Mathematic Bohemia

Alana Vanžurová
 Soldered double linear morphisms

Mathematic Bohemica, Vol. 117 (1992), No. 1, 68-78

Persistent URL: http://dml.cz/dmlcz/126230

Terms of use:

(C) Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://dml.cz

SOLDERED DOUBLE LINEAR MORPHISMS

Alena Vanžuroví, Olomouc
(Received February 28, 1990)

Abstract

Summary. Our aim is to show a method od finding all natural transformations of a functor $T T^{*}$ into itself. We use here the terminology introduced in [4, 5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps $f: C_{0} \rightarrow C_{0}$ commuting with $T T^{*}$-soldered automorphisms of a double vector space $C_{0}=V^{*} \times V \times V^{*}$ are investigated. On the set $Z_{s}\left(C_{0}\right)$ of such mappings, appropriate partial operations are introduced. The natural transformations $T T^{*} \rightarrow T T^{*}$ are bijectively related with the elements of $Z_{s}\left(\left(T T^{*}\right)_{0} \mathbf{R}^{n}\right)$.

Keywords: Double vector space, double vector fibration, soldering, natural transformation

AMS classification: 53C05

1. $\mathcal{D} \mathcal{L}$-spaces (fibrations) With soldering

As usual, let T denote the tangent functor; T is a lifting functor, i.e. a functor from the category of n-dimensional manifolds and their local diffeomorphisms into the category of fibred manifolds and morphisms. Similarly, the construction of a cotangent bundle and cotangent map can be interpreted as a covariant lifting functor, [2]. Further, $T T, T T^{*}, T^{*} T$, and $T^{*} T^{*}$ are second order lifting functors, [2].

In $[4,5]$, double vector spaces ($\mathcal{D} \mathcal{L}$-spaces), double vector fibrations and their morphisms were studied. For example, the tangent bundle $T E$ of a vector bundle E has the structure of a double vector fibration. Other important examples are the cotangent bundle $T^{*} E$ and the spaces $T T M, T T^{*} M, T^{*} T M$ and $T^{*} T^{*} M$ of a smooth manifold M.

The Cartesian product $C^{\circ}=A \times B \times V$ of three finite-dimensional vector spaces can be regarded as a trivial double vector space $A \times B \times V \rightarrow A \times B$. Its $\mathcal{D} \mathcal{L}$ automorphisms group $\operatorname{Aut}\left(C^{0}\right)$ is identified with $\operatorname{Aut}(A) \times \operatorname{Aut}(B) \times \operatorname{Aut}(V) \times$ $\operatorname{Hom}(A \times B, V)$ where $\operatorname{Hom}(A \times B, V)$ denotes the vector space of all bilinear maps of $A \times B$ to V, [4]. Further, any $\mathcal{D} \mathcal{L}$-space C is $\mathcal{D} \mathcal{L}$-isomorphic with a suitable trivial
$\mathcal{D L}$-space C° (of the same dimension). Consequently, any automorphism $\varphi \in \operatorname{Aut}(C)$ can be written as a quadruple ($\varphi_{1}, \varphi_{2}, \varphi_{3}, \sigma$).
J. Pradines introduced a 1 -soldering of a $\mathcal{D} \mathcal{L}$-object C as a linear isomorphism $\sigma_{C}: A \rightarrow V$, and a 1 -soldered morphism $\varphi: C \rightarrow C^{\prime}$ as a $\mathcal{D} \mathcal{L}$-morphism satisfying $\varphi_{3} \sigma_{C}=\sigma_{C^{\prime}} \varphi_{1},[3,1]$. For our purpose, given a $\mathcal{D} \mathcal{L}$-space $C, \pi: C \rightarrow A \times B$, we define

Definition 1. We say that C is a $\mathcal{D} \mathcal{L}$-space with a
$T E$-soldering
or $T^{*} E$-soldering
or $T T$-soldering
or $T T^{*}$-soldering
or $T^{*} T$-soldering,
if we are given an isomorphism (or isomorphisms)

$$
\begin{aligned}
\quad \chi_{1}: V \rightarrow A & \\
\text { or } \chi_{3}: A \rightarrow B^{*} & \\
\text { or } \chi_{1}: V \rightarrow A, & \chi_{2}: V \rightarrow B \\
\text { or } \chi_{1}: V \rightarrow A, & \chi_{2}: V \rightarrow B^{*} \\
\text { or } \chi_{1}: V \rightarrow A^{*}, & \chi_{2}: V \rightarrow B, \text { respectively. }
\end{aligned}
$$

