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Abstract. The aim of this paper is to deduce oscillatory and asymptotic behavior of the 
solutions of the ordinary differential equation 

Lnu(t) + p(t)u(t) = 0. 
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Consider the n-th order (n ^ 2) differential equation 

(1) Lnu(t) + p(t)u(t) = 0, 

where 

p and ri : (t0 ,oo) -> R+ = (0, oo) are continuous, 1 ^ % ^ n — 1. In the sequel we 

will suppose that / u(s) ds = oo for 1 < i ^ n — 1. It is usual to denote 

D0u(t) = u(t), 

(2) D,«(t) = ^ - | - )<- i t i («) , l < i < n - l , 

Dn_(t) = ftDn^u(t)-

By a solution of Eq. (1) we mean a function u : (Tu, oo) ->• R such that 

(i) Diu(t), 0 ^ i ^ n exist and are continuous on [T„, oo); 



(ii) u(t) satisfies (1); 

(iii) sup {|u(s)| : t sj s < 00} > 0 for any t >- Tu. 

Such a solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwi 
it is called nonoscillatory. An equation is said to be oscillatory if all its solutions a 
oscillatory. 

It is well known (see e.g. [2] or [3]) that the set Af of all nonoscillatory solutioi 
of (1) can be divided into the following classes: 

At" = Ato U A/2 U . . . U Atii-i for n odd, 

Af =- Ati U A/3 U . . . U Af„-i for n even, 

where u(t) 6 Aft if and only if 

u(t)D{u(t) > 0, 0 ^ i ^ I, 

(-iy^u(t)Diu(t) > 0, e^i^n 

for all large t. Following Foster and Grimmer [3] we say that u(t) is a function o 
degree I if u(t) satisfies (3). 

For the class Af0 of (1), it is shown in [4] that Af0 ^ 0 if n is odd. Therefore, w< 
are interested in the following particular situation: 

Definition 1. Equation (1) is said to have property (A) if for n even Af = 0 (i.e 
(1) is oscillatory) and for n odd Af = Af0. 

This definition can be found in [6]. There is much literature regarding property (A] 
of (1) (see enclosed references). Integral conditions have been given under which (1] 
enjoys property (A). The following result is due to Trench [18]. 

Define for 1 ^ k <. n - 1 and t, s € [t0,00) 

/o = l, 

Ik(t,s;ri,...,rk)= / ri(x)Ik-i(x,s;r2,...,rk) dx, 

Jk(t) =Ik(to,t;ri,...,rk), 

Nk(t)=Ik(to,t;rn-i,...,rn-k). 

Theorem A. Let n be even. Assume that for alii e {1, 3 , . . . ,n - 1} 

(4) J 0 0 Ji-i(t)Nn-i-i (t)p(t) dt = 00. 

Then (1) has property (A). 
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A question naturally arises what will happen when conditions (4) are violated. In 

fact, Theorem A cannot cover an important class of Euler's equation of the form 

(5) £ i a + m - £ + c t a - m a : = o ' «>-• 
dtm atm 

where a and c > 0 are constants with a + m < 1, since in this case the integrals in 

(4) converge. 

Trench's result has been later improved by Kusano, Naito and Tanaka in [6] and 

[7], where (1) is compared with a set of second order differential equations and 

property (A) of (1) is reduced to the oscillation of a set of second order differential 

equations. On the other hand, Chanturia and Kiguradze [1] have improved (4) for 

the particular case of (1), namely for the differential equation 

(6) y^(t)+p(t)y(t)=0. 

They have compared (1) with Euler's equation t n j / n ) +cy = 0 to obtain the integral 

criterion 

lim inf ( •rif*)*-£i 
for property (A) of (6). 

Our concern in this paper is to replace condition (4) by a similar one that is 

applicable also to (5). Our results complement and extend the above-mentioned 

results and also some other ones given in [16], [14], [10] and [8]. 

We consider a set of £-th order (n — 1 > £ > 1) differential inequalities 

(Et+i) {Me+lu(t) + qe+i(t)u(t)} Sgnu(t) ^ 0. 

where qt+i is positive and continuous and 

that is Me+iu(t) = re+1(t)De+ru(t) for I < n, and Mnu(t) = Dnu(t). 

Let us put 

Jue(t) = Je(t) and J2,t(t) = h^(t,t0;r2,.. . ,rt). 

Our main results are based on the following theorem: 

351 



T h e o r e m 1. Let 1 <. £ < n - 1. Assume that 

(7,i /-(„„„),„,,„-2^))*^. 
Then (Et+i) has no solutions of degree £. 

P r o o f . Assume that (Et+i) possesses a positive nonoscillatory solution u(t) such 

that u(t) is of degree £, that is 

D0u(t) > 0 , Diu(t) > Q,...,Dtu(t) > 0 , ( D . u ( t ) ) ' < 0 , t > t0. 

