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LADISLAV NEBESKY, Praha 

(Received May 27, 1992) 

Summary. Let G be a (finite undirected) connected graph (with no loop or multiple 
edge). The set y of all shortest paths in G is defined as the set of all paths £ in G with 
the property that if £ is an arbitrary path in G joining the same pair of vertices as £, then 
the lenght of <f does not exceed the length of £. While the definition of y is based on 
determining the length of a path, Theorem 1 gives—metaphorically speaking—an "almost 
non-metric" characterization of J^: a characterization in which the length of a path greater 
than one is not considered. Two other theorems are derived from Theorem 1. One of them 
(Theorem 3) gives a characterization of geodetic graphs. 
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Let G be a (finite undirected) graph (with no loop or multiple edge). We denote 
by V and E its vertex set and its edge set, respectively. Let G be connected. The 
letters u, v, wy x, y and z (and the same letters with indices) will be reserved for 
denoting elements of V. Let j2f denote the set of all sequences 

(0) u0}...,uk 

where k ^ 0. Further, instead of (0) we write u0>..uk. If a = vo. . . t ;m and 
(3 = wo • . . wn (?7i, n ^ 0), then we write 

a/3 = vo .. .vmwo • • >u>n. 

Let * denote the empty sequence in the sense that a* = a = *a for every a 6 
J?U{*}. The small letters of Greek alphabet (possibly with indices) will be reserved 
for denoting elements of 3f U {*}. 
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A sequence u0 ... Uk(k ^ 0) is called a path in G if u0i ..., uk are mutually distinct 
and {tij, t i ; + i} € 2? for each j , 0 .$ j < it. Let 3P denote the set of all paths in G. 

If a = v0 ... vm(rn ^ 0) is a path in G, then we put a = % . . . t ; o , Aa = v0, 
Ba = vm and | |a| | ^ m (the number ||a|| is called the length of a) . If St C ^ , then 
we denote by ^(u.w) the set of all (5 £ St with the property that A0 ~ u and H/? = v, 
for every ti and v. Since G is connected, &(x%y) i=- 0 for every x and t/. 

A sequence £ is called a shortest path in G if f £ & and ||£|| i$ ||C|| for each 
C € &(Al,Bi)- (Note that the notion of a shortest path is closely connected with the 
notion of the interval function of a graph in the sense of [3]). 

Let S? denote the set of all shortest paths in G. Consider arbitrary u and v. 
Clearly, ||y?|| = | |^|| for every y?, V5 £ S(u,v). We put d(u, v) = ||£|| for any f £ f(u>v). 
(The function d is called the distance function of G. Note that a characterization of 
the distance function of a connected graph was given in [2]). 

The definition of the set .9* of all shortest paths in G has been based on determining 
the length of a path. The following theorem, which is the main result of the present 
paper, gives—metaphorically speaking—an "almost non-metric" characterization of 
S?\ namely a characterization of S? in which ||£|| is not considered for any path £ 
with the property that ||f|| > 1. 

A graph is called nontrivial if it has at least two vertices. In Theorem 1 (and other 
theorems of the present paper) all the conventions stated above will be used. 

Theorem 1. Let G be a nontrivial connected graph, and let St C S?. Then 
St = 5? if and only if Si fulfils the following Axioms I-VIII (for arbitrary u, v, w, x, 
y, a, /?, 7 and S): 

I If {uyv} £ E, then uv £ St. 
II If a £St, then a£St. 

III Ifuav £ St, then ua £ St. 
IV Ifaupvy, uSv £ Stf then auSvy £ St. 
V Ifu^Vj then there exists (p such that u<pv £ St. 

VI Ifuvaw £ St, then uw £ St. 
VII IfuvaXy ufiyx, vu0y £ St, then vaxy £ St. 

VIII Ifxy, uvax £ St, uipyx £ St for all p and uvtpy £ St for all V->, then vaxy £ @. 

