Mathematic Bohemia

Ján Jakubík

Sequential convergences on free lattice ordered groups

Mathematic Bohemica, Vol. 117 (1992), No. 1, 48-54

Persistent URL: http: //dml.cz/dmlcz/126229

Terms of use:

(C) Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

SEQUENTIAL CONVERGENCES ON FREE LATTICE ORDERED GROUPS

Ján Jakubík, Kos̉ice

(Received January 8_ 1990)

Summary. In this paper the partially ordered set $\operatorname{Conv} G$ of all sequential convergences on G is investigated, where G is either a free lattice ordered group or a free abelian lattice ordered group.

Keywords: free lattice ordered group, free abelian lattice ordered group, sequential convergence

AMS classification: 06F15
J. Novák [16] proved that every free group admits a nontrivial sequential convergence such that the group operation is sequentially continuous. Compatible sequential convergences on free groups were dealt with by Frič and Zanolin [7] (cf. also further references quoted there).

Let G be a lattice ordered group. The partially ordered set Conv G of all compatible sequential convergences on G was studied by Harminc [10]. The questions dealing with Conv G were investigated also in the papers [8], [9], [12], [13], [14].

In what follows, we will apply the shorter term "convergence" rather than "compatible sequential convergence".

Let α be a cardinal. The free (abelian) lattice ordered group with α free generators will be denoted by $G(\alpha)$ (or $A(\alpha)$, respectively).

A natural question arises whether $G(\alpha)$ and $A(\alpha)$ admit a nontrivial convergence. In the present paper the following results will be proved:
(A) If $\alpha=1$, then $G(\alpha)=A(\alpha)$ has no nontrivial convergence.
(B) If $\alpha \geqslant 2$, then $G(\alpha)$ admits a nontrivial convergence.
(C) If $\alpha \geqslant 2$, then $A(\alpha)$ admits $2^{2^{N_{0}}}$ nontrivial convergences.
(D) If $\alpha \geqslant 2$, then the partially ordered set Conv $A(\alpha)$ has no atom.

The question whether the assertions of (C) and (D) are valid for $G(\alpha)$ remains open.

1. Preliminaries

In the whole paper the symbol α denotes a cardinal. The group operation in a lattice ordered group will be denoted additively.

The free abelian lattice ordered group $A(\alpha)$ of rank α has benn investigated by Weinberg [17], [18], Bernau [2] and Conrad [4]. For the non-abelian case, the free lattice ordered group $G(\alpha)$ with α free generators was studied by Conrad [5] (cf. also the monographs [1], [6], [15]).

The following two results will be applied below.

Lemma 1.1. (Cf. [17], p. 197.) Let $\alpha \geqslant 2,0<h \in A(\alpha)$. Then there are elements g_{1} and g_{2} in $A(\alpha)$ such that $0<g_{i}<h$ is valid for $i=1,2$ and $g_{1} \wedge g_{2}=0$.

Proposition 1.2. (Cf. [5].) Let X be the ℓ-ideal of $G(\alpha)$ generated by the set $x+y-x-y$, where x and y run over $G(\alpha)$. Then the factor lattice ordered group $G(\alpha) / X$ is isomorphic to $A(\alpha)$.

Next let us recall, for the sake of completeness, the basic definitions concerning convergences in a lattice ordered group G. The notation from [12] will be applied.

Let N be the set of all positive integers. The direct product $\prod_{n \in N} G_{n}$, where $G_{n}=G$ for each $n \in N$, will be denoted by G^{N}. If $\left(g_{n}\right) \in G^{N}, g \in G$, and if $g_{n}=g$ is valid for each $n \in N$, then we write $\left(g_{n}\right)=$ const g. The elements of G^{N} are called sequences in G; the notion of a subsequence has the usual meaning.

A subset β of the positive cone $\left(G^{N}\right)^{+}$of G^{N} is said to be a convergence in G if β is a convex subsemigroup of $\left(G^{N}\right)^{+}$such that the following conditions are satisfied:
(I) If $\left(g_{n}\right) \in \beta$, then each subsequence of $\left(g_{n}\right)$ belongs to β.
(II) Let $\left(g_{n}\right) \in\left(G^{N}\right)^{+}$. If each subsequence of $\left(g_{n}\right)$ has a subsequence belonging to (β), then $\left(g_{n}\right)$ belongs to β.
(III) Let $g \in G$. Then const g belongs to β if and only if $g=0$.

The system of all convergences in G will be denoted by $\operatorname{Conv} G$; this system is partially ordered by inclusion.

