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Abstract. The paper describes the properties of two transformations of graphs. One of 
them was introduced by F. Gliviak for the sake of study of metric properties of graphs, the 
other is related to it. 
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In [1] F. Gliviak introduced a certain graph transformation. He used it only in 

particular cases as a tool for proving certain theorems concerning metric properties 

of graphs. However, this transformation seems to be interesting and therefore we 

will study it and define another transformation related to it. 

All graphs considered are finite undirected graphs without loops and multiple 

edges. We use the standard terminology as e.g. in [2]. The symbol Kn denotes 

a complete graph with n vertices, Km,„ denotes a complete bipartite graph, Cn is 

a circuit of length n, Pn is a path of length n (having n edges). By G we denote the 

complement of a graph G. The symbol Gi U G2 will denote the union of graphs; if 

it is used, then always vertex-disjoint graphs Gi , G2 are meant. The vertex set of 

a graph G is denoted by V(G), its edge set by E(G). The symbol da(x,y) denotes 

the distance between vertices x, y in a graph G, the symbol Na[x] denotes the closed 

neighbourhood of a vertex x in G, i.e. the set consisting of x and of all vertices which 

are adjacent to x in G. The subgraph induced by a set A is denoted by (A). 

Definition 1. Let G be a graph. Take a graph G' isomorphic to G and vertex-

disjoint with G. Choose an isomorphic mapping 7r of G onto G' and extend it to 

a mapping of V(G) U V(G') onto itself by putting 7r(7r(a:)) = x for each x € V(G). 

Then we define a graph S(G) as follows. The vertex set of S(G) is V (5(G)) = 



V(G) U V(G'). The graphs G and G' are induced subgraphs of S(G). A vertex x of 

G is adjacent to a vertex y of G' if and only if the vertices x, it(y) are not adjacent 

i n G . 

This is the transformation introduced in [1]. The graph S(G) is regular of degree 

n — 1 and has 2n vertices, where n is the number of vertices of the graph G. To 

simplify the notation, similarly as in [1], we will sometimes write x' instead of ir(x) for 

x £ V(G) and y instead of n(y') for y' € V(G'). We denote V = V(G), V = V(G'). 

Now we define a transformation R(G, U). 

Def in i t ion 2. Let G be a finite undirected graph and U C V(G). The vertex set 

of the graph R(G, U) is V(R(G, U)) = V(G). If two vertices are both in U or both 

in V(G) — U, then they are adjacent in R(G, U) if and only if they are adjacent in G. 

If one vertex is in U and the other in V(G) - U, then they are adjacent in R(G, U) 

if and only if they are not adjacent in G. 

Some properties of R(G, U) are clear from the definition. 

(PI) R(G, 0) = R(G, V(G)) = G 

(P2) R(G, V(G) - U) = R(G, U) for any U C V(G). 

(P3) R(R(G,U1),U2) = R(G,U!AU2) for any Ut C V(G) and U2 C V(G). Here A 

denotes the symmetric difference. In particular, R(R(G, U),U) = G. 

(P4) R(G, U) = R(G, U) for any U CV(G). 

(P5) Let U = { « ! , . . . , « * } . Then there exists a finite sequence H0,Hi,... ,Hk of 

graphs such that H0 = G, Hi+l = R(H{, {ui+l}) for i = 0 , 1 , . . . ,fc and Hfc = 

i?(G,[ / ) . 

The following theorem is an extension of a theorem in [1]. By diam G we denote 

the diameter of G. 

T h e o r e m 1. Let G be a graph with n vertices. If G = Kn or G = Kp U Kn-P 

for some p, 1 ^ p ^ n — 1, tJien 5(G) = ATn U A'n and hence S(G) is disconnected. 

Otherwise diam G = 3. The equalities d(u,v) = d(u',v') = 3 occur for vertices u, u 

ofG such that NG[v] = V - NG[u]. The equalities d(u,v') = d(u',v) = 3 occur for 

vertices u, v of G such that NG[u] = NG[v]. Any other pair of vertices of S(G) has 

a distance at most 2. 

