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(Received April 22, 1994) 

Summary. Let s/ = (A, F, R) be an algebraic structure of type T and S a set of open 
formulas of the first order language L(T). The set C^(s/) of all subsets of A closed under S 
forms the so called lattice of S-closed subsets of &. We prove various sufficient conditions 
under which the lattice Cz(sV) is modular or distributive. 
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Modularity and distributivity of subalgebra lattices was investigated by T. Evans 

and B. Ganter in [4] and by the first author in [1]. However, we can study much 

more general lattices of closed subsets of an algebra or a relational structure. For 

convex sublattices of a given lattice this was done by V. I. Marmazajev [6], for convex 

subsets of monounary algebras or ordered sets see [5] or [3], respectively. A general 

approach for these considerations was developed by the authors in [2]. By using it, 

we can state sufficient (and in some cases also necessary) conditions under which 

a lattice of all S-closed subsets of a given algebraic structure is modular or even 

distributive. 

First we recall some concepts. By a type we mean a pair of sequences r = 

({n;;i G / } , {nij;j 6 J}) where n;, m3- are non-negative integers. An algebraic struc

ture or briefly a structure of type r is a triplet &f = (A,F,R), where A ^ 0 is a 

set and F = {fi;i e / } , R = {gf,i € J} such that for each i € I, fi is an n<-ary 

operation on A and for each j 6 J, Qj is an mj-ary relation on A. Denote by L(T) 

the first order language containing operational and relational symbols of type T. If 

R = 0, the structure (A, F, 0) is denoted briefly by (A, F) and is called an algebra. If 

F = 0 then (A, 0, R) is denoted by (A, R) and called o relational system; this system 
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(A, R) is called binary if each Qj G R is binary. A binary relational system (A, R) is 

said to be antisymmetrical if each Qj G R is an antisymmetries! relation. A binary 

relational system (A, R) is called an ordered (or quasiordered) set if R = {QI} where 

Qi is an order on A (or a reflexive and transitive relation, the so called quasiorder, 

respectively). 

Let T be an index set and for each 7 G V let Gy(xi,...,Xk^,yi,. • •,!/»,,«,/<) 

be an open formula of a language L(T) containing individual variables xi,... ,x^, 

Vii • • • 12/s71 2 and a symbol ft of «i-ary term operation. Analogously, let A be an 

index set and for each A € A let G\(xi,..., Xkx, j / i , . . . , y , x , z , Qj) be an open formula 

of the language L(T) containing individual variables xi,..., Xkx, V\, • • •, Vsx, z and a 

symbol Qj of m_,-ary relation of type r . Put S = {G 7 ;7 G V} U {G\\ A G A}. 

Definit ion 1. A subset B of an algebraic structure si = (A,F, R) is called S-

closed if for every 7 G T, A G A and 0 1 , . . . , ajt,, a[,... ,a'kx G J3 and bi,...,6»7, 

h i , . . . , 6 ^ , c, c' G A, we have c G B or c' G B provided G 7 ( a i , . . . , a^, 6 1 , . . . , 

bSy,c,fi) or G\(a[,... ,a'kx,b[,... ,b'sx,c',Qj) are satisfied in #/. Denote by Cx(srf) 

the set of all E-closed subsets of si'. 

As was proved in [2], the set C^(s/) of all E-closed subsets of a structure si = 

(A, F, R) is a complete lattice with respect to set inclusion with the greatest element 

A. In what follows we will study modularity and distributivity of Cs(s/) depending 

on the properties of s/. For any given structure s/ we will suppose that the set of 

formulas E is determined. For a given subset M C A we denote by C^(M) the least 

S-closed subset of si containing M; we say that C^(M) is generated by M. If M 

is a finite subset, say M = { 0 1 , . . . , 0*} , we will write C^(a\,... ,ojc) for C^(M). 

If the set S is implicitly known, we will use on the lattice C E ( ^ ) to specify the 

closure system. In some more familiar examples of C^(si) we will use the common 

name and notation: 

(1) If si = (A,F) is an algebra, F = {f{: i G / } and S = {d: i G / } where 

Gi(xi,...,xni,z,fi) is the formula ( / , (x. , . . . , -5n,) = -z), t n e n S-closed subsets of si 

are subalgebras of si and 0, and Cs(s/) = Sub si. 