A $\mathcal{D L}$-morphism $\varphi: C \rightarrow C^{\prime}$ of two $\mathcal{D L}$-spaces with a $T E$-soldering (or $T^{*} E$ soldering etc.) will be called soldered (more precisely, $T E$-soldered etc.) if its underlying linear morphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ satisfy

$$
\begin{aligned}
& \quad \chi_{1}^{\prime} \varphi_{3}=\varphi_{1} \chi_{1} \\
& \text { or } \varphi_{2}^{*} \chi^{\prime}{ }_{3} \varphi_{1}=\chi_{3} \\
& \text { or } \chi_{1}^{\prime} \varphi_{3}=\varphi_{1} \chi_{1}, \chi^{\prime}{ }_{2} \varphi_{3}=\varphi_{2} \chi_{2} \\
& \text { or } \chi^{\prime}{ }_{1} \varphi_{3}=\varphi_{1} \chi_{1}, \varphi_{2}^{*} \chi^{\prime}{ }_{2} \varphi_{3}=\chi_{2} \\
& \text { or } \varphi_{1}^{*} \chi^{\prime}{ }_{1} \varphi_{3}=\chi_{1}, \chi^{\prime}{ }_{2} \varphi_{3}=\varphi_{2} \chi_{2},
\end{aligned} \text { respectively. } . ~ \$
$$

In this way, we obtain a category of $T E$-soldered $\mathcal{D} \mathcal{L}$-spaces and morphisms, etc. Obviously, $T T$ - and $T T^{*}$-solderings are special cases of the $T E$-soldering, and the $T^{*} T$-soldering induces a $T^{*} E$-soldering.

Given a weak $\mathcal{D} \mathcal{L}$-fibration \mathbb{C}, [5], we say that \mathbb{C} is $T E$-soldered (or $T^{*} E$-soldered, etc.) if each fibre of \mathbb{C} is endowed with a $T E$-soldering ($T^{*} E$-soldering, etc.). Given two weak $\mathcal{D} \mathcal{L}$-fibrations with a soldering of the same type, their morphism will be called soldered if its restriction to each fibre is a soldered $\mathcal{D} \mathcal{L}$-morphism.

We say that a weak $\mathcal{D C}$-fibration (\mathfrak{C}, p, M) with a soldering is a soldered $\mathcal{D C}$ fibration if there exists a $\mathcal{D C}$-space C with a soldering of the same type such that for $x \in M$, there exists an open neighborhood U of x and a soldered isomorphism of weak $\mathcal{D} \mathcal{L}$-fibrations of the form $f:\left(\mathbb{C}_{U}, p_{U}, U\right) \rightarrow\left(U \times C, p r_{1}, U\right)$ over identity.

Again, $T E$-soldered (or $T^{*} E$-soldered, etc) fibrations and their morphisms form a category.

A $T E$-soldering ($T^{*} E$-, or $T T$-, or $T T^{*}$-, or $T^{*} T$-soldering) of a $\mathcal{D L}$-fibration $(\mathbb{C}, p, M$) induces the following isomorphisms of the underlying fibrations:

$$
\begin{aligned}
& \mathcal{X}_{1}: \mathcal{V} \rightarrow \mathcal{A} \\
\text { or } \mathcal{X}_{3}: \mathcal{A} \rightarrow \mathcal{B} & \\
\text { or } \mathcal{X}_{1}: \mathcal{V} \rightarrow \mathcal{A}, & \mathcal{X}_{2}: \mathcal{V} \rightarrow \mathcal{B} \\
\text { or } \mathcal{X}_{1}: \mathcal{V} \rightarrow \mathcal{A}, & \mathcal{X}_{2}: \mathcal{V} \rightarrow \mathcal{B}^{*} \\
\text { or } \mathcal{X}_{2}: \mathcal{V} \rightarrow \mathcal{A}^{*}, & \mathcal{X}_{2}: \mathcal{V} \rightarrow \mathcal{B}, \text { respectively. }
\end{aligned}
$$

2. The $T T^{*}$-soldered $\mathcal{D} \mathcal{L}$-space $C_{0}: V^{*} \times V \times V^{*} \rightarrow V^{*} \times V$

We will consider a trivial $\mathcal{D} \mathcal{L}$-space $C_{0}=V^{*} \times V \times V^{*}, \pi: C_{0} \rightarrow V^{*} \times V$ with a $T T^{*}$-soldering $\chi_{1}=i d, \chi_{2}=i d$. Its $\mathcal{D} \mathcal{L}$-automorphism $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \sigma\right)$ is soldered if and only if

$$
\varphi_{1}=\varphi_{2}^{*-1}=\varphi_{3}
$$

Our main goal is to investigate differentiable maps $f: C_{0} \rightarrow C_{0}$ which commute with all $T T^{*}$-soldered automorphisms of C_{0}. First, let us make some preliminary considerations.