P r o o f . It is routine to prove that if St = S?, then St fulfils Axioms I-VIII. 
Conversely, let St fulfil Axioms I-VIII. Consider an arbitrary non-negative inte­

ger m which does not exceed the diameter of G. We will prove the following two 
statements: 

Om) *^(u/,z) Q St(W}2) for every pair of w and z such that d(w, z) ^ m 

and 

(2m) @(w,z) Q ^(Mi,z) for every pair of w and z such that d(w, z) ^ m. 
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We proceed by induction on m. 
The case when ??i = 0 follows from Axioms I and III (or from Axioms V and III). 

The case when m = 1 follows from Axioms I and VI. 
Let now ra ^ 2. The proof will be divided into two parts. In part A, combining 

( l m - i ) and (2m_i) we will prove that ( l m ) holds. In part B, combining ( l m ) and 
(2m_i) we will prove that (2m) holds. 

A. Consider arbitrary u and v such that d(u,v) = m. Obviously, ^(u,v) r̂  $• 
Consider an arbitrary f E ^(u,v)- We want to prove that £ £ &t. 

As follows from Axiom V, there exists C E 3?(u,v)- We distinguish the following 
cases and subcases. 

A.l. Let £ and C have a common vertex z different from u and v. Then 

(3) there exist 0*1,0.2,/?i,/?2 such that £ = ua\za2V and C = ufazfav. 

As follows from ( l m _ i ) , ua\z,zaov £ ^ . According to Axiom IV, ua\z(3nv £ ^?. 
Similarly, we see that £ = ua\za2V £ St. 

A.2. Let £ and C have no common vertex different from u and v. Put n = ||C||. 
Obviously, n ^ m = ||C||. There exist mutually distinct u\, . . . , ?irn, iq, ..., vn such 
that 

(4) £ = u\...umv\ and C = u\vn ... v\. 

Clearly, u\ = u and v\ = v. 

Recall that we want to prove that £ £ 31. Suppose to the contrary that £ £ 3$. 

P u t f c = * , C i =C , 

£i = t;n_ t+2 . . .vnu\ .. .u m . ,>2 and C» = *In-t+2 • • -V\um .. . um_t+2 

for each i E { 2 , . . . , m + 1}. Clearly, 

(5) Cm+l = Vn-m+l . . . l>iUm . . .Ui. 

If Cm+i € &> then Axioms II and III imply that £ = u\ .. .ximv\ E &> which is a 
contradiction. Hence Cm+i $ ^?-

Since £i £ ^ and Ci E .*, there exists j E { 1 , . . . , m} such that (a) £; £ :^, Cj E & 
and (b) either ^ + i E ^ or Cj + i §- «̂ « There exist mutually distinct x\t . . . , xmy 

2/i» • • •» 2/n such that 

(6) £j ==*i . . . a? m yi a n d Ci = ^i2/n . - t / i . 

Clearly, { # i , . . . , x m , t / i , . . . , yn} = { w i , . . . , wm, v i , . . . , v„} . It is obvious tha t 

d(xi%y\) ^ ra. 
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Let first d(x\,y\) < m. Since Q E ^ , it follows from (2m_i) that Cj E S. Hence 
m > d(x\,yx) = ||C>|| = n ^ m, which is a contradiction. 

Let now d(x\,y\) = m. Then £;- E -5". As follows from ( l m _ i ) , xx ...xm E .^. 
Since £j £ ^ , Axiom IV implies that x\ipxmy\ fc & for all (p. 

A.2.L Suppose there exists tp such that x\ynipxm G <^. Since £j G *5 ,̂ we have 
d(xx,xm) = m - 1. According to (2m_i) , x\yntl>xm G ^ . Thus ynxl>xm G J^7 

and ||2/n^-Cm|| = m — 2 = d(yn,xm). This means that ^/(t/n,yi) ^ m — 1. Since 
yn • • -yi E ^ , it follows from (2m_ t ) that yn . . .y\ G *5 .̂ If d(yn,y{) ^ ?;i - 2, then 
n ^ m — 1, which is a contradiction. 

Assume that d(yn,y\) = m— 1. Since yntl>xm G S? and ||ynV;#m|| = m —2, we have 
yn*l>xmyi E y . Since d(yn,y\) = m - 1, it follows from ( l m _ i ) that yn^xmy\ G &. 
Since #iyn . . . y\ £&t, Axiom IV implies that x\yntpxmy\ G &?. Since x\ ... xm E <^, 
Axiom IV implies that fj = x\ .. .xmy\ E @, which is a contradiction. 

