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SOLDERED DOUBLE LINEAR MORPHISMS 

ALENA VAN4UROVA, Olomouc 

(Received February 28, 1990) 

Summary. Our aim is to show a method od finding all natural transformations of a 
functor TT* into itself. We use here the terminology introduced in [4, 5]. The notion of 
a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. 
Differentiable maps / : C0 —• Co commuting with TT* -soldered automorphisms of a double 
vector space C0 = V* x V x V* are investigated. On the set ZS(C0) of such mappings, 
appropriate partial operations are introduced. The natural transformations TT* —> TT* 
are bijectively related with the elements of Zs((TT*)0R

n). 

Keywords: Double vector space, double vector fibration, soldering, natural transfor
mation 

AMS classification: 53C05 

1. 2>£-SPACES (FIBRATIONS) WITH SOLDERING 

As usual, let T denote the tangent functor; T is a lifting functor, i.e. a functor 
from the category of n-dimensional manifolds and their local diffeomorphisms into 
the category of fibred manifolds and morphisms. Similarly, the construction of a 
cotangent bundle and cotangent map can be interpreted as a covariant lifting functor, 
[2]. Further, TT, TT*, T*T, and T*T* are second order lifting functors, [2]. 

In [4, 5], double vector spaces (Z>£-spaces), double vector fibrations and their 
morphisms were studied. For example, the tangent bundle TE of a vector bundle 
E has the structure of a double vector fibration. Other important examples are 
the cotangent bundle T*E and the spaces TTMy TT*M, T*TM and T*T*M of a 
smooth manifold M. 

The Cartesian product C° = A x B x V of three finite-dimensional vector spaces 
can be regarded as a trivial double vector space AxBxV—*AxB. Its X>£-
automorphisms group Aut(C°) is identified with Aut(A) x Aut(jB) x Aut(V) x 
Hom(i4 x B, V) where Hom(-4 x B, V) denotes the vector space of all bilinear maps 
of A x B to V, [4]. Further, any 2>£-space C is D£-isomorphic with a suitable trivial 
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2>£-space C° (of the same dimension). Consequently, any automorphism <p € Aut(C) 
can be written as a quadruple (^i,^2,^3,cr). 

J. Pradines introduced a 1-soldering of a 2>£-object C as a linear isomorphism 
<rc: A -» V, and a 1-soldered morphism <p: C —• C as a 2>£-mo^phism satisfying 
<p3ac = ere <p\> [3, 1]. For our purpose, given a 2>£-space C, *: C —> A x .B, we 
define 

Defìnition 1. We say that ćľ is a 2>£-space with a 
Tíľ-soldering 

or T*üľ-soldeгing 
or ГT-soldeгing 
or TT*-soldeгing 
oг T*T-soldering, 
if we are given an isomorphism (or isomorphisms) 

XHV^A 

oгxз: A-+B* 

oľXi-V-+A, X2-V-+B 

or x i : V -* A, X2-V-+B* 

o г X l : V - > i ť , XÌ : V —• B, гespectively 

A 2>£-morphism <p: C -+ C of two 2>£-spaces with a T£?-soldering (or T*E-
soldering etc.) will be called soldered (more precisely, TJE-soldered etc.) if its under
lying linear morphisms <p\f <p2t <P3 satisfy 

X i <Pз = <P\ Xi 

<*¥>2X'зPi = Xз 

oг x'i <Pз = <P\ Xъ X'2^3 -<P2X2 

o г x ' i ^ з = ^iXъ <P2 X'2 <PЗ = X2 

o г ^ ï x ' i У з = Xъ X'2 <PЗ = <P2X2 

In this way, we obtain a category of T-E-soldered 2>£-spaces and morphisms, etc. 
Obviously, TT~ and TT*-solderings are special cases of the T2i?-soldering, and the 
T*T-soldering induces a T*_C-soldering. 

Given a weak 2>£-fibration <£, [5], we say that <t is TE-soldered (or T*E-soldtrtd} 

etc.) if each fibre of (C is endowed with a T2?-soldering (T*2?-soldering, etc.). Given 
two weak 2>£-fibrations with a soldering of the same type, their morphism will be 
called soldered if its restriction to each fibre is a soldered 2>£-morphism. 