For $\left(g_{n}\right) \in\left(G^{N}\right)^{+}$and $g \in G$ we put $g_{n} \rightarrow \beta$ if and only if $\left(\left|g-g_{n}\right|\right) \in \beta$.

Proposition 1.3. (Cf. [10].) The partially ordered set Conv G is a Λ-semilattice having a least element. Each interval of Conv G is a complete Brouwerian lattice.

The least element of Conv G is the trivial convergence on G; its definition is obvious. It will be denoted by $\boldsymbol{\beta}_{0}$.

2. The proofs of (A) - (D)

Proof of (A): Let N_{0} be the additive group of all integers with the natural linear order. It is well-known (cf. [3], Chap. XIII) that the lattice ordered group $G(1)$ is isomorphic to $N_{0} \times N_{0}$; thus $A(1)=G(1)$.

In view of [9], Corollary 2.10 we have card Conv $N_{0}=1$. According to [9], Theorem 4.5 , the partially ordered set $\operatorname{Conv}\left(N_{0} \times N_{0}\right)$ is isomorphic to Conv $N_{0} \times \operatorname{Conv} N_{0}$. Hence card $\operatorname{Conv}\left(N_{0} \times N_{0}\right)=1$. Therefore (A) is valid.

Let us consider the following condition for a lattice ordered group G :
(*) For each $0<h \in G$ there exist g_{1} and g_{2} in G such that $g_{1} \wedge g_{2}=0$ and $0<g_{i}<h(i=1,2)$.

A system $\left\{g_{j}\right\}(j \in J)$ of elements of a lattice ordered group will be called disjoint if $g_{j}>0$ for each $j \in J$ and $g_{j(1)} \wedge g_{j(2)}=0$ whenever $j(1)$ and $j(2)$ are distinct elements of J.

Lemma 2.1. Let G be a lattice ordered group, $G \neq\{0\}$. Assume that G satisfies the condition (*). Then there is an infinite disjoint system in G.

Proof. We define by induction elements $x_{1 n}$ and $x_{2 n}(n=1,2, \ldots)$ of G such that
(i) $0<x_{n 1}, 0<x_{n 2}$ and $x_{n 1} \wedge x_{n 2}=0$ for each $n \in N$,
(ii) if $1<n \in N$, then $x_{n+1,1}$ and $x_{n+1,2}$ belong to the interval $\left[0, x_{n, 2}\right]$ of G.

Since $G \neq\{0\}$, there is $0<h \in G$. Because G satisfies the condition (*), there are elements x_{11} and x_{12} in G such that $0<x_{1 i}<h(i=1,2)$ and $x_{11} \wedge x_{12}=0$.

Assume that we have constructed $x_{k 1}$ and $x_{k 2}$ for $k=1,2, \ldots, n$ such that (i) is valid for $k=1,2, \ldots, n$ and (ii) is valid for $k=1,2, \ldots, n-1$. Put $h^{\prime}=x_{n, 2}$. According to (*) there are $x_{n+1,1}$ and $x_{n+1,2}$ in G such that $0<x_{n+1, i}<h^{\prime}$ for $i=1,2$, and $x_{n+1,1} \wedge x_{n+1,2}=0$. Thus (i) is valid for $k=1,2, \ldots, n+1$, and (ii) holds for $k=1,2, \ldots, n$.

In view of (i) and (ii) we infer that $\left\{x_{n 1}\right\}(n \in N)$ is an infinite disjoint system in G.

Proof of (C): Let $\alpha \geqslant 2$. Put $A(\alpha)=G$. In view of $1.1, G$ satisfies the condition (*). Thus, according to 2.1, there is an infinite disjoint set in G. Now it follows from [9], Theorem 7.7 that

$$
\text { card Conv } G=2^{2^{\kappa_{0}}}
$$

Thus (C) holds.
Lemma 2.2. Let G and H be lattice ordered groups such that G is a homomorphic image of H. Let $n \in N$ and assume that there is a disjoint subset S_{1} in G with $\operatorname{card} S_{1}=n$. Then there exists a disjoint S_{2} in H with $\operatorname{card} S_{2}=n$.

Proof. Without loss of generality we can suppose that there is an ℓ-ideal X in H such that $G=H / X$. For $h \in H$ we denote $\bar{h}=h+X$. Let us verify by induction that the following assertion $a(n)$ is valid for each $n \in N$:
$(a(n))$ If $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ is a disjoint subset of G, then there are elements b_{1}, \ldots, b_{n} in H such that $b_{i} \in \bar{a}_{i}$ for $i=1,2, \ldots, n$, and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a disjoint subset of H.