A.2.2. Suppose x\yntl>xm £ & for all \l>. Since x\ipxmy\ fi <% for a | i >̂ a n ( j 
x\yn • • y1 E ^ , it follows from Axiom VIII that Cj+i = yn • • -yi^m E ^ . The fact 
that Cj+i E ^ implies that ^ + 1 = ynx\ ...xm e@. Since x\yn ...y\,yn.. .y\xm G 
St, it follows from Axiom VII that £,- = x\... xmy\ G St, which is a contradiction. 

Thus i G @ and ( l m ) holds. 
B. Consider arbitrary u and t; such that d(u,v) = m. According to Axiom V, 

&(UtV) ^ 0. Consider an arbitrary C E ^(u.v)- We want to prove that C E S*. 
Clearly, there exists £ E ^(u.v). We distinguish the following cases and subcases. 

B .l . Let £ and C have a common vertex z different from it and v. Then (3) holds. 
As follows from (2m_i) , uf3\z, z/32v E S*. We can see that C = u/3\z/32v E S*. 

B.2. Let £ and C have no common vertex different from u and v. Put n = ||C||-
Obviously, n ^ m. There exist mutually distinct u\, ..., um, v\, . . . , vn such that 
(4) holds. We wish to prove that n = m, and therefore, C E S?. Suppose to the 
contrary that n > m. 

Define f i , Ci, • • •, £m+i, Cm+i in the same way as in A.2. Note that for Cm+i, (5) 
holds. Clearly, v\ . ..vnu\ E St. If Cm+i E St, then Axiom IV implies that 

Vn-m+l ...V2V\V2...VnU\ E St, 

which contradicts the fact that St C 2P. Hence Cm+i ^ St. 

Since £\ € S? and Ci E St, there exists j E { 1 , . . . , m} such that (a) £j E S?, Q E ^ 
and (b) either £/+i £ S? or Cj+i ^ ^?. There exist mutually distinct #i, . . . , xm, 
yi, • • -, yn such that (6) holds. According to ( l m ) , x\, .. .xmy\ E St. 

B.2.L Suppose d(yn,xm) < £ m - l . Thenrf(yn,yi) ^ m. Ifc/(yn,yi) ^ m - 1 , then 
(2m._i) implies that yn ...y\ E S?, and therefore n ^ m, which is a contradiction. 
Thus we have d(ynyyi) = m. Since d(yn,xm) ^ m - 1, we see that d(yn,xm) = m - 1 
and there exists <p such that yn<pxmy\ E J^. 
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According to ( l m ) , yn<pxmy\ G St. Since x\yn .. .yx G St, Axiom IV implies 
that x\yn^pxmy\ G St. This means that x\yn<Pxm G St. Since $ G ^ , we have 
d(x\,xm) = m - 1. As follows from (2m_i) , xxyn(pxm G S?. We get t/„v?xm G S? 
and therefore, d(3/„,a:m) = ||ynV?-cm|| = m - 2, which is a contradiction. 

B.2.2. Suppose d(yn,xm) ^ ??i. Then d(yn,xm) = m and yna?i . . . x m G *5*\ By 
virtue of ( l m ) , ynx\ ...xm G St. Since a?i . . -Xmy\, xxyn ...y\ G St, it follows from 
Axiom VII that ?/n ...yi^m G ̂ ?. Clearly, ^.+1 = l/n*i . . .«m and(>+i = 2/n . • . y i s m . 
We have £/+i G -5* and CJ+i G St, which is a contradiction. 

Thus C G ^ and (2m) holds. The proof of the theorem is complete. • 

If a nontrivial connected graph G is bipartite, then a simpler "almost non-metric" 
characterization of 5? can be given. 

T h e o r e m 2. Let G be a nontrivial connected bipartite graph, and let St C SP. 
Then St = & if and only if St fulfils Axioms I-IV and the following Axiom IX (for 
arbitrary u, v, iv, a, /3, 7 and 6): 

IX If vw G St and v ^ u ^ w, then there exists <p such that either u<pvw G St or 
u<pwv G St. 