We say that a weak 2>£-fibration (<E,p, Af) with a soldering is a soldered VC-
fibration if there exists a 2?£-space C with a soldering of the same type such that 
for x £ M, there exists an open neighborhood U of x and a soldered isomorphism 
of weak 2>£-fibrations of the form / : (<£r/,pr/, U) —• (U x C}pr\}U) over identity. 
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Again, Ti?-soldered (or T*f7-soldered, etc) fibrations and their morphisms form a 
category. 

A T£-soldering (T*J?-, or TT-, or IT*-, or T*T-soldering) of a Z>£-fibration 
(C, p, M) induces the following isomorphisms of the underlying fibrations: 

XX:V-+A 

or X3: A —• B 

oг Xx: V — A, Лf2:v->ß 
oг Xг: v — A, ЛГ2:v^ß* 
otXз-.V^A', Л^: v —І• B, гespecti ely. 

2. THE 7T*-SOLDERED 2>£-SPACE C0: V* x V x V* -* V* x V 

We will consider a trivial X>£-space C0 = F* x V x V*, TT: C0 -> V* x V with a 
TT*-soldering Xi = M> X2 = *<**• Its 2>£-automorphism (y>i,y>2,^3>cr) is soldered if 
and only if 

<Pi = VV1 = ¥>3. 
Our main goal is to investigate differentiable maps / : C0 —• C0 which commute 
with all TT*-soldered automorphisms of C0. First, let us make some preliminary 
considerations. 

Given a continuous / : V* x V —• V* such that 

(1) <p*~lf(a,v) = f(<p—\a)Mv)) for a n y V € Aut(V), a € V*, v € V, 

it can be proved: 

Lemma 1. Let a G V*, a ^ 0; v G V, v ^ 0. Then there exists a reai number 
X(ayv) such that f(ayv) = A(a,v).a. 

P r o o f . If (vya) ^ 0, choose a basis {vi,..., vm} in V such that v\ = r~yt;, 
m 

v\ = a. Then / (a , v) = £ /*(a> v)-v*. where {v*, . . . , t;*̂ } is a dual basis. Setting 
*=i 

<p(vx) = vi, <p(vk) = -vjb for k ^ 2, 

(1) yields f(a,v) = /i(a,v).a. In the case (v,a) = 0, let us choose a basis with 
v2 = v, v* = a, and 

(2) y> € Aut(V) with ^( v i ) = vi> ^(v2) = v2, y?(vfc) = — vk for fc ̂  3. 

By (1), /(<*>«) = / i (a, v)-vi + /»(«! «)-«2- L e t V>' € Aut(V) be given by <p'(vk) = v* 
for fc ̂  2, <p'(v2) = £t>2 with e ^ 0. An application of (1) and the previous equal
ity yields e~lf2(a,v) = f2(a,ev). By continuity of / , there exists lim/2(a,£t;) = 

/2(a,v) . Thus there exists also lime~1 /2(a, t;), which implies f2(ayv) = 0. In both 

cases, A(a,v) = / i (a ,v) . D 
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Lemma 2. Let a, a' G V* - {0}, v, v' € V - {0}. There exists >̂ G Aut(V) 
satisfying <p*~x(a) = a', y>(v) = v' if and only if(v,a) = (v',a'). 

Lemma 3. There exists a unique continuous function £: R —• R such that 
f(a,v) = £((v,a)).a for any a € V*, v G V. If / is differentiate, then ( is also 
differentiate. 

Now assume a fixed continuous / : V* x V x V* —• V* such that 

(3) * - 7 ( a , M ) = f(<P*-l(°)Mv)><P*-l(b)) 

for any y> G Aut(V), a, 6 G V*, v G V. Suppose dim V ^ 2. 

Lemma 4. Given two lineaxly independent forms a, 6 G V*, and v G V, there 
exist uniquely determined real numbers X(a, v, b), p(a, v, 6) such that 

f(a, v, 6) = X(a, v, 6).a + u(a, v, 6).6. 