(2) If i f = (L, {V, A}) is a lattice, S = {Gi ,G 2 } where Gi is the formula (xxVx2 = 

z) and G2 is the formula (xi Aj/i, z), then the S-closed subsets of i f are lattice ideals, 

i . e . ' C E ( i f ) = I d i f . 

(3) If St. = (A, R) is a binary relational system with R = {QJ ; j G J } and S = {Gj : 

j G J} where for each j G J we have 

Gj is the formula (XIQJZ and zQjXi), 

then the S-closed subsets of ^ are the so called convex subsets and C E ( ^ ) will be 

denoted by Conv &.. 
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In particular, if y = (S, <) is an ordered set then S = {G} where G is the formula 

(xi ^ z ^ x2). Thus E-closed subsets of y are exactly the convex subsets of y in 

the usual sense. 

(4) HSf = ( G , . , - l , e ) is a group and S = { G 1 , G 2 , G 3 , G 4 } , where Gi(xltx2,z,.) 

is the formula (xi • x2 = z), G2{x\,z,~l) is the formula (xf1 = 2), G3(2,e) is the 

formula (e = 2) and G 4 (x i , y i , z , p ) is the formula (p(xi,2/i) = 2) where p(zi , j / i ) is 

the term operation yixiy^1, then G E ( ^ ) is the lattice of all normal subgroups of 'S. 

It will be denoted simply by N(&). 

In what follows we denote join in C-E(S^) by V, meet evidently coincides with set 

intersection. 

T h e o r e m 1. Let #/ = (A, F, R) be an algebraic structure with the system C^(s/) 

of H-closed subsets satisfying 

(i) for each X,Y e C^(sf), 0 ^ X ^ F / 0 w e have a e X V Y if and only if 

there exist x e X, y eY with a G Cx/(x,y); 

(ii) for each x, y e A, if a e C^(x,y) and C^(a) ^ C^(x) then y e C^(x,a). 

Then the lattice (Cs(jrf), C ) is modular. 

P r o o f . Suppose X, Y, Z e Cz(sf) and X C Z. If either X = 0 or Y = 0 

the proof is trivial. Also for X = Y we easily obtain the modularity law. Hence, 

consider 0 + X •£ Y ± 0. Suppose a € (XvY)nZ. Then a e Z and a 6 X V Y. 

By (i), there exist x e X, y eY such that a 6 C^(x,y). 

If CaKa) = C^(x ) then a e C^(a ) = C*(x) CXv(YnZ). 

If C«<(a) 7̂  Cjnr(x), then we have y € C^(x,a) by (ii). 

However, z e X C Z , a £ Z thus also j / 6 C^(x,a) C Z. Hence j / e 7 n Z and 

a e Cjaf(x,y) C I V ( F n Z ) , which proves modularity of C E ( J ^ ) . • 

L e m m a 1. Let .£/ = (A, {Q}) be a binary relational system with only one transi

tive binary relation and CY.(JZ?) = Conv^/ . Then CE(&/) satisfies (i) of Theorem 1. 

P r o o f . The condition (i) of Theorem 1 is equivalent to the following one: 

C*(X) ={J{C*(xi,X2);xi,X2 eX} for each X C A. 

For X, Y C A put C°(X,Y) = XuY, C(X,Y) = C^J f .Y ) = {a 6 A;«ea0t) 

for some u,t) € X U Y} and C n + 1 ( X , y ) = C ( C " ( X , y ) ) , where n e N0 (non-

negative integer). Evidently, C^(X,Y) = | J ( C n ( X , F ) ; n e N0). Now, we can 

prove the following statement by induction on n: "If a e C n ( X , V), then there exist 

u, v e X UY such that uQagv." 
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1) For n = 1 it is a trivial. 