Let $n=1$. Then $\bar{a}_{1}>\overline{0}$, hence there is $0<b_{1} \in \bar{a}_{1}$, and $\left\{b_{1}\right\}$ is a disjoint subset of H.

Assume that the above assertion holds for some $n \in N$. Let $\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n+1}\right\}$ be a disjoint subset of G. Thus $\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}\right\}$ is disjoint subset of G as well; hence there exist $b_{i}^{\prime} \in \bar{a}_{i}(i=1,2, \ldots, n)$ such that $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right\}$ is a disjoint subset of H.

We have $\overline{0}<\bar{a}_{n+1}$, hence there is $b_{n+1}^{\prime} \in \bar{a}_{n+1}$ with $0<b_{n+1}^{\prime}$. For $i=1,2, \ldots, n$ we put

$$
c_{i}=b_{i}^{\prime} \wedge b_{n+1}^{\prime}, b_{i}=b_{i}^{\prime}-c_{i}
$$

Then $c_{i} \in X$ for $i=1,2, \ldots, n$. Next, if $b_{i}=0$ for some $i \in\{1,2, \ldots, n\}$ then $b_{i}^{\prime} \in \overline{0}$, which is a contradiction. Thus $b_{i}>0$ for $i=1,2, \ldots, n$. Clearly $b_{i} \in \bar{a}_{i}$ for $i=1$, $2, \ldots, n$.

Denote

$$
c=c_{1} \vee c_{2} \vee \ldots \vee c_{n}, b_{n+1}=b_{n+1}^{\prime}-c
$$

We have $0 \leqslant c \leqslant b_{n+1}^{\prime}$, hence $0 \leqslant b_{n+1}$. Clearly $c \in C$. Thus $b_{n+1} \in \bar{a}_{n+1}$. If $b_{n+1}=0$, then $b_{n+1}^{\prime} \in \overline{0}$, which is impossible; therefore $b_{n+1}>0$.

Now from the relation $b_{i} \leqslant b_{i}^{\prime}$ for $i=1,2, \ldots, n$ we infer that $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a disjoint of H. Let $i \in\{1,2, \ldots, n\}$. Then

$$
\begin{aligned}
& 0 \leqslant b_{i} \wedge b_{n+1}=b_{i} \wedge\left(b_{n+1}^{\prime}-c\right) \leqslant b_{i} \wedge\left(b_{n+1}^{\prime}-c_{i}\right)= \\
& =\left(b_{i}^{\prime}-c_{i}\right) \wedge\left(b_{n+1}^{\prime}-c_{i}\right)=\left(b_{i}^{\prime} \wedge b_{n+1}^{\prime}\right)-c_{i}=0 .
\end{aligned}
$$

Thus $b_{i} \wedge b_{n+1}=0$. Therefore $\left\{b_{1}, b_{2}, \ldots, b_{n+1}\right\}$ is a disjoint subset of H. This completes the proof of the lemma.

Lemma 2.3. Let $\alpha \geqslant 2$ and $n \in N$. Then there exists a disjoint set with n elements in $G(\alpha)$.

Proof. We have already proved above that there is an infinite disjoint set in $A(\alpha)$. According to 1.2, $A(\alpha)$ is a homomorphic image of $G(\alpha)$. Hence in view of 2.2, there is a disjoint subset with n elements in $G(\alpha)$.

Lemma 2.4. Let $\alpha \geqslant 2$. Then there is an infinite disjoint subset in $G(\alpha)$.
Proof. This is a consequence of 2.3 and of [6], Theorem 3.9.
The following lemma generalizes Theorem 7.3 of [9].

Lemma 2.5. Let $\left\{b_{n}\right\}(n \in N)$ be a disjoint subset of a lattice ordered group G. Then there exists $\beta \in \operatorname{Conv} G$ such that the sequence $\left(b_{n}\right)$ belongs to β.

Proof. By way of contradiction, suppose that there exists no β with the desired properties.