P r o o f . Suppose (v, a) / 0 or (v, 6) ^ 0, and choose a basis with vj = a, vj = 6, 
(v, vk) = 0 for * ^ 3. Then v = avx + /3v2 where a, /? G R, a -/ 0, /? ^ 0. We can 

m 
write / (v j ,avi+/?v 2 , vj) = Y, fk(v*,avi+fiv2,V2).vl. Using (2) and (3) we obtain 

/ * K , a v i + /?v2,v$) = 0 for * ^ 3. 

By continuity, the numbers 

A(a,v,6) = / i ( v i , a v i + /?v2,v:j) and fi(a,v,b) = f2(v\,avx + pv2,v*2) 

satisfy the above equality even in the case (v, a) = (v, 6) = 0. Since a, 6 are indepen
dent, A and fi are unique. • 

Lemma 5. Let U C V* x V x V* denote an open subset consisting of all triples 
(a, v, 6) such that a, b are independent. There exist uniquely determined continuous 
functions X, \x: U —* R such that for any two independent a, 6 G V* and any v G V 
we have 

f(a, v, 6) = A(a, v, 6).a + p(a, v, 6).6. 

Lemma 6. Let a, b and a', V be two couples of linearly independent forms, and 
v, v1 G V. There exists <p G Aut(V) such that 

<p-\a) = a', <p(v) = v', <p-\b) = b' 
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if and only if 
(vta) = (v'ta') and (vtb) = (v'tb'). 

Lemma 7. There are uniquely determined continuous functions £, rj: R —• R 
such that for any a, 6 6 V* independent and v G V t we have 

(4) / (a , v, b) = *«„, a), («, 6)).a +.-({», a), <», 6)).6. 

Proposition 1. Let dim V ^ 2. Then there are unique continuous functions £, 
?/: R2 —• R such that for arbitrary two forms a, 6 G V* and any v G Vf (4) is valid. 

The proof follows by the previous lemma and by continuity of / , £, r\. If / is 
differentiate, we can find differentiable functions (,17. In the case dimV = 1, 
Proposition 1 is not true. Nontheless, we prove: 

Proposition 2. Let dim If = 1 . Let f: V* x V x V* -> V* be a differentiable 
map satisfying (3). Then there exist (not unique) differentiable functions £: R —• R, 
17: R2 —• R such that for any a, 6 G V* and v G V we have 

/ ( a , vt 6) = t((vt a)).a + rj((vt a), (vt b)).b. 

P r o o f . We can suppose V = R. A map /(—,— ,0) : V* x V —• V* satisfies 
(1). By Lemma 3, there is a differentiable function £: R —• R such that / (a , vt 0) = 
£((v, a)).a for any a£V*t v eV. Let a map g: V* x V x V* —• V* be given by 

g(at vt 6) = / (a , vt 6) - £((t>, a)).a. 

Clearly, g satisfies (3) and g(atvt0) = 0. There exists a differentiable function 
(i':V* xVx (V* - 0) — R such that for any a G V* t v G Vt 6 G V* - {0}, we have 
g(atvt6) = fi'(atvtb).b. Let us define fi. V* x V x V* ->R as follows: 

fi(atvtb) = i*'(a,v,b) for 6 ± 0, »(atvt0) = dg<<a^°\ 

where p is differentiable and g(atvtb) = fi(at vtb).b for a, 6 G V*, i; G V. If 6 / 0, 
then /i(a,t;,6) = fi((p*"x(a)t<p(v)t<p*~x(b)) for any <p G Aut(V). Since /i is contin
uous, the equality holds even for 6 = 0. It can be verified that there is a function 
rj: R2 —• R such that 

ti(atvtb) = r,((vta)t(vtb))foi atbeV*t v G V - {0}. 