Let 

г ( t ) = * ^ Ą ť>i0. 
u(t) 

Then 2(t) > 0 and 

,„* _ . / J N _ ' - i ( 0 J a , < W . m i J i . < ( 0 ( g . " W ) ' / j N r . ( t ) P l U ( t ) 
Ji,t(t) u(t) u(t) 

Assume that £ > 1. The identity Z).u(t) = —r- r (LViu ( t ) ) ' implies that 

De_iu(t) = Dt_iu(t0) + I re(s)Dtu(s)ds 

J t0 

•?Dtu(t) f n(s)ds. 
Jta 

Hence, after (£ - 3)-fold integration, we arrive at 

Diu(t)^J2,e(t)Deu(t), t>-t0. 

Therefore, combining (8) with the last inequality, one gets 

(9) ^i(t)y)',,,(t) + n («)M( . . ( t ) - f ( t ) ) , 
u(t) Jl,l(t) 

Note that z2(t) — z(t) >- —i. Multiplying (Et+i) by J\,i(t) and dividing the resulting 

equality by u(f), we see in view of (9) that z(t) is a positive solution of the differential 

inequality 

(io) At)-rfT
J2)f+Ji,t(t)qe+i(t)^o. 

4Ji,t(t) 

That (10) also holds for £ = 1 follows from (8) and (M2) (note that J2,i(t) = 1). An 

integration of (10) yields 

z(t) + / ( j i , / W « . + i M - rjjj^) d s < -(*>)• 

Letting t -+ oo, we get a contradiction with (7/). The proof is complete. D 

352 



The following result can be found in [5, Corollary 1]. 

T h e o r e m B . The equation (1) has a solution of degree n - 1 if and only if the 

inequality (En) has a solution of degree n - 1. 

For the particular case of (1) with n = 2 and n = 3 we have the following corol

laries. 

Җt)= Ґф)i 
Jto 

Corollary 1. Denote R(t) = / r(s) ds. Assume that 

(Ц) j°° ( Я « P « -щšj)< 

Then the second order differential equation 

(12) ( -т-rU1) +p(t)u = Q 

is oscillatory. 

P r o o f . By Theorem B, Eq. (12) is oscillatory if and only if (E2) with q2 = p 

and rj = r has no solution of degree 1. Since (7i) reduces to (11), the assertion of 

this corollary follows from Theorem 1. D 

Corollary 2. Assume that 

<i3» n * ^ - - ® ^ ) * - -
Then the third order differential equation 

1 ( 1 

has property (A). 

P r o o f . The proof of this corollary is analogous to that of Corollary 1 (noting 

that (72) reduces to (13)) and can be omitted. D 

E x a m p l e 1. Consider the equation 

1 „ V a 
-u" + — u = 0, o > 0, t > 1. t J t* 

By Corollary 2, this equation has property (A) provided a > 4.5. 
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Now we extend our previous results to (1) with n > 3. For all large t and i € 

{ 1 , . . . , n - 1} define 

Ki(t;p) = I p(s)ds, 

K2(t;rn-i,p) = / rn-i(x)Ki(x;p)dx, 

Ki(t; r „ _ i + i , . . . , r n _ i , p) = / r „ _ i + i (x)Kt-j (x; rn._i+2, ...,rn-i,p) dx, 

Qn(t)=P(t), 

qi(t)=n(t)Kn-i(t;ri+i,...,rn-i,p). 

T h e o r e m 2. Assume that for all ( 6 { 1 , . . . ,n - 1} with n + I odd, conditions 

(7e) are satisfied. Then (1) has property (A). 

P r o o f . Since (7i) with n = 2 reduces to (11) and (72) with n = 3 reduces to 

(13) the assertion of the theorem for n = 2 and n = 3 follows from Corollaries 1 

and 2. 

Now assume that n > 3. We want to show that Mi = 0 for all I 6 { 1 , . . . ,n — 1} 

with n + 1 odd. Note that by Theorem 1, condition (7n_i) implies that differential 

inequality (En) has no solution of degree n — 1. By Theorem (B), Eq. (1) has no 

solution of degree n — 1, either (i.e. jVn- i = 0). 

Let 1 ^ I ^ n - 2. Assume that (1) has a positive nonoscillatory solution u(t) and 

u(<) is of degree I. From (1) and u'(t) > 0 it follows that 

£>n_i«(oo) - Dn-iu(t) + / p(s)u(s) ds = 0, < ^ to-

That is, 

-Dn-iu(t) + u(£) / p(s) ds i? 0. 

Hence, after (n — I — 2)-fold integration we arrive at 

Mt+iu(t) + ql+i(t)u(t) ^ 0 . 

That is, u(t) is a solution of (E^+i), but as u(t) is of degree t, it contradicts the 

assertions of Theorem 1. The proof is complete. • 

Corollary 3. Assume that 
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Then the n-th order differential equation 

(15) u(n)+p(t)u = 0 

has property (A). 