P r o o f . The assertion for G = Kn or G = A P U A'n_p is clear from the definition 

of S(G). Suppose the opposite case. Let u, v be two vertices of G. The equalities 

dS(G)(u.v) = dS(G)(u',v') and dS(G)(u,v') = dS(G^(u',v) also follow immediately 

from the definition of S(G). Suppose that NG[v] ^ V - NG[u]. Then either A^G[u] n 

NG[v] ^ 0, or V- (NG[u]UNG[v]) ^ 0. In the former case choose w e A ^ ^ n A ^ u ] ; 

we have a path of length 2 with the vertices u, w, v. In the latter case choose 

w eV - (NG[u] U NG[v]); then we have a path of length 2 with the vertices u, w', v. 
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In both cases dS(G)(u,v) sj 2. Now let NG[v] = V - NG[u]. If (NGH) is not a clique 

in G, then there exist non-adjacent vertices x, y in NG[U]; we have a path with the 

vertices u, x, y', v in S(G). Similarly if (NG[v]) is not a clique in G. If both (NG[U]) 

and (NG[v]) are cliques in G, then there exists x e NG[u] and y 6 NG[v] such that x is 

adjacent to y in G; otherwise G would be isomorphic to KpUKn-p for some p. We have 

a path with the vertices u, x,y,v. We have dS(G) (u, v) ^ 3 and, as NG[u](~)NG[v] -i 0, 

it cannot be less; therefore ds(G)(u>v) = 3. Now consider the vertices u e V, v' e V 

and first suppose NG[u] 5- J\tc[i>], i.e. either NG[U]-NG[V] 5- 0, or NG[v]-NG[u] 5- 0. 

In the former case choose w e NG[u] - NG[v]; we have a path with the vertices u, w', 

v' and thus d S ( G ) (_ , i / ) ^ 2. In the latter case choose w e NG[V] - NG[U]; we have 

a path with the vertices u, w', v' and again dS(G) (u, v') ^ 2. Now let NG[U] = NG[v]; 

this case contains the particular case _ = v. If (Nc[u]) is not a clique in G, then there 

exist non-adjacent vertices x, y in it and we have a path with the vertices u, x, y', v'. 

If (NG[u]) is a clique in G, then V - NQ[U] 5- 0; otherwise G £ ATn. If (V - NG[u]) 

is not a clique in G, we may choose non-adjacent vertices x, y in V — NG[u] and 

we have a path with the vertices u, x', y, v'. If both (NG[u]) and (V - iVG[u]) are 

cliques in G, then there exist adjacent vertices x e NG[u], y e V - NG[u]; otherwise 

G would be isomorphic to Kp U A'n_p for some p. We have a path with the vertices 

u, x, y, v'. In all the above described cases dS(G)(u,v') = 3 . • 

Now we prove some lemmas. 

L e m m a 1. Let G be such a graph that the graph S(G) is connected. Let x, y be 

two vertices ofS(G). Then the foiiowing two assertions are equivalent: 

(i) There exists a vertex z ofS(G) such that dS(G)(x, z) = d.s(C)(y, z) = 3-

(h) Ns(G)[x] =Ns(G)[y]. 

P r o o f , (i) ==> (ii). Note that Ns(G)[x] = NG[x] U (V - NG-[-(x)]) for x 6 V 

and Ns(G)[x] = (V - NG[n(x)]) UNG,[x] for x 6 V. Consider the case x 6 V, y e V 

If z e V, then by Theorem 1 we have NG[x] = V - NG[z] = NG[y]. If z e V, 

then NG[x] = Na[ir(z)] = NG[y]. In both cases NG[x] = NcM and this implies 
Ns(G)[x] = NS(G)[y]- Hx eV',y e V, we obtain analogously NG[X] = NG[y], which 

again implies Ns(G)[x] = NS(G)bl]- Now consider the case x _ V, y e V. If z e V, 

then NG[x] = V - NG[z] = V - NG[-(y)]; thus also NG[y] = V - Na[~(x)], which 

again implies the assertion. If z e V, the proof is analogous. 