2) Suppose that it is valid for all k ^ n and we prove it for n + 1. Let a e 

Cn+1(X, Y), i.e. aQagP for some a, /0 G C" (X ,Y) . Clearly, we have the following 

possibilities: 

a) ae [xuyi], 0 e [xi,y2]; 

b) ae [xi.J/i], 0 e [y2,x2]; 

c) ae [ j / i , i i ] , P e [x2,y2]; 

A) ae [y\,X\], /3 e [y2,x2], etc., where Xi,x2e X and j / i , j / 2 e Y. 

ad a) If Q £ [zi,j/i], /3 6 [11,2/2], then xiQaag0gy2 and a e [^i,j/2] by transitivity, 

i.e. the statement is valid. 

ad b) a 6 [xi,j/i], /3 G [j/2,a;2] imply x\Qaagf}QX2, i.e. a e [x\,x2] and ae X. 

Similarly we can easily check the other possibilities. , • 

E x a m p l e 1. Let so* = ({a,b,c},{o}) be a binary relational system with the 

following diagram of Q: 

and Cs(s^) = Conv.c/. We can easily check (i) and (ii) of Theorem 1, thus CY. 

is modular. We can vizualize the diagram of C^(sa') in Fig. 2 below: 

{a,Ь,c} 

We can see that it is isomorphic to M3, hence C-z(srf) is not distributive. 

E x a m p l e 2. Let srf = ({a,6,c},^) be an ordered set which is a chain: a < 

b < c, and let C?,(srf) = Conv.s/. Then it does not satisfy (ii) of Theorem 1 since 

b e Ctf(a,c), CV(6) ^ Crf(a) but c $ C^(a,6) = {a,b}. The diagram of Cs(s/) is 
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shown in Fig. 3: 

{a,b,c} 

We can see that Cz(stf) is not modular. We are going to show that for some algebraic 

structures the condition (ii) is really equivalent to modularity of Cs(srf). 

Recall from [2] that an algebraic system srf = (A,F,R) is ^-separable if we have 

Cs/(x) = {x} for any x G A. 

T h e o r e m 2. Let srf = (A,F, R) be a ^-separable algebraic structure satisfying 

(i) of Theorem 1. The following conditions are equivalent: 

(a) the lattice Cs(srf) is modular; 

(b) for each x, y £ A, if a e C&(x,y) for a ^ x then y € C„/(x,a). 

P r o o f . Since stf is S-separable and srf satisfies (i), we obtain (b) =$> (a) directly 

by Theorem 1. Prove (a) => (b). Let Cz(srf) be modular and o, x, y 6 A, a ̂  x. 

Since {x,y} C C^(x) V C^(y), we have 

(*) C^(x,y)CC^(x)vC^(y). 

Suppose a e Csj(x,y). Then a 6 C^(x,y) n Cj,/(a,x) and, by (*), also 

ae ( C , / ( i ) v C r f ( j ) ) n C y ( o , i ) . 

Clearly Cs/(x) C C#/(a,x) and, by modularity of Cz(s/), we conclude 

a e C ^ v f C ^ l n C ^ a , ! ) ) . 

However, srf is S-separable, thus also a e {x} V ({y} n C^(a,x)). Since a^ x, this 

yields {)/} n ̂ ( a , x) 5̂  0, thus j / e ^ ( o , x) which proves (b). • 
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Definition 2. Let Q be a binary relation on A. We say that Q is weakly transitive 

if for each pairwise different elements a, b, c e A, (a, b) e Q and (b, c) e Q imply 

(c, a) $ Q. 

Corollary 1. Let si? = (A, {Q}) be an antisymmetrical binary relational system 

with one weakly transitive relation Q and C-£.(s?) = Conv.sa'. TJie following condi

tions are equivaJent: 

(1) Conv a is modular; 

(2) Conv si? is distributive; 

(3) for any pairwise different elements a, b, c e A we have (a, b) ^ Q or (b, c) £ Q. 

P r o o f . (3) => (2): If ^ / satisfies (3) then every subset of A is a convex subset, 

thus Conv si? = Exp A, i.e. Carrv s? is distributive. (2) => (1) is trivial. 

(1) => (3). Let Conv si? be modular and let a, x, y be pairwise different elements 

of A. Suppose xga and agy. Then a e C^(x,y), a £ x and y <$. C^(x,a) with 
respect to antisymmetry and weak transitivity of Q. Hence (b) of Theorem 2 is not 

valid. Moreover, s? is S-separable by Theorem 3 in [2] and, by Lemma 1, C^,(s?) 

satisfies (i) of Theorem 1, thus we have a contradiction. Hence also (3) is satisfied. 