If we choose a basis {t>i} of V we have rf(xty) = ii(xv\tvityv\). Therefore /i is 
differentiable. By continuity of fi as well as 77, the above equality holds even in the 
case v = 0. D 
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In the next part, consider a continuous map / : V* x V X V* —• V such that 

(5) <pf(a,v,b) = /(V>*-I(a)(y>(«))v>-1(6)). 

Lemma 8. Assume a, 6 G V*- v G V — {0}. Then there is a single real number 
A(a,v,6) such that /(a,v,6) = A(a,v,6).v. 

Proof , (a) First let (v,a) ^ 0, (v,6) 9-- 0. If a, 6 are independent, then there is 
a basis in V such that 

a = (v,a).vj, v = vi, 6 = (v,6).vj + vj. 

In the expression of/ with respect to the basis, /*(a, v, 6) = 0 for 4 ^ 3 . This follows 
by (5) if we use <p introduced in (2). Choose 

(6) <p'eAut(V): <p'(vk) = vk for* ^ 2 , <p'(v2) = e'lv2 

where e / 0. By (5), 

e'lf2(a, v, 6) + /2(a, v, (v, 6)vJ + ev*2). 

Since lim/2(a, v, (v,6)vj+evj) = f2(a> v, (v,6)vj) we have /2(a,v,6) = 0. Therefore 

(7) /(a,v,6) = /i(a,v,6).v, A(a, v,6) = /i(a, v,6). 

If a, 6 are linearly dependent then there is a basis {vi , . . . , vm} of V with a = 
(v,a)vj, v = vi, 6 = (v,6)vj. Choose ^>(vi) = vi, <p(vk) = — v* for ib ^ 2. The 
condition (5) gives /*(a, v, 6) = 0 for Jb ^ 2, /(a, v, 6) = /i(a, v, 6).v as above. 

(b) Assume (v, a) £ 0, (v, 6) = 0. The symmetric case is similar. If 6 = 0 we can 
proceed as above. If 6 7-. 0 we choose a basis with a = (v,a)vj, v = vi, 6 = vj. We 
obtain /*(a,v,6) = 0 for k ^ 3. Using (6), (5) gives e"1f2(aivib) = /2(a,v,e6) and 
consequently, f2(a, v, 6) = 0, i.e. A is given by (7). 

(c) Let (a,v) = (6,v) = 0. If a, 6 are independent we choose {vi , . . . ,vm} such 
that a = vj, v = vi, 6 = V3. We obtain /k(a, v,6) = 0 for k ^ 4; an automorphism 
<p given by <p(vk) = v* for k 7- 2,3, <p(v2) = e~xv2, <p(vz) = e~lvz} e £ 0 yields 
/2(a, v, 6) = fs(a} v, 6) = 0. If a, 6 are dependent, a^Owe use a basis with a = vj, 
v = vi, 6 = avj, a G R. Similarly for 6^0 . The case a = 6 = 0 is clear. • 

Lemma 9. Let dim V ^ 3. There exists a unique continuous function #: R2 —• R 
such that for any two independent forms a, 6 and v / 0 we have 

(8) f(a,v,b) = 0((v,a),(v,b)).v. 

Proof. By Lemma 6, 7 there exists a uniquely determined function tf: R2 —* R 
such that for any two independent forms a, 6 and v £ 0, (8) is true. In an arbitrary 
basis {vi , . . . ,vm} we have t?(x,y) = A(arvJ + v5,vi,yv* + V3). The function A 
described in Lemma 7 is continuous on its domain, hence # is also continuous. D 
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By continuity of / and # we obtain 

Proposition 3. Let dimV ^ 3. There exists a unique continuous function 
t?: R2 - • R such that for a, 6 £ V* and v £ V, (8) holds. If f is differentiate 
then 0 is also differentiate. 

Lemma 10. Let dimV = 2, a,6,a',6' £ V, v,v' £ K - { 0 } . If (v,a) = (t/ ,a ') and 
(v,6) = (t/,6 ;) then the corresponding real numbers introduced by Lemma 7 satisfy 

A(a,v,6) = A(a',t/,6'). 

The proof uses continuity ofX and a suitable choice of a basis and <p £ Aut(V). 