Thus (cf. [10], Theorem 2.2) there exist $k \in N, g, g_{1}, g_{2}, \ldots, g_{k} \in G$ and subsequences $\left(y_{n}^{m}\right)(m=1,2, \ldots, k)$ of the sequence $\left(b_{n}\right)$ such that for each $n \in N$ the relation

$$
\begin{equation*}
0<g \leqslant \sum_{m=1}^{k}\left(g_{m}+y_{n}^{m}-g_{m}\right) \tag{1}
\end{equation*}
$$

is valid.
Assume that k is the least positive integer with the just mentioned property.
Since the sequence (b_{n}) is disjoint it follows that each its subsequence is disjoint and therefore for each $m=1,2, \ldots, k$ the sequence

$$
\left(g_{m}+y_{n}^{m}-g_{m}\right)_{n \in N}
$$

is disjoint as well. This implies that we cannot have $k=1$; hence $k>1$.
Consider the relation (1) for $n=1$. Hence there are elements $h_{1}, h_{2}, \ldots, h_{k}$ in G^{+}such that

$$
\begin{equation*}
g=h_{1}+h_{2}+\ldots+h_{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{m} \leqslant g_{m}+y_{1}^{m}-g_{m} \text { for } m=1,2, \ldots, k \tag{3}
\end{equation*}
$$

In view of (2) there exists $m \in\{1,2, \ldots, k\}$ such that $h_{m}>0$; without loss of generality we can suppose that $m=1$.

According to (3) we have

$$
\begin{equation*}
h_{1} \wedge\left(g_{1}+y_{n}^{1}-g_{1}\right)=0 \text { for } n=2,3, \ldots \tag{4}
\end{equation*}
$$

From (1) we obtain

$$
\begin{equation*}
0<h_{1} \leqslant \sum_{m=1}^{k}\left(g_{m}+y_{n}^{m}-g_{m}\right) \tag{5}
\end{equation*}
$$

for each $n \in N$; let us consider the relation (5) for $n \geqslant 2$. By applying (4) we get

$$
0<h_{1} \leqslant \sum_{m=2}^{k}\left(g_{m}+y_{n}^{m}-g_{m}\right) \text { for each } n \geqslant 2 .
$$

In view of the minimality of \boldsymbol{k} we have arrived at a contradiction.

Remark 2.5.1. The above lemma can be obtained also by applying [11], Section 6, Lemma 6.6. (In [11], Section 6 it is assumed that lattice oredered groups under consideration are abelian, but Lemma 6.6 is valid in the non-abelian case, too).

Corollary 2.6. Let $\left\{b_{n}\right\}(n \in N)$ be a disjoint subset of a lattice ordered group G. Then card Conv $G>1$.

Proof of (B): This is an immediate consequence of 2.4 and 2.6.

Lemma 2.7. Let G be a lattice ordered group and let $\left(x_{n}\right) \in\left(G^{N}\right)^{+}$such that $x_{n}>0$ for each $n \in N$. Assume that G satisfies the condition (*). Then there are $\left(x_{n}^{\prime}\right),\left(y_{n}\right),\left(z_{n}\right) \in\left(G^{N}\right)^{+}$such that $\left(x_{n}^{\prime}\right)$ is a subsequence of $\left(x_{n}\right),\left(z_{n}\right)$ is disjoint and $z_{n} \leqslant y_{n} \leqslant x_{n}^{\prime}$ for each $n \dot{\in} N$.

Proof. We begin with the sequence $\left(x_{n}^{1}\right)=\left(x_{n}\right)$ and put $x_{1}^{\prime}=x_{1}=y_{1}$. In view of (*) there exist $a_{1}, a_{2} \in G$ such that $0<a_{1}, 0<a_{2}, a_{1} \wedge a_{2}=0$ and $a_{1}, a_{2}<y_{1}$. Put

$$
N(1)=\left\{1<n \in N: a_{1} \wedge x_{n}^{1}>0\right\} .
$$

Now we distinguish two cases.
a) Suppose that $N(1)$ is finite. Then we put $z_{1}=a_{1}$, and in the next step we work with the sequence $\left(x_{n}^{2}\right)=\left(x_{n}^{1}\right)_{n \geqslant m}$, where m is the least positive integer such that $a_{1} \wedge x_{j}=0$ for each $j \geqslant m$. We set $x_{2}^{\prime}=x_{m}^{1}$.
b) Suppose that $N(1)$ is infinite. Then we put $z_{1}=a_{1}$ and in the next step we work with the sequence $\left(x_{n}^{2}\right)=\left(a_{1} \wedge x_{n}^{1}\right)_{1<n \in N(1)}$. We set $x_{2}^{\prime}=x_{2}$.

By an obvious induction procedure we can verify that by repeating this process we obtain sequences $\left(x_{n}^{\prime}\right),\left(y_{n}\right)$ and $\left(z_{n}\right)$ with the desired properties.