(ii) => (i). Let AtS(G)M = NS(G)[(y)]. By Theorem 1 we have dS(G){x,n(x)) = 3. 

As y has its closed neighborhood equal to that of x, we have dS(G)(y,--(x)) = 

ds(G) {-,•*(-)) = 3 . • 

Now we have a partition N of V l)V such that two vertices x, y belong to the 

same class of N if and only if NS(G)[x] = Ns(G)[y]. 
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L e m m a 2. Let G be such a graph that S(G) is connected. For each vertex: 

S(G) the set of all vertices of S(G) having the distance 3 from x is the class o 

containing n(x). 

P r o o f . By Theorem 1 we have dS(G) (X,TT(X)) = 3. If y is in the class of 

containing n(x), then NS(G)[y\ = NS(G)[IT(X)\ and also dS(G)(x,y) = 3. On the ot; 

hand, if dS(G)(x,y) = 3, then NS(G)[y] = NS(G)[ir(x)] by Lemma 1 and y is in I 

same class of N as TT(X). 

T h e o r e m 2. Let G be such a graph that S(G) is connected. Let <p be an autom< 

phism ofS(G), let x be a vertex of S(G). Then NS{G) [<p(n(x)] = Ns(G)[n(<p(x))] 

This follows immediately from Lemmas 1 and 2. 

T h e o r e m 3 . Let G, H be two graphs such that S(G) S. S(R). Then there exis 

a subset U C V(G) such that H S. R(G, U). 

P r o o f . If S(G) is disconnected, then G is either a complete graph Kn, or t t 

disjoint sum of the form Kp + A'„_p ; the same holds for H. It is easy to see tha t i 

this case the assertion holds. Thus let S(G) be connected. For the sake of simplicit 

we may suppose tha t G and H have a common vertex set V and when constructor 

S(G) from G and S(H) from H we also use the same set V. Let <p be an isomorphisn 

of S(G) onto S(H). Pu t U = {_ 6 V\<p(x) e V}. If x, y are two vertices of U, thei 

x, y are adjacent in G if and only if <p(x), <p(y) are adjacent in H. If x, y are tw< 

vertices of V - U, then x, y are adjacent in G if and only if <p(x), <p(y) are adjacen 

in H', i.e. n(<p(x)), n(<p(y)) are adjacent in H. If x € U, y 6 V — U, then x, y ar< 

adjacent in G if and only if <p(x), <p(y) are adjacent in S(R), i.e. <p(x), ir(<p(y)) ar« 

not adjacent in H. This implies the assertion. C 

If two graphs G, H on the same vertex set V have the property tha t H = R(G, U 

for some U C V, we write (G, H) 6 Q and say tha t G, H are ^-equivalent. For twc 

abstract graphs (i.e. isomorphism classes of graphs) we write (G, H) G <?* and sa;* 

tha t G, H are <?*-equivalent, if H = R(G,U). All graphs which are ^'-equivalent tc 

a given graph form a Q*-class. 

We will also generalize the concept of degree of a vertex. For each subset U o 

V(G) the degree of U (denoted by degG U) is the number of edges of G which have 

exactly one end vertex in U. 

L e m m a 3 . If G a R(Kn, U) for some U, then G = Kn or G ^ Kp + Kn_p foi 

some p, 1 ^ p ^ n — 1. 

L e m m a 4 . If G = R(Kn, U) for some U, then G = Kn or G = Kp,n-P for some 

P, 1 ^ p ^ n - 1. 
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These assertions are easy to prove. 

Theorem 4. Let C be a g-class of a graph G with n vertices. The class C contains 

at least one graph H in which degH U > §|f7|(n - \U\) for each U C V(H) and at 

Jeast one graph H' in which deg ; / U ^ h2\U\(n - \U\) for each U C V(H'). 