Proposition 4. Let dimV = 2. Then there is a unique continuous function 
t?: R2 -> R such that 

. f(a,v,b) = 4((v,a),(v,h)).v for a, 6 £ V*, v £ V. 

If f is differentiate then d is also differentiate. 

Proposition 5, Let dim V = 1 and let f: V* x V x V* —• V be a differentiate 
map satisfying (5). Then there exists a differentiate t?: R2 —• R such that / (a , v, 6) = 
4((v,a),(v,b)).v. 

P r o o f . We can suppose V = R and use the canonical isomorphism R:_R* . 
A map /(—, — ,0) : V* x V —• V satisfies the assumptions of Lemma 3. Thus there 
exists a diffferentiable function t?': R —• R such that / (a ,v ,0) = t?'((t;,a)).t;. Now 
consider the map g: V* x V x V* —• V given by g(a, v, 6) = / (a , v, 6) — t?'((t;, a)).v. 
Again, g satisfies (5). Moreover, </(a,v,0) = 0. There exists a differentiate p: V* x 
V xV* -+R such that g(afv,b) = fi(a,vyb).v for a, 6 £ V*, v € V. If t; / 0 then 
^i(^*""1(a),^(t;),^*"*1(6)) = /i(a,v,6) for any <p £ Aut(V). Since fi is continuous 
this equality holds even if t; = 0. Further, there exists a function d": R2 —• R with 
/i(a,v,6) = t?"((v,a),(t;,6)) for any a, 6 £ V*} v £ V - {0}. Evaluation in a basis 
of V shows that t?" is differentiate. By continuity of /i and t?", the above equality 
holds even if v = 0. Hence / ( a , v, 6) = (t?'(v, a) + t?"((v, a), (v, 6))). v for a, 6 £ V*, 
t; £ V. The uniqueness of the function d = d' -f t?" is obvious. • 

Definition 2. Let $ = (y>*""1, y>, (p*"l
) <r) be a TT*-soldered ©^-automorphism 

of a trivial 2>£-space C0 = V* x V x V*. We say that a 2>£-automorphism # is 
strongly soldered if the bilinear map a: V* x V —• V* is ^symmetric, i.e. if it satisfies 

(9) (t;,(T(a,^>-1(u;))) = {w,tr(a,<p-l(v))) forv,ti ;£V , a £ If*. 

Now let a continuous map / : C0 —• C0 satisfy 

(10) # / = / # 
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for any soldered (or strongly soldered) $ G Aut(C0). We write / = ( / i , / 2 , / s ) , and 
# as above. An evaluation of (10) gives for any <p € Aut(V) and any bilinear (or 
symmetric bilinear) map a 

(11) f'~1fx(a,v,b) = /1(y>*-1(a),^(t;),v»*"1(t) + ^(a )v)) , 

(12) ^ " 7 2 ( a , „ , 6 ) = h(<p*-l(a)Mv),<p-\b) + v(a,v)), 

(13) <p*~1f3(a,v,b) + ff(fi(a,v,b),f2(a,v,b)) = 

M<p-\a), <p(v), <p*~\b) + <r(a, v)). 

Suppose dim V ^ 2. By Propositions 1,3,4 (setting a = 0) there are uniquely 
determined continuous functions £, n, #, i, K: R2 —• R such that for any a, b € V , 
v 6 V we have 

/ i (a , t>, 6) = t((v, a), (v, b)).a + v((v, a), (v, b)).b, 

h(a,v,b) = 0((v,a),(v,b)).v, 

f3(a, v,b) = i ((v, a), (v, b)).a + K((V, a), (v, b)).b. 