Given a continuous $f: V^{*} \times V \rightarrow V^{*}$ such that

$$
\begin{equation*}
\varphi^{*-1} f(a, v)=f\left(\varphi^{*-1}(a), \varphi(v)\right) \text { for any } \varphi \in \operatorname{Aut}(V), a \in V^{*}, v \in V \tag{1}
\end{equation*}
$$

it can be proved:
Lemma 1. Let $a \in V^{*}, a \neq 0 ; v \in V, v \neq 0$. Then there exists a real number $\lambda(a, v)$ such that $f(a, v)=\lambda(a, v) . a$.

Proof. If $\langle v, a\rangle \neq 0$, choose a basis $\left\{v_{1}, \ldots, v_{m}\right\}$ in V such that $v_{1}=\frac{1}{\{v, a\rangle} v$, $v_{1}^{*}=a$. Then $f(a, v)=\sum_{k=1}^{m} f_{k}(a, v) . v_{k}^{*}$ where $\left\{v_{1}^{*}, \ldots, v_{m}^{*}\right\}$ is a dual basis. Setting

$$
\varphi\left(v_{1}\right)=v_{1}, \quad \varphi\left(v_{k}\right)=-v_{k} \text { for } k \geqslant 2,
$$

(1) yields $f(a, v)=f_{1}(a, v) . a$. In the case $\langle v, a\rangle=0$, let us choose a basis with $v_{2}=v, v_{1}^{*}=a$, and
(2) $\quad \varphi \in \operatorname{Aut}(V)$ with $\varphi\left(v_{1}\right)=v_{1}, \varphi\left(v_{2}\right)=v_{2}, \varphi\left(v_{k}\right)=-v_{k}$ for $k \geqslant 3$.

By (1), $f(a, v)=f_{1}(a, v) \cdot v_{1}^{*}+f_{2}(a, v) \cdot v_{2}^{*}$. Let $\varphi^{\prime} \in \operatorname{Aut}(V)$ be given by $\varphi^{\prime}\left(v_{k}\right)=v_{k}$ for $k \neq 2, \varphi^{\prime}\left(v_{2}\right)=\varepsilon v_{2}$ with $\varepsilon \neq 0$. An application of (1) and the previous equality yields $\varepsilon^{-1} f_{2}(a, v)=f_{2}(a, \varepsilon v)$. By continuity of f, there exists $\lim _{\varepsilon \rightarrow 0} f_{2}(a, \varepsilon v)=$ $f_{2}(a, v)$. Thus there exists also $\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} f_{2}(a, v)$, which implies $f_{2}(a, v)=0$. In both cases, $\lambda(a, v)=f_{1}(a, v)$.

Lemma 2. Let $a, a^{\prime} \in V^{*}-\{0\}, v, v^{\prime} \in V-\{0\}$. There exists $\varphi \in \operatorname{Aut}(V)$ satisfying $\varphi^{*-1}(a)=a^{\prime}, \varphi(v)=v^{\prime}$ if and only if $\langle v, a\rangle=\left\langle v^{\prime}, a^{\prime}\right\rangle$.

Lemma 3. There exists a unique continuous function $\boldsymbol{\xi}: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(a, v)=\xi(\langle v, a\rangle) . a$ for any $a \in V^{*}, v \in V$. If f is differentiable, then ξ is also differentiable.

Now assume a fixed continuous $f: V^{*} \times V \times V^{*} \rightarrow V^{*}$ such that

$$
\begin{equation*}
\varphi^{*-1} f(a, v, b)=f\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)\right) \tag{3}
\end{equation*}
$$

for any $\varphi \in \operatorname{Aut}(V), a, b \in V^{*}, v \in V$. Suppose $\operatorname{dim} V \geqslant 2$.

