V-VIII, respectively.
(v) Consider arbitrary u and v such that $u \neq v$. We want to prove that $\mathscr{R}_{(u, v)} \neq \emptyset$. If $d(u, v)=1$, then the result follows from Axiom I. Let $d(u, v) \geqslant 2$. There exists w such that $v w \in \mathscr{R}$. According to Axiom IX, there exists φ such that either $u \varphi w v \in \mathscr{R}$ or $u \varphi v w \in \mathscr{R}$. If $u \varphi w v \in \mathscr{R}$, then $\mathscr{R}_{(u, v)} \neq \emptyset$. If $u \varphi v w \in \mathscr{R}$, then the same result follows from Axiom III. Hence \mathscr{R} fulfils Axiom V.
(vi) Consider arbitrary u, v, w and α such that $u v \alpha w \in \mathscr{R}$. We want to prove that $u w \notin \mathscr{R}$. On the contrary, let $u w \in \mathscr{R}$. As follows from Axiom IX, there exists φ such that either $v \varphi u w \in \mathscr{R}$ or $v \varphi w u \in \mathscr{R}$. Let first $v \varphi u w \in \mathscr{R}$. Since $u v \alpha w \in \mathscr{R}$, Axiom IV implies that $v \varphi u v \alpha w \in \mathscr{R}$, which contradicts the fact that $\mathscr{R} \subseteq \mathscr{P}$. Let now $v \varphi w u \in \mathscr{R}$. Combining Axioms II and IV, we get $u w \bar{\varphi} v \alpha w \in \mathscr{R}$, which is a contradiction, too. We get $u w \notin \mathscr{R}$. Hence \mathscr{R} fulfils Axiom VI.
(vii) Consider arbitrary u, v, x, y, α and β such that $u v \alpha x, u \beta y x, v u \beta y \in \mathscr{R}$. Axiom IX implies that there exists φ such that either $v \varphi y x \in \mathscr{R}$ or $v \varphi x y \in \mathscr{R}$. Let first $v \varphi y x \in \mathscr{R}$. Axiom IV implies that $v u \beta y x \in \mathscr{R}$. Since $u v \alpha x \in \mathscr{R}$, Axiom IV implies that $v u v \alpha x \in \mathscr{R}$, which is a contradiction. Let now $v \varphi x y \in \mathscr{R}$. Since $u v \alpha x \in \mathscr{R}$, it follows from Axioms II-IV that $v \alpha x y \in \mathscr{R}$. Hence \mathscr{R} fulfils Axiom VII.
(viii) Assume that there exist u, v, x, y and α such that $x y, u v \alpha x \in \mathscr{R}, u \varphi y x \notin \mathscr{R}$ for all φ and $u v \psi y \notin \mathscr{R}$ for all ψ. Combining Axioms II and IX, we get that there
exist β and γ such that $u \beta x y, v u \gamma y \in \mathscr{R}$. Axiom IV implies that $v u \beta x y \in \mathscr{R}$. Since $u v \alpha x \in \mathscr{R}$, it follows from Axiom IV that vuvaxy $\in \mathscr{R}$, which is a contradiction. This means that \mathscr{R} fulfils Axiom VIII.

As follows from Theorem $1, \mathscr{R}=\mathscr{S}$, which completes the proof.
Note that a result very similar to Theorem 2 was originally proved by the present author in [4].

A graph G is called geodetic if it is connected and there exists exactly one path in $\mathscr{S}_{(u, v)}$, for each pair of vertices u and v. (Cf. [1], p. 55, for example).

We will give a characterization of geodetic graphs:
Theorem 3. A nontrivial connected graph G is geodetic if and only if there exists $\mathscr{X} \subseteq \mathscr{P}$ such that \mathscr{R} fulfils Axioms I, II, III and the following Axioms X and $X I$ (for arbitrary u, v, x, y and α):
X If $u \neq v$, then there exists exactly one φ such that $u \varphi v \in \mathscr{R}$.
$X I$ If $x y, u v \alpha x \in \mathscr{R}, y \neq v$ and $u v \psi y \notin \mathscr{R}$ for all ψ, then $v \alpha x y \in \mathscr{R}$.
Proof. Let G be geodetic. Put $\mathscr{R}=\mathscr{S}$. Then it is easy to see that \mathscr{R} fulfils Axioms I, II, III, X and XI.

Conversely, suppose there exists $\mathscr{R} \subseteq \mathscr{P}$ such that \mathscr{R} fulfils Axioms I, II, III, X and XI. Axiom X implies that \mathscr{R} fulfils Axioms IV, V and VI. Axiom XI implies that \mathscr{R} fulfils Axiom VIII.

Suppose there exist u, v, x, y, α and β such that $u v \alpha x, u \beta y x, v u \beta y \in \mathscr{R}$. According to Axiom $\mathrm{X}, u v \alpha x=u \beta y x$. Hence there exists γ such that $u v \gamma y x \in \mathscr{R}$. Axioms II and III imply that $v \gamma y \in \mathscr{R}$. According to Axiom $\mathrm{X}, v \gamma y=v u \beta y$. Therefore $u v u \beta y x \in \mathscr{R}$, which is a contradiction. This means that \mathscr{R} fulfils Axiom VII.

It follows from Theorem 1 that $\mathscr{R}=\mathscr{S}$. Axiom X implies that G is geodetic, which completes the proof.

References

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs \& Digraphs. Prindle, Weber \& Schmidt, Boston, 1979.
[2] D.C. Kay and G. Chartrand: A characterization of certain ptolemaic graphs. Canad. J. Math. 17 (1965), 342-346.
[3] H.M. Mulder: The Interval Function of a Graph. Mathematisch Centrum, Ansterdam, 1980.
[4] L. Nebeský: Route systems and bipartite graphs. Czechoslovak Math. Journal 41 (116) (1991), 260-264.

Author's address: Ladislav Nebeskí, Filosofická fakulta Univerzity Karlovy, nám. J. Palacha 2, 11638 Praha 1.