The map / = ( / i , / a , / s ) satisfies (10) for any 2>£-automorphism of the form # = 
(ip*~l,if>,if>*~x,Q). It remains to find out under what conditions / satisfies (10) if 
0 = ( l v

- 1 , l v . l v - 1 , ~) w i * n ~ a~ arbitrary (or lv-symmetric) bilinear map. By 

(11), 

*((«, a), («, b)).a + t|((ti, a), (t>, 6».6 = £((*, a), (v, 6) + (t/, <r(a, v))).a 

+ t]((v, a), (v, 6) + (v, <r(a, v)».6 

+ *?((*>> a)> (v>b) +(v> *(«i v)))<r(<-> *>)• 

If a / 0, t; -i 0 we can choose a lv-symmetric <r such that <r(a, v) ^ 0, (v, <r(a, v)> = 
0. Then ?7((t;,a),(t;,6» = 0, and tf = 0 by continuity. Now it is obvious that 
£(x> y) does not depend on y. Therefore / i (a ,v ,6) = £((v, a)).a. By (12), #(x,y) is 
independent of y, i.e. /2(a, v, 6) = t?((v, a)).v. Finally, by (13), K(X} y) and t(x, y) are 
also independent of y, and K = £#. Thus /s(a,t;,6) = *((t;,a».a+(((t;,a»t?((t;,a».6. 
So we have proved 

Proposition 6. Let dim If ^ 2. Continuous (or differentiate) maps f: C0 —• C0 

which commute with all soldered (or strongly soldered) automorphisms of C0 are 
precisely all maps of the form 

/ i (a ,v ,6) = £((v,a».a, 

/ 2(a ,v,6) = t?((t;,a».t;, 

/3(a, v, 6) = i((vt a)).a + £((v, a))d((v, a».6, 

where { , I > , J : R - » R are arbitrary continuous differentiate functions. 
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In the case dimK = 1, the previous proposition holds in its differentiate version 
only. The proof uses the morphism* = (l*/"1 , l v , l*/""1 ,^)- Here any bilinear cr is 
lv-symmetric, e £ 0. 

Definition 3. On the set Z(C0) of all differentiable maps of the 2>£-space C0 = 
V* x V x V* into itself, the following partial operations may be introduced: 

if / , g £ Z(C0) and *\f = *2g we define / + g, 

for / , g € Z(C0) satisfying w2f = *2g we define / + g> 

if / , 9 € Z(Co) with g(C0) C K* we define / + g, 
for / , g € Z(C0) we define a composition / y . „ 

Denote by Z9(C0) (or Z,,(C0)) the set of all / £ Z(C0) satisfying (10) for any 
soldered (or strongly soldered, respectively) <P € Aut(C0); Z9(C0) = Z99(C0) is closed 
under the above operations. The previous results yield: 

Theorem 1. By means of+, the set Z9(C0) = Z99(C0) is generated by maps of 
the following form: 

(14) (a, v, b) - , *«„ , a)) . (<>((v, a)) .(a,v, b)), 

where £, # : R —• R are arbitrary differentiable functions; 

(15) (a , t ; ,6 )^(0 ,0 , t ( ( t ; , a ) ) . a ) , 

where t: R —• R is differentiable. 

3. NATURAL TRANSFORMATIONS OF TT* INTO TT* 

Since any two of the functors TT*, T*T and T*T* are naturally equivalent, [2], 
it suffices to investigate any one of them. We choose TT* here. The case TT is 
essentially different, [2, 6]. 

TT* is a second order lifting functor. Moreover, it assigns to any differentiable 
manifold M a P£-fibration TT*M and to a diffeomorphism <p; M —• N a VC-
isomorphism TT*(^~ 1 ) : TT*M - • TT*N. The underlying vector fibrations of 
TT*M are A = T*M, B = TM, V = T*M with projections E n TT*M - • .4, 
H2 : TT*M -* B given as follows. If X G T„(T*M) we set IIiX = w, n 2 X = Tq(X) 
where q: T^M —• M is a natural projection. TT*M has a natural structure of a 1>£-
fibration with TT*-soldering (similar statements hold for TTMy T*TM, T*T*M, 
TE or T*E which explains the terminology introduced in Definition 1 where the 
case T*T* was omitted). 
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It is known that the natural transformations F —• G of two r-th order lifting func
tors F, G are bijectively related with the Z^-equivariant maps FoRn —• GQRH where 
F0Rn = (FRn)o denotes a fibre over the origin 0 € Rn, and Lr

n = inv J0
i(Rn,Rn)o is 

the group of all invertible r-jets on Rn with source and target 0, [2]. 
In our case, (TT* )oRn is canonically P£-isomorphic with the trivial VC-space 