Lemma 4. Given two linearly independent forms $a, b \in V^{*}$, and $v \in V$, there exist uniquely determined real numbers $\lambda(a, v, b), \mu(a, v, b)$ such that

$$
f(a, v, b)=\lambda(a, v, b) \cdot a+\mu(a, v, b) \cdot b
$$

Proof. Suppose $\langle v, a\rangle \neq 0$ or $\langle v, b\rangle \neq 0$, and choose a basis with $v_{1}^{*}=a, v_{2}^{*}=b$, $\left\langle v, v_{k}\right\rangle=0$ for $k \geqslant 3$. Then $v=\alpha v_{1}+\beta v_{2}$ where $\alpha, \beta \in \mathbf{R}, \alpha \neq 0, \beta \neq 0$. We can write $f\left(v_{1}^{*}, \alpha v_{1}+\beta v_{2}, v_{2}^{*}\right)=\sum_{k=1}^{m} f_{k}\left(v_{1}^{*}, \alpha v_{1}+\beta v_{2}, v_{2}^{*}\right) \cdot v_{k}^{*}$. Using (2) and (3) we obtain

$$
f_{k}\left(v_{1}^{*}, \alpha v_{1}+\beta v_{2}, v_{2}^{*}\right)=0 \text { for } k \geqslant 3
$$

By continuity, the numbers

$$
\lambda(a, v, b)=f_{1}\left(v_{1}^{*}, \alpha v_{1}+\beta v_{2}, v_{2}^{*}\right) \text { and } \mu(a, v, b)=f_{2}\left(v_{1}^{*}, \alpha v_{1}+\beta v_{2}, v_{2}^{*}\right)
$$

satisfy the above equality even in the case $\langle v, a\rangle=\langle v, b\rangle=0$. Since a, b are independent, λ and μ are unique.

Lemma 5. Let $U \subset V^{*} \times V \times V^{*}$ denote an open subset consisting of all triples (a, v, b) such that a, b are independent. There exist uniquely determined continuous functions $\lambda, \mu: U \rightarrow \mathbf{R}$ such that for any two independent $a, b \in V^{*}$ and any $v \in V$ we have

$$
f(a, v, b)=\lambda(a, v, b) \cdot a+\mu(a, v, b) \cdot b
$$

Lemma 6. Let a, b and a^{\prime}, b^{\prime} be two couples of linearly independent forms, and $v, v^{\prime} \in V$. There exists $\varphi \in \operatorname{Aut}(V)$ such that

$$
\varphi^{*-1}(a)=a^{\prime}, \quad \varphi(v)=v^{\prime}, \quad \varphi^{*-1}(b)=b^{\prime}
$$

if and only if

$$
\langle v, a\rangle=\left\langle v^{\prime}, a^{\prime}\right\rangle \quad \text { and } \quad\langle v, b\rangle=\left\langle v^{\prime}, b^{\prime}\right\rangle .
$$

Lemma 7. There are uniquely determined continuous functions $\boldsymbol{\xi}, \boldsymbol{\eta}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that for any $a, b \in V^{*}$ independent and $v \in V$, we have

$$
\begin{equation*}
f(a, v, b)=\xi(\langle v, a\rangle,\langle v, b\rangle) \cdot a+\eta(\langle v, a\rangle,\langle v, b\rangle) \cdot b . \tag{4}
\end{equation*}
$$

Proposition 1. Let $\operatorname{dim} V \geqslant 2$. Then there are unique continuous functions ξ, $\eta: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that for arbitrary two forms $a, b \in V^{*}$ and any $v \in V$, (4) is valid.

The proof follows by the previous lemma and by continuity of f, ξ, η. If f is differentiable, we can find differentiable functions ξ, η. In the case $\operatorname{dim} V=1$, Proposition 1 is not true. Nontheless, we prove:

Proposition 2. Let $\operatorname{dim} V=1$. Let $f: V^{*} \times V \times V^{*} \rightarrow V^{*}$ be a differentiable map satisfying (3). Then there exist (not unique) differentiable functions $\boldsymbol{\xi}: \mathbf{R} \rightarrow \mathbf{R}$, $\eta: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that for any $a, b \in V^{*}$ and $v \in V$ we have

$$
f(a, v, b)=\xi(\langle v, a\rangle) \cdot a+\eta(\langle v, a\rangle,\langle v, b\rangle) \cdot b .
$$