P r o o f . Let St = ^ . Theorem 1 implies that St fulfils Axioms I-IV. It is 
routine to show that St fulfils Axiom IX. 

Conversely, let ^ fulfil Axioms I-IV and IX. In the sections of the proof designated 
as (v)-(viii) we will show that St fulfils Axioms V-VIII, respectively. 

(v) Consider arbitrary u and v such that u 7- v. We want to prove that &(UyV) ^ 0. 
If d(u, v) = 1, then the result follows from Axiom I. Let d(u, v) ^ 2. There exists w 
such that vw G St. According to Axiom IX, there exists <p such that either u<pwv G St 
or tiipvw G St. If u<pwv G St, then St(UyV) ?- 0. If u<pvw G Si, then the same result 
follows from Axiom III. Hence Si fulfils Axiom V. 

(vi) Consider arbitrary u, v, w and a such that uvaw G Si. We want to prove 
that uw $L St. On the contrary, let uw G St. As follows from Axiom IX, there exists 
<p such that either v<puw G St or v<pwu G Si. Let first v<puw G SI. Since uvaw G St, 
Axiom IV implies that v<puvaw G St, which contradicts the fact that St G SP. Let 
now v<pwu G St. Combining Axioms II and IV, we get uw<pvaw G St, which is a 
contradiction, too. We get uw £ St. Hence St fulfils Axiom VI. 

(vii) Consider arbitrary u, v, x, y, a and /? such that uvax, u(3yx, vu(3y G St. 
Axiom IX implies that there exists <p such that either v<pyx G St or v<pxy G St. 
Let first v<pyx G St. Axiom IV implies that vu/3yx G St. Since uvax G St, Axiom 
IV implies that vuvax G St, which is a contradiction. Let now v<pxy G St. Since 
uvax G St, it follows from Axioms I I-IV that vaxy G St. Hence St fulfils Axiom VII. 

(viii) Assume that there exist u, v, x, y and a such that xy, uvax G St, u<pyx (£ St 
for all <p and uvipy £ St for all ip. Combining Axioms II and IX, we get that there 
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exist /? and 7 such that ufixy, vujy £ St. Axiom IV implies that vufixy £ St. Since 

uvax £ St, it follows from Axiom IV that vuvaxy £ St, which is a contradiction. 

This means that St fulfils Axiom VIII. 

As follows from Theorem 1, St = &, which completes the proof. • 

Note that a result very similar to Theorem 2 was originally proved by the present 

author in [4]. 

A graph G is called geodetic if it is connected and there exists exactly one path 

in ^(u,v)y for each pair of vertices u and v. (Cf. [1], p. 55, for example). 
We will give a characterization of geodetic graphs: 

T h e o r e m 3 . A nontrivial connected graph G is geodetic if and only if there exists 

St C & such that St fulfils Axioms I, II, III and the following Axioms X and XI (for 

arbitrary u, v, x, y and a): 

X Ifu^v, then there exists exactly one (p such that u<pv £ St. 

XI Ifxy, uvax £ St, y ^- v and uvipy £ St for all xj>, then vaxy £ St. 

P r o o f . Let G be geodetic. Put St = &\ Then it is easy to see that St fulfils 

Axioms I, II, III, X and XI. 

Conversely, suppose there exists St C S? such that St fulfils Axioms I, II, III, X 

and XL Axiom X implies that St fulfils Axioms IV, V and VI. Axiom XI implies that 

St fulfils Axiom VIII. 

Suppose there exist u, v, x, y, a and /? such that uvax, u(3yx, vuf3y £ St. Accord­

ing to Axiom X, uvax = u0yx. Hence there exists 7 such that uvjyx £ St. Axioms 

II and III imply that vyy £ St. According to Axiom X, vjy = vu/3y. Therefore 

uvuffyx £ St, which is a contradiction. This means that St fulfils Axiom VII. 

It follows from Theorem 1 that St = 5?. Axiom X implies that G is geodetic, 

which completes the proof. • 
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