D 

Corollary 2. Let y = (S,^) be an ordered set and Cx(y) = ConvJA The 

following conditions are equivalent: 

(1) Conv y is modular; 

(2) Conv y is distributive; 

(3) y does not contain a chain of length greater than two. 

P r o o f . Clearly, any order is weakly transitive, and it is almost trivial to show 

that (3) of Corollary 1 is equivalent to (3) of Corollary 2 for Q = < . D 

For any group <S, the lattice N{<3) of all its normal subgroups is modular and it 

clearly satisfies (i) of Theorem 1 since S?. V % = &i • % for each <gy, <g2 € JV(«f). 

However, it does not satisfy (ii) of Theorem 1: e.g. for the group (Z, +) of all integers 

we have 4 e CW(2,3) = Z, C<s(4) / Cy(2) but 3 £ CW(2,4). This motivates our 

effort to give another sufficient condition for modularity of Cs(s?). (Remark that a 

group <£ is not E-separable with respect to C s ( ^ ) = N(W).) 

Definition 3. Let s? = (A,F,R) be an algebraic structure of type r. By a 

binary formula we mean any formula G(xy,x2,z, f) or G(xy,x2,z,o) of the language 

L(T) provided / is a binary term operation of si? or Q is a binary relation of R. 

Theorem 3 . Let s? = (A,F,R) be an aJgebraic structure and Jet E contain a 

binary formula G(xy,x2,z, f) or G(xy,x2,z, Q) such that the following conditions are 



satisfied: 

(i) if X, Y e Cs(*f), 0 ¥= X jt Y jt 0, then a e X V Y if and only if there exist 

b e X, c e Y such that G(b, c, a, f) or G(b, c, a, g) is satisfied in srf; 

(ii) for each a, b, c e A, a ^ 6, if the formula G(b, c, a, f) or G(b, c, a, g) is satisfied 

in srf and Cs/(a) / C./(6) then c e Cs/(a,b). Then the lattice (Cx(srf),C ) is 

modular. 

P r o o f . Let X, Y, Z e Cs(s/) and X C Z. To check modularity of CZ(SJZ) it 

is enough to consider 0 -* X + Y ft ID. Suppose a e (X V Y) n Z. By (i) there exist 

6 e X, c e Y such that some binary formula G(6, c, a, / ) or G(6, c, a, g) is satisfied in 

s/. If C s ( a ) = C^(6) then 

aeC^(6) CXCXV(YnZ). 

If C ^ ( a ) ^ C^(6) then, by (ii), c e C^(a ,6 ) . However, o e Z a n d d g X C Z , thus 

also c e Car (a, 6) C Z. Hence, we conclude by (i) 

aeX\J(YnZ), 

proving modularity of Cs(sf). D 

E x a m p l e 3. If Sf = (A,.,~l ,e) is a group and CS(W) = N(&), take a binary 

formula (xi • x2 = z). Evidently, for s/i, srf2 e iV(Sf), a e **i V -*a = tt\ • sf2 if and 

only if there exist ai e Ai, a2 e A2 with a = ai • a2 and, if a = 6 • c (i.e. G(6, c,a,.) is 

satisfied in S?) then c = 6 _ 1 • a, thus c e C&(a, 6). Hence, both (i), (ii) of Theorem 3 

are satisfied. 

E x a m p l e 4. It is an easy exercise to verify that the quasiordered set of 

Example 1 also satisfies the assumptions of Theorem 3 for the binary formula 

G(xi,x2,z,g) = (xigz and zgx2). 

Now, we turn our attention to distributivity of C^(s^). 

T h e o r e m 4. Let si/ = (A, F, R) be an algebraic structure with the lattice Cz(srf) 

of T,-closed subsets. If there exists a binary term operation p(x, y) of srf such that 

(i) for B, C e Cz(srf) we have a e B V C if and only ifa = p(6,c) for some be B, 

ceC; 

(ii) if D e Cs(s/) and p(b,c) e D for some b, c e A, then b, c e D, then the 

lattice ( C E ( J V ) , C ) is distributive. 