Proof. We can suppose $V=$ R. A map $f(-,-, 0): V^{*} \times V \rightarrow V^{*}$ satisfies (1). By Lemma 3, there is a differentiable function $\xi: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(a, v, 0)=$ $\xi(\langle v, a\rangle) . a$ for any $a \in V^{*}, v \in V$. Let a map $g: V^{*} \times V \times V^{*} \rightarrow V^{*}$ be given by

$$
g(a, v, b)=f(a, v, b)-\xi(\langle v, a\rangle) . a .
$$

Clearly, g satisfies (3) and $g(a, v, 0)=0$. There exists a differentiable function $\mu^{\prime}: V^{*} \times V \times\left(V^{*}-0\right) \rightarrow \mathbf{R}$ such that for any $a \in V^{*}, v \in V, b \in V^{*}-\{0\}$, we have $g(a, v, b)=\mu^{\prime}(a, v, b) . b$. Let us define $\mu: V^{*} \times V \times V^{*} \rightarrow \mathbf{R}$ as follows:

$$
\mu(a, v, b)=\mu^{\prime}(a, v, b) \text { for } b \neq 0, \quad \mu(a, v, 0)=\frac{\partial g(a, v, 0)}{\partial b}
$$

where μ is differentiable and $g(a, v, b)=\mu(a, v, b) . b$ for $a, b \in V^{*}, v \in V$. If $b \neq 0$, then $\mu(a, v, b)=\mu\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)\right)$ for any $\varphi \in \operatorname{Aut}(V)$. Since μ is continuous, the equality holds even for $b=0$. It can be verified that there is a function $\eta: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that

$$
\mu(a, v, b)=\eta(\langle v, a\rangle,\langle v, b\rangle) \text { for } a, b \in V^{*}, \quad v \in V-\{0\} .
$$

If we choose a basis $\left\{v_{1}\right\}$ of V we have $\eta(x, y)=\mu\left(x v_{1}^{*}, v_{1}, y v_{1}^{*}\right)$. Therefore μ is differentiable. By continuity of μ as well as η, the above equality holds even in the case $v=0$.

In the next part, consider a continuous map $f: V^{*} \times V \times V^{*} \rightarrow V$ such that

$$
\begin{equation*}
\varphi f(a, v, b)=f\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)\right) \tag{5}
\end{equation*}
$$

Lemma 8. Assume $a, b \in V^{*}, v \in V-\{0\}$. Then there is a single real number $\lambda(a, v, b)$ such that $f(a, v, b)=\lambda(a, v, b) . v$.

Proof. (a) First let $\langle v, a\rangle \neq 0,\langle v, b\rangle \neq 0$. If a, b are independent, then there is a basis in V such that

$$
a=\langle v, a\rangle \cdot v_{1}^{*}, \quad v=v_{1}, \quad b=\langle v, b\rangle \cdot v_{1}^{*}+v_{2}^{*}
$$

In the expression of f with respect to the basis, $f_{k}(a, v, b)=0$ for $k \geqslant 3$. This follows by (5) if we use φ introduced in (2). Choose

$$
\begin{equation*}
\varphi^{\prime} \in \operatorname{Aut}(V): \quad \varphi^{\prime}\left(v_{k}\right)=v_{k} \text { for } k \neq 2, \quad \varphi^{\prime}\left(v_{2}\right)=\varepsilon^{-1} v_{2} \tag{6}
\end{equation*}
$$

where $\varepsilon \neq 0$. By (5),

$$
\varepsilon^{-1} f_{2}(a, v, b)+f_{2}\left(a, v,\langle v, b\rangle v_{1}^{*}+\varepsilon v_{2}^{*}\right) .
$$

Since $\lim _{\varepsilon \rightarrow 0} f_{2}\left(a, v,\langle v, b\rangle v_{1}^{*}+\varepsilon v_{2}^{*}\right)=f_{2}\left(a, v,\langle v, b\rangle v_{1}^{*}\right)$ we have $f_{2}(a, v, b)=0$. Therefore

$$
\begin{equation*}
f(a, v, b)=f_{1}(a, v, b) . v, \quad \lambda(a, v, b)=f_{1}(a, v, b) \tag{7}
\end{equation*}
$$