Rn* x Rn x Rn* so we can identify them. The Taylor decomposition yields a bijection 
Ln —• Ln x Hom,(Rn x Rn ,Rn) where Horn, denotes the vector space of symmetric 
bilinear maps. In fact, a local diffeomorphism a: Rn —• Rn with a(0) = 0 may be 
written as 

a(x) = (Tcr)o + cr«(x, x) + R(x) 

in some neighborhood of 0 (cra is a symmetric bilinear form on Rn, lim $-££ = 0). 

The above identification is given by j%a »-• ((Ta)o^<ra). 
It can be verified that Ln is a semidirect product of Ln and a commutative group 

Hom,(Rn x R n , R n ) . 
A diffeomorphism a of Rn with a(0) = 0 induces an automorphism (TT* JoaT1 of 

a Z>£-space Rn* x Rn x Rn*, (TT^oa- 1 = ((Toa)*""1,roa,(r0a)*'"1,(r) where T0a 
is a tangent map (differential) at 0 € Rn, <r: Rn* x Rn —> Rn* is a bilinear map given 
by 

(16) ((ToayH^'^Toa)-^)^) = -<v,<r(a,t/)> for v,v' £ Rn, a € Rn*; 

6 denotes the second differential of a at 0. 

Lemma 11. The bilinear map a is Toa-symmetric. 

Consequently, (TT* ) o a - 1 is a strongly soldered 2>£-automorphism depending on 
JQ a only. This enables us to define a map 

v. I* - Aut(R"* x R" x Rn*), v(ilct) = ((Toay-\T0a,(T0a)-\<x) 
0 

where Aut0 denotes the group of strongly soldered automorphisms. If we use an 
expression of Ln as a semidirect product we can rewrite v in the form i/(/, 6) = 
(Z*"1 , / , Z*"1,^) where the bilinear maps 6, <r are related by the condition (16). 
Therefore v is a group isomorphism. 

Proposition 7. There is a bijective correspondence between all natural transfor
mations TT* - • TT* and the elements of Zs,((TT*)oRn). 

Theorem 2. By means of+, the set of all natural transformations of the functor 
TT* into itself is generated by the transformations 

(17) X€Ta(T*M)~S((TlKtX,a)) . (0((TlMX,a)) . X) 
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where £, d are arbitrary differentiate functions and q^i T*M —• M is a natural 

projection 

(18) X € Ta(T*M) -> t ((TqMX, a)). eA/(a) 

where t is differentiahlet ^M(O) = xf and eM:T*M -~> To(T*M) means a canonical 

isomorphism. 

By Proposition 7, it suffices to show that the transformations (17), (18) corre

spond to the generators (14), (15) of Theorem 1. The proof in local coordinates is 

straightforward. 
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S o u h r n 

VÁZANÉ DVOJNĚ LINEÁRNÍ MORFISMY 

ALENA VANŽUROVÁ, OLOMOUC 

Cílem článku je prezentovat invariantní postup pro nalezení všech přirozených trans
formací funktoru TT* do sebe. Užíváme zde terminologie zavedené v [4, 5]. Definujeme 
zde pojem dvojně lineárního morfismu dvojně lineárních vektorových prostorů resp. fibrací. 
Dále vyšetřujeme diferencovatelná zobrazení / : C0 —* C 0, která komutují s TT* -vázanými 
automorfismy dvojně vektorového prostoru C0 = V* x V x V*. Na množině Z$ (C0) takových 
zobrazení jsou zavedeny potřebné parciální operace a jejich žitím je vhodně nagenerována 
množina Zs((TT*)oRn). Její prvky jsou ve vzájemně jednoznačné korespondenci s přiroze
nými transformacemi funktoru TT* do sebe. 

Author's address: Palacký University, fak. přírodovědecká, Svobody 26, 77142 Olo
mouc. 
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