Lemma 2.8. Let G be a lattice ordered group and let $\beta \in \operatorname{Conv} G, \beta \neq \beta_{0}$. Assume that G satisfies the condition (*). Then there exists a disjoint sequence in $\left(G^{N}\right)^{+}$which belongs to β.

Proof. Since $\beta \neq \beta_{0}$, there exists $\left(x_{n}\right) \in \beta$ such that $x_{n}>0$ for each $n \in N$. Let $\left(x_{n}^{\prime}\right)$ and $\left(z_{n}\right)$ be as in 2.7. Then $\left(z_{n}\right)$ is disjoint and $\left(x_{n}^{\prime}\right)$ belongs to β. Since $z_{n} \leqslant x_{n}^{\prime}$ for each $n \in N$, the sequence $\left(z_{n}\right)$ belongs to β as well.

Lemma 2.9. Let G be an abelian lattice ordered group and let $\beta \in \operatorname{Conv} G$. Suppose that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are disjoint sequences belonging to β such that $u_{n} \wedge v_{m}=$ 0 for each $n, m \in N$. Then there exist $\beta_{1}, \beta_{2} \in \operatorname{Conv} G$ such that $\left(u_{n}\right) \in \beta_{1},\left(v_{n}\right) \in \beta_{2}$, $\beta_{1} \neq \beta_{2}$ and $\beta_{1}, \beta_{2}<\beta$.

Proof. This follows from [9], Theorem 7.3 and Corollary 7.6.

Proof of (D): Let $\alpha \geqslant 2$. Put $A(\alpha)=G$. By way of contradiction, assume that there exists an atom β of $\operatorname{Conv} G$. Thus there is $\left(x_{n}\right) \in \beta$ such that $x_{n}>0$ for each $n \in N$. According to $1.1, G$ satisfies the condition (*). In view of 2.8 there exists a disjoint sequence $\left(z_{n}\right)$ belonging to β. For each $n \in N$ we put $u_{n}=z_{2 n-1}, v_{n}=z_{2 n}$. Then $\left(u_{n}\right),\left(v_{n}\right) \in \beta$. Let β_{1} and β_{2} be as in 2.9. We have $\beta_{0}<\beta_{i}<\beta$ for $i=1,2$; this contradicts the assumption that β is an atom in $\operatorname{Conv} G$.

References

[1] M. Anderson, T. Feil: Lattice-Ordered Groups, An Introduction, Reidel Publ., Dordrecht, 1988.
[2] S. Bernau: Free abelian lattice groups, Math. Ann. 180 (1969), 48-59.
[3] G. Birkhoff: Lattice Theory, Third Edition, Providence, 1967.
[4] P. Conrad: Free abelian ℓ-groups and vector lattices, Math. Ann. 190 (1971), 306-312.
[5] P. Conrad: Free lattice-ordered groups, J. Algebra 16 (1970), 191-203.
[6] P. Conrad: Lattice-Ordered Groups, Tulane Lecture Notes; New Orleans, 1970.
[7] R. Fric; F. Zanolin: Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 18 (1986), 200-218.
[8] M. Harminc: Sequential convergences on abelian lattice-ordered groups, Convergence Structures 1984. Mathematical Research, Band 24, Akademie-Verlag, Berlin, 1985, pp. 153-158.
[9] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group, Czechoslovak Math. J. 97 (1987), 533-546.
[10] M. Harminc: Sequential convergences on lattice ordered groups, Czechoslov. Math. J 39 (1989), 232-238.
[11] M. Harminc: Convergences on lattice ordered groups. Dissertation, Math. Inst. Slovak Acad. Sci, 1986. (In Slovak.)
[12] M. Harminc, J. Jakubik: Maximal convergences and minimal proper convergences in ℓ-groups, Czechoslov. Math. J. 39 (1989), 631-640.
[13] J. Jakubik: Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272.
[14] J. Jakubik: Lattice ordered groups having a largest convergence, Czechoslov. Math. J. 39 (1989), 717-729.
[15] В. М. Копытов: Рещеточно упорядоченные группы, Москва, 1984.
[16] J. Novák: On a free convergence group., Proc. Conf. on Convergence Structures, Lawton, Oklahoma, 1980, pp. 97-102.
[17] E. C. Weinberg: Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187-199.
[18] E. C. Weinberg: Free lattice-ordered abelian groups. II, Math. Ann. 159 (1965), 217-222.

Author's address: Matematický ústav SAV, dislokované pracovisko v Košiciach, Grešákova 6, 04001 Košice.