If a, b are linearly dependent then there is a basis $\left\{v_{1}, \ldots, v_{m}\right\}$ of V with $a=$ $\langle v, a\rangle v_{1}^{*}, v=v_{1}, b=\langle v, b\rangle v_{1}^{*}$. Choose $\varphi\left(v_{1}\right)=v_{1}, \varphi\left(v_{k}\right)=-v_{k}$ for $k \geqslant 2$. The condition (5) gives $f_{k}(a, v, b)=0$ for $k \geqslant 2, f(a, v, b)=f_{1}(a, v, b) . v$ as above.
(b) Assume $\langle v, a\rangle \neq 0,\langle v, b\rangle=0$. The symmetric case is similar. If $b=0$ we can proceed as above. If $b \neq 0$ we choose a basis with $a=\langle v, a\rangle v_{1}^{*}, v=v_{1}, b=v_{2}^{*}$. We obtain $f_{k}(a, v, b)=0$ for $k \geqslant 3$. Using (6), (5) gives $\varepsilon^{-1} f_{2}(a, v, b)=f_{2}(a, v, \varepsilon b)$ and consequently, $f_{2}(a, v, b)=0$, i.e. λ is given by (7).
(c) Let $\langle a, v\rangle=\langle b, v\rangle=0$. If a, b are independent we choose $\left\{v_{1}, \ldots, v_{m}\right\}$ such that $a=v_{2}^{*}, v=v_{1}, b=v_{3}^{*}$. We obtain $f_{k}(a, v, b)=0$ for $k \geqslant 4$; an automorphism φ given by $\varphi\left(v_{k}\right)=v_{k}$ for $k \neq 2,3, \varphi\left(v_{2}\right)=\varepsilon^{-1} v_{2}, \varphi\left(v_{3}\right)=\varepsilon^{-1} v_{3}, \varepsilon \neq 0$ yields $f_{2}(a, v, b)=f_{3}(a, v, b)=0$. If a, b are dependent, $a \neq 0$ we use a basis with $a=v_{2}^{*}$, $v=v_{1}, b=\alpha v_{2}^{*}, \alpha \in R$. Similarly for $b \neq 0$. The case $a=b=0$ is clear.

Lemma 9. Let $\operatorname{dim} V \geqslant 3$. There exists a unique continuous function $\boldsymbol{\vartheta}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that for any two independent forms a, b and $v \neq 0$ we have

$$
\begin{equation*}
f(a, v, b)=\vartheta(\langle v, a\rangle,\langle v, b\rangle) \cdot v \tag{8}
\end{equation*}
$$

Proof. By Lemma 6, 7 there exists a uniquely determined function $\boldsymbol{\vartheta}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that for any two independent forms a, b and $v \neq 0,(8)$ is true. In an arbitrary basis $\left\{v_{1}, \ldots, v_{m}\right\}$ we have $\vartheta(x, y)=\lambda\left(x v_{1}^{*}+v_{2}^{*}, v_{1}, y v_{1}^{*}+v_{3}^{*}\right)$. The function λ described in Lemma 7 is continuous on its domain, hence $\boldsymbol{\vartheta}$ is also continuous.

By continuity of f and $\boldsymbol{\vartheta}$ we obtain

Proposition 3. Let $\operatorname{dim} V \geqslant$ 3. There exists a unique continuous function $\boldsymbol{v}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that for $a, b \in V^{*}$ and $v \in V$, (8) holds. If f is differentiable then ϑ is also differentiable.

Lemma 10. Let $\operatorname{dim} V=2, a, b, a^{\prime}, b^{\prime} \in V^{*}, v, v^{\prime} \in V-\{0\}$. If $\langle v, a\rangle=\left\langle v^{\prime}, a^{\prime}\right\rangle$ and $\langle v, b\rangle=\left\langle v^{\prime}, b^{\prime}\right\rangle$ then the corresponding real numbers introduced by Lemma 7 satisfy.

$$
\lambda(a, v, b)=\lambda\left(a^{\prime}, v^{\prime}, b^{\prime}\right)
$$

The proof uses continuity of λ and a suitable choice of a basis and $\varphi \in \operatorname{Aut}(V)$.
Proposition 4. Let $\operatorname{dim} V=2$. Then there is a unique continuous function $\boldsymbol{\vartheta}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ such that

$$
f(a, v, b)=\vartheta(\langle v, a\rangle,\langle v, b\rangle) . v \quad \text { for } a, b \in V^{*}, \quad v \in V .
$$

If f is differentiable then ϑ is also differentiable.
Proposition 5. Let $\operatorname{dim} V=1$ and let $f: V^{*} \times V \times V^{*} \rightarrow V$ be a differentiable map satisfying (5). Then there exists a differentiable $\vartheta: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that $f(a, v, b)=$ $\vartheta(\langle v, a\rangle,\langle v, b\rangle) . v$.