P r o o f . Suppose B,C, D e Cs(srf) and a e D n (B V C). Then a e D and, by 

(i), there exist 6 e B, c e C with a = p(b,c). Hence also p(b,c) e D and, by (ii), 

we have b e D, c e D. Thus b e Dn B, c e DnC and by (i) again, we conclude 

a = p(6,c) e (DnB) V(DnC). • 
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E x a m p l e 5. If ^f is a distributive lattice and CE(-S?) = Id-Sf, we can put 

p(x, y) = x V y. It is well-known that for Iu I2 £ Id-Sf, y £ I\ V I2 if and only if 

y = ii V i2 for some ii € Ii, i2 £ I2. Moreover, if J £ Id-S? and ji V j 2 £ J for j i , 

j 2 S -S? then j i ^ J! V j 2 , j 2 ^ h v J2 imply also j \ , j 2 £ J-

Thus both assumptions of Theorem 4 are satisfied. 

Now, let s</ = (A , F ,R) be an algebraic structure and let B £ C^(s/) for some 

given set S of open formulas. If there exists an element b £ A such that B = C^(b), 

we say that 6 is a generator of B. 

In the remaining part of the paper, denote by Z the set of all integers and suppose 

F ^ 0 for any algebraic structure s/ = (A, F, R) under consideration. 

Definition 4. An algebraic structure s# = (A,F,R) is called S-cyciic if there 

exist an element d £ A, a subset K C Z and binary integral operations v>, ip: 

K x K -* K and unary terms wk(x) ior k £ K of s/ such that 

(a) for each B £ C s ( ^ ) there exists k £ K such that wk(d) is a generator of B; 

(b) if tum(d) or wn(d) are generators of B or D, respectively, for B, D £ C s ( ^ ' ) , 

then mv,(m,n)(d) or w^,(m,„)(d) are generators of B V D or B n D, respectively; 

(c) ip(k,ip(m,n)) = ip(ip(k,m),4>(k,n)) for every A;, m, n £ K. 

The terms wk(x) are called characteristic terms of C E ( ^ ) . 

Theorem 5 . If srf = (A,F,R) is a S-cyciic algebraic structure then the lattice 

(Cz(£/),C ) is distributive. 

P r o o f . Let ^ b e a S-cyclic algebraic structure and let wk(x) be its character

istic terms for k £ K C Z. Suppose that <p and ip satisfy (b) and (c) of Definition 4. 

Let B, C, D £ Cz(szf). Suppose that d £ A and wm(d) or wn(d) or wk(d) are 

generators of B or C or D, respectively. By (a), (b), (c) of Definition 4, we can 

easily derive 

D n (B V C) = C (̂wfc(d)) n (c^(™n(d)) v c^(™m(d))) 
= C^(wi>{kMmtn))(d)) = CSSf(wvWk:m)Mk<n))(d)) 

= (c^to^d)) ncv(tum(d))) v (CW(u>*(d)) nCV(w„(d))) 
= (DnB)v(Dnc), 

i.e. the lattice (C-E(S/), C ) is distributive. D 

E x a m p l e 6. If Sf = (G,.) is a cyclic group and C E ( # ) = SubS?, put K = Z, 

wk = xk and ip(m,n) = GCD(m,n), %j)(m,n) = LCM(m,n). As an element d e G 

we pick up the generator of <#. Evidently, <$ is S-cyclic. 
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E x a m p l e 7. If &f = (A,f) is a monounary algebra and Cz(s/) = S u b ^ , 
we can put K = N U {0} (non-negative integers), Wk(x) = fk(x) where /°(a;) = x 
and fk+1(x) = f(fk(x)) for each k e K. Moreover, put <p(m,n) = min(m,n), 
ip(m,n) = max(m,n). If s/ has a unique generator d then si is S-cyclic. 

E x a m p l e 8. Suppose s/ = (A,F,R) is an algebraic structure with at least 
two elements such that F contains a miliary operation c and f(c,..., c) = c for each 
/ e F. Further, suppose Cs(s/) = {{c},A} (trivially, Cz(s/) is distributive). Put 
K = {0,1}. If A ^ {c}, choose d ^ c, d 6 A and put wQ(x) = c, wi(x) = d. Further, 
let <p and ip be defined in the same manner as in the foregoing Example 7. Evidently, 
s/ is S-cyclic. 
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