P r o o f . When we transform a graph G into a graph R(G,U), then we delete 

degGf7 edges and add | r / | ( n - \U\) edges. The difference between the numbers of 

e d g e s o f / ? ( G , f 7 ) a n d C 7 i s | [ / | ( , l - | r 7 | ) - 2 d e g G ( / . I f d e g G f 7 ^ | | J 7 | ( n - | ( 7 | ) for some 

subset U C V(G), then the graph R(G,U) has more edges than G. If H is a graph 

with the maximum number of edges among the graphs from C, then necessarily 

degH U^\\U\(n- \U\) for all subsets U of V(H). The proof of the existence of H' 

is analogous. Q 

Corollary. In each g* -class of a graph G with n vertices there is a graph with at 

ieast \n(n - 1) vertices and a graph with at most \n(n - 1) vertices. 

P r o o f . Let H be the graph from Theorem 4. In particular, the inequality must 

hold for all one-element subsets U = {u} of V(H), namely degH u ^ \n(n - 1). This 

implies the assertion. Similarly for H''. • 

L e m m a 5. Let C be a Q* -class of a graph G with n vertices, n odd. Then the 

numbers of edges of all graphs from C have the same parity. 

P r o o f . As was said in the proof of Theorem 4, the difference between the 

numbers of edges of R(G, U) and G is equal to \U\(n - \U\) - 2deg G [ / . If n is 

odd, the numbers \U\ and n - \U\ have different parities and their product is even; 

therefore also \U\(n - \U\) — 2degG U is even. As G and U were chosen arbitrarily, 

the assertion holds. • 

It follows from (P4) that for each e*-class C of a graph G with n vertices there 

exists exactly one such g* -class C which consists of graphs isomorphic to the com

plements of graphs from C. We will call C a class complementary to C. If C = C, 

we say that C is self-complementary. 

T h e o r e m 5. Let n be a positive integer. There exists a self-complementary g*-

class of graphs with n vertices if and only if n ^ 3 (mod 4). 

P r o o f . If n = 0 (mod 4) or n = 1 (mod 4), then, by the results of G.Ringel 

[3] and H. Sachs [4] there exists a self-complementary graph (i.e. isomorphic to its 

complement) having n vertices. The g*-class of such a graph is evidently a self-

complementary class. Now let n = 2 (mod 4). Take a vertex set V with n vertices 

and choose a vertex u e V. Construct a self-complementary graph G0 with the vertex 
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set V - {u}. Let G be the disjoint union of G0 and the graph having the unique vertex 

u. The graph R(G, {«}) is then isomorphic to the complement G of G and this implies 

the assertion. Finally, consider n = 3 (mod 4). Suppose that there exists a graph 

G with n vertices such that G = R(G,U) for some U C V(G). As n is odd, by 

Proposition 3 the numbers of edges of G and G' have the same parity. The sum of 

these numbers is the number ^n(n - 1) of edges of Kn. But for n = 3 (mod 4) the 

number ^n(n — 1) is odd, while a sum of two numbers of the same parity is even. 

This is a contradiction. D 

Now we turn to the independence number. The independence number a(G) is the 

maximum number of vertices of an independent set in the graph G. 

Theorem 6. Let G be a graph. Then a(S(G)) ^ 2a(G) and there exists a graph 

H such that (G, H) e Q* and a(H) = a(S(G)). 

P r o o f . The case a(S(G)) = 1 is impossible, because S(G) is never a complete 

graph. If a(S(G)) = 2, then S(G) = Kn + Kn and G = Kn or G = Kn-P + Kp for 

some p, 1 < p < n - 1 ; therefore a(G) = 1 or a(G) = 2. If a(S(G)) ^ 3, let M be an 

independent set in S(G) with a(S(G)) elements. Evidently it cannot contain any pair 

{x,ix(x)} as a subset, because any other vertex is adjacent to x or to n(x). Let Mi = 

MnV, M 2 = M n V ' . Then we have |Mi | + |M 2 | = \M\ and thus either 2|MX | 5s \M\, 

or 2|M2 | ^ \M\. In the former case we have a(S(G)) s$ 2 |Mi| ^ 2a(G), because Mx 

is an independent set in G. In the latter case a(S(G)) ^ 2|M2 | ^ 2a(G') = 2a(G), 

because M2 is an independent set in G' and G' = G. The set M is independent also 

in the graph R(G,M\) and, as S(G) contains a subgraph isomorphic to R(G,Mi), 

w e h a v e a ( # ( G , M i ) ) =a(S(G)). D 

An analogous theorem holds for the clique number c(G), i.e. the maximum number 

of vertices of a clique in G. 