Proof. We can suppose $V=\mathbf{R}$ and use the canonical isomorphism $\mathbf{R} \simeq \mathbf{R}^{*}$. A map $f(-,-, 0): V^{*} \times V \rightarrow V$ satisfies the assumptions of Lemma 3. Thus there exists a diffferentiable function $\vartheta^{\prime}: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(a, v, 0)=\vartheta^{\prime}(\langle v, a\rangle) . v$. Now consider the map $g: V^{*} \times V \times V^{*} \rightarrow V$ given by $g(a, v, b)=f(a, v, b)-\vartheta^{\prime}(\langle v, a\rangle) . v$. Again, g satisfies (5). Moreover, $g(a, v, 0)=0$. There exists a differentiable $\mu: V^{*} \times$ $V \times V^{*} \rightarrow \mathbf{R}$ such that $g(a, v, b)=\mu(a, v, b) . v$ for $a, b \in V^{*}, v \in V$. If $v \neq 0$ then $\mu\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)\right)=\mu(a, v, b)$ for any $\varphi \in \operatorname{Aut}(V)$. Since μ is continuous this equality holds even if $v=0$. Further, there exists a function $\boldsymbol{\vartheta}^{\prime \prime}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $\mu(a, v, b)=\vartheta^{\prime \prime}(\langle v, a\rangle,\langle v, b\rangle)$ for any $a, b \in V^{*}, v \in V-\{0\}$. Evaluation in a basis of V shows that $\vartheta^{\prime \prime}$ is differentiable. By continuity of μ and $\vartheta^{\prime \prime}$, the above equality holds even if $v=0$. Hence $f(a, v, b)=\left(\vartheta^{\prime}\langle v, a\rangle+\vartheta^{\prime \prime}(\langle v, a\rangle,\langle v, b\rangle)\right)$. v for $a, b \in V^{*}$, $v \in V$. The uniqueness of the function $\boldsymbol{\vartheta}=\vartheta^{\prime}+\vartheta^{\prime \prime}$ is obvious.

Definition 2. Let $\Phi=\left(\varphi^{*-1}, \varphi, \varphi^{*-1}, \sigma\right)$ be a $T T^{*}$-soldered $\mathcal{D} \mathcal{L}$-automorphism of a trivial $\mathcal{D} \mathcal{L}$-space $C_{0}=V^{*} \times V \times V^{*}$. We say that a $\mathcal{D} \mathcal{L}$-automorphism Φ is strongly soldered if the bilinear map $\sigma: V^{*} \times V \rightarrow V^{*}$ is φ-symmetric, i.e. if it satisfies

$$
\begin{equation*}
\left\langle v, \sigma\left(a, \varphi^{-1}(w)\right)\right\rangle=\left\langle w, \sigma\left(a, \varphi^{-1}(v)\right)\right\rangle \quad \text { for } v, w \in V, \quad a \in V^{*} \tag{9}
\end{equation*}
$$

Now let a continuous map $f: C_{0} \rightarrow C_{0}$ satisfy

$$
\begin{equation*}
\Phi f=f \Phi \tag{10}
\end{equation*}
$$

for any soldered (or strongly soldered) $\Phi \in \operatorname{Aut}\left(C_{0}\right)$. We write $f=\left(f_{1}, f_{2}, f_{3}\right)$, and Φ as above. An evaluation of (10) gives for any $\varphi \in \operatorname{Aut}(V)$ and any bilinear (or symmetric bilinear) map σ

$$
\begin{gather*}
\varphi^{*-1} f_{1}(a, v, b)=f_{1}\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)+\sigma(a, v)\right), \tag{11}\\
\varphi^{*-1} f_{2}(a, v, b)=f_{2}\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)+\sigma(a, v)\right), \tag{12}\\
\varphi^{*-1} f_{3}(a, v, b)+\sigma\left(f_{1}(a, v, b), f_{2}(a, v, b)\right)= \tag{13}\\
f_{3}\left(\varphi^{*-1}(a), \varphi(v), \varphi^{*-1}(b)+\sigma(a, v)\right) .
\end{gather*}
$$

Suppose $\operatorname{dim} V \geqslant 2$. By Propositions $1,3,4$ (setting $\sigma=0$) there are uniquely determined continuous functions $\xi, \eta, \vartheta, \iota, \kappa: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that for any $a, b \in V^{*}$, $v \in V$ we have

$$
\begin{aligned}
& f_{1}(a, v, b)=\xi(\langle v, a\rangle,\langle v, b\rangle) \cdot a+\eta(\langle v, a\rangle,\langle v, b\rangle) \cdot b, \\
& f_{2}(a, v, b)=\vartheta(\langle v, a\rangle,\langle v, b\rangle) \cdot v, \\
& f_{3}(a, v, b)=\iota(\langle v, a\rangle,\langle v, b\rangle) \cdot a+\kappa(\langle v, a\rangle,\langle v, b\rangle) \cdot b .
\end{aligned}
$$