P r o o f . To prove tha t (15) has property (A), it suffices (see Theorem 1.1 in [1]) 

to show that (15) has no solution of degree n — 1. This fact follows from Theorems 

A and 1. • 

It is interesting to compare Corollary 3 with the following result which is due to 

Chanturia and Kiguradze [1]. 

L e m m a A . The condition 

(16) f tn~1p(t)dt = oo 

is necessary for (15) to have property (A). 

Note tha t the stronger condition (13) guarantees property (A) of (14), while (16) 
is not enough. 

R e m a r k . Using suitable comparison theorems, our results can be extended to 
more general differential equations. In fact, it is known [5] that the delay differential 
equation 

(17) Lnu(t)+p(t)u(T(t))=0, 

where Ln and p are the same as in (1) and r satisfies 

(18) T G C 1 , T(t)^t, T(t) -+ oo as t -> co, 

has property (A) if so does the differential equation without delay 

(19) Mtl + ^ f ^ t ) ^ , 

where T _ 1 is the inverse function to r . Applying Theorem 2 to (19) we immediately 
have a sufficient condition for (17) to have property (A). We illustrate this by the 
following result. 

Corol lary 4. Assume that (18) holds. Further assume that 

r ((rW - to)""lpW - {^w^rAt))dt=°°-
Then the delay differential equation 

U{n)(t)+P(t)u(T(t)) = 0 

lias property (A). 

355 



References 

[1] T. A. Chanturia and I. T. Kiguradze: Asymptotic Properties of Solutions of Nonau-
tonomous Ordinary Differential Equations. Nauka, Moscow, 1990. (In Russian.) 

[2] J. Dzurina: Comparison theorems for functional differential equations. Math. Nachrich-
ten 164 (1993), 13-22. 

[3] K. E. Foster and R. C. Grimmer: Nonoscillatory solutions of higher order differential 
equations. J. Math. Anal. Appl. 71 (1979), 1-17. 

[4] P. Hartman and A. Wintner: Linear differential and difference equations with monotone 
solutions. Amer. J. Math. 75 (1953), 731-743. 

[5] T. Kusano and M. Naito: Comparison theorems for functional differential equations with 
deviating arguments. J. Math. Soc. Japan 3 (1981), 509-532. 

[6] T. Kusano, M. Naito and K. Tanaka: Oscillatory and asymptotic behavior of solutions 
of a class of linear ordinary differential equations. Proc. Roy. Soc. Edinburg. 90 (1981), 
25-40. 

[7] T. Kusano and M. Naito: Oscillation criteria for general ordinary differential equations. 
Pacific J. Math. 92 (1981), 345-355. 

[8] D. Knezo and V. Soltes: Existence and properties of nonoscillation solutions of third 
order differential equations. Fasciculi Math. 25 (1995), 63-74. 

[9] S. Kulcsdr: Boundedness convergence and global stability of solution of a nonlinear 
differential equations of the second order. Publ. Math. 37 (1990), 193-201. 

[10] G. S. Ladde, V. Lakshmikantham, B. G. Zhang: Oscillation Theory of Differential Equa
tions with Deviating Arguments. Dekker, New York, 1987. 

[11] D. L. Lovelady: An asymptotic analysis of an odd order linear differential equation. 
Pacific J. Math. 57(1975), 475-480. 

[12] D. L. Lovelady: Oscillation of a class of odd order linear differential equations. Hiroshima 
Math. J. 5 (1975), 371-383. 

[13] W. E. Mahfoud: Comparison theorems for delay differential equations. Pacific J. Math. 
83 (1979), 187-197. 

[14] W. E. Mahfoud: Characterization of oscillation of solutions of the delay equation 
x^n\t) +a(t)f(x[q(t)\) = 0. J. Differential Equations 28 (1978), 437-451. 

[15] M. Naito: On strong oscillation of retarded differential equations. Hiroshima Math. J. 
vol 11 (1981), 553-560. 

[16] Ch. G. Philos and Y. G. Sficas: Oscillatory and asymptotic behavior of second and third 
order retarded differential equations. Czechoslovak Math. J. 32 (1982), 169-182. 

[17] M. Ruzickovd and E. Spdnikovd: Oscillation theorems for neutral differential equations 
with the quasi-derivatives. Arch. Math. 30 (1994), 293-300. 

[18] W. F. Trench: Oscillation properties of perturbed disconjugate equations. Proc. Amer. 
Math. Soc. 52 (1975), 147-155. 

Author's address: Jozef Dzurina, Department of Mathematical Analysis, Safarik Uni
versity, Jesenna 5, 04154 Kosice, Slovakia, e-mail: dzurinaSduro.upjs.sk. 


		webmaster@dml.cz
	2020-07-01T13:09:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