T h e o r e m 7. Let G be a graph. Then c(S(G)) ^ 2c(G) and there exists a graph 

H such that (G,H) e Q* and c(R) = c(S(G)). 

Proof is analogous to the proof of Theorem 6. D 

A simple assertion holds for the domination number (the minimum number of 

vertices of a dominating set) and for the domatic number (the maximum number of 

dominating sets into which the vertex set can be partitioned). 

L e m m a 6. Let G be a graph with n vertices. For the graph S(G) the domination 

number 7 (5 (G)) = 2, the domatic number is d(S(G)) = n. 

P r o o f . Evidently no vertex of S(G) is adjacent to all others, therefore 

7(5(G)) Js 2. Each pair {x,n(x)} is a dominating set in S(G) and thus 7(5(G)) = 2. 

This implies also d(S(G)) = n. D 
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At the end we will present a characterization of graphs S(G). 

Theorem 8. Let H be a graph, let N be the partition ofV(H) such that two 

vertices x, y are in the same class of N if and only if NH[X] = NH[V\- The graph 

H is isomorphic to the graph S(G) for some connected graph G if and only if the 

following two conditions are fulfilled: 

(CI) For each class C e N there exists exactly one class ir(C) € N such that 

7r(C) is the set of all vertices of H whose distance from each vertex of C is 3 and 

\TT(C)\ = \C\. 

(C2) If C € N, C € N, C # TT(C), then either each vertex of C is adjacent to 

each vertex ofC and each vertex ofn(C) is adjacent to each vertex ofir(C), or each 

vertex of C is adjacent to each vertex of TT(C") and each vertex of -n(C) is adjacent 

to each vertex of C. 

P r o o f . If H = S(G) for a connected graph G, then (CI) follows from Theorem 1 

and (C2) follows directly from the definition of S(G). Now suppose that (CI) and 

(C2) hold. We shall reconstruct the graph G. We find all classes of N and form 

all pairs {C,TT(C)} of them. Choose a partition {V,V} of V(R) such that for each 

C e N either C C V, n(C) C V", or C C V, ir(C) C V Then the subgraph of H 

induced by the set V is G and M =• S(G). D 

We add one assertion whose proof follows immediately from the preceding results. 

This assertion shows what makes the graphs S(G) interesting. 

Lemma 7. Let G be a graph with the property that NQ[X] = NG[y] implies 

x = y and NG[x] ^ V(G) — NG[y] for any two vertices x, y. Then S(G) has the 

diameter 3 and for each vertex x there exists exacriy one vertex n(x) such that 

dS(G){x,Tf(x)) = 3 . 

The graphs with the property that for each vertex x there exists exactly one vertex 

whose distance from x is equal to the diameter form an interesting class of graphs. 

Sometimes they are called centrally symmetric graphs. 

References 

[1] F. Gliviak: Two classes of graphs related to extremal eccentricities. Math. Bohem. 122 
(1997), 231-241. 

[2] O. Ore: Theory of Graphs. AMS Colloq. Publ. Providence, Rhode Island, 1962. 
[3] G.Ringel: Selbstkomplementare Graphen. Arch. Math. Basel 11, (1963), 354-358. 
[4] H. Sachs: tjber selbstkomplementare Graphen. Publ. Math. Debrecen 5 (1962), 270-288. 

Author's address: Bohdan Zelinka, Katedra diskretni matematiky a statistiky Tech-
nicke univerzity, Voronezska 13, 461 17 Liberec 1, Czech Republic, e-mail: bohdan.zelinka® 
vsl ib .cz . 

363 


		webmaster@dml.cz
	2020-07-01T13:09:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