The map $f=\left(f_{1}, f_{2}, f_{3}\right)$ satisfies (10) for any $\mathcal{D L}$-automorphism of the form $\Phi=$ ($\varphi^{*-1}, \varphi, \varphi^{*-1}, 0$). It remains to find out under what conditions f satisfies (10) if $\Phi=\left(1_{V}^{*}{ }^{-1}, 1_{V}, 1_{V}^{*}, \sigma\right)$ with σ an arbitrary (or 1_{V}-symmetric) bilinear map. By (11),

$$
\begin{aligned}
\xi(\langle v, a\rangle,\langle v, b\rangle) \cdot a+\eta(\langle v, a\rangle,\langle v, b\rangle) \cdot b= & \xi(\langle v, a\rangle,\langle v, b\rangle+\langle v, \sigma(a, v)\rangle) \cdot a \\
& +\eta(\langle v, a\rangle,\langle v, b\rangle+\langle v, \sigma(a, v)\rangle) \cdot b \\
& +\eta(\langle v, a\rangle,\langle v, b\rangle+\langle v, \sigma(a, v)\rangle) \cdot \sigma(a, v) .
\end{aligned}
$$

If $a \neq 0, v \neq 0$ we can choose a 1_{v}-symmetric σ such that $\sigma(a, v) \neq 0,\langle v, \sigma(a, v)\rangle=$ 0 . Then $\eta(\langle v, a\rangle,\langle v, b\rangle)=0$, and $\eta=0$ by continuity. Now it is obvious that $\xi(x, y)$ does not depend on y. Therefore $f_{1}(a, v, b)=\xi(\langle v, a\rangle) . a$. By (12), $v(x, y)$ is independent of y, i.e. $f_{2}(a, v, b)=\vartheta(\langle v, a\rangle) \cdot v$. Finally, by (13), $\kappa(x, y)$ and $\iota(x, y)$ are also independent of y, and $\kappa=\xi \vartheta$. Thus $f_{3}(a, v, b)=\iota(\langle v, a\rangle) \cdot a+\xi(\langle v, a\rangle) \vartheta(\langle v, a\rangle) . b$. So we have proved

Proposition 6. Let $\operatorname{dim} V \geqslant 2$. Continuous (or differentiable) maps $f: C_{0} \rightarrow C_{0}$ which commute with all soldered (or strongly soldered) automorphisms of C_{0} are precisely all maps of the form

$$
\begin{aligned}
& f_{1}(a, v, b)=\xi(\langle v, a\rangle) \cdot a, \\
& f_{2}(a, v, b)=\vartheta(\langle v, a\rangle) \cdot v, \\
& f_{3}(a, v, b)=\iota(\langle v, a\rangle) \cdot a+\xi(\langle v, a\rangle) \vartheta(\langle v, a\rangle) \cdot b,
\end{aligned}
$$

where $\xi, \vartheta, \iota: \mathbf{R} \rightarrow \mathbf{R}$ are arbitrary continuous differentiable functions.

In the case $\operatorname{dim} V=1$, the previous proposition holds in its differentiable version only. The proof uses the morphism $\Phi=\left(1_{V}^{*}, 1_{V}, 1_{V}^{*}, \varepsilon \sigma\right)$. Here any bilinear σ is 1_{V}-symmetric, $\varepsilon \neq 0$.

Definition 3. On the set $Z\left(C_{0}\right)$ of all differentiable maps of the $\mathcal{D} \mathcal{L}$-space $C_{0}=$ $V^{*} \times V \times V^{*}$ into itself, the following partial operations may be introduced:
if $f, g \in Z\left(C_{0}\right)$ and $\pi_{1} f=\pi_{2} g$ we define $f+g$,
for $f, g \in Z\left(C_{0}\right)$ satisfying $\pi_{2} f=\pi_{2} g$ we define $f+g$,
if $f, g \in Z\left(C_{0}\right)$ with $g\left(C_{0}\right) \subset V^{*}$ we define $f+g$,
for $f, g \in Z\left(C_{0}\right)$ we define a composition $f g$. .

Denote by $Z_{s}\left(C_{0}\right)$ (or $Z_{s}\left(C_{0}\right)$) the set of all $f \in Z\left(C_{0}\right)$ satisfying (10) for any soldered (or strongly soldered, respectively) $\Phi \in \operatorname{Aut}\left(C_{0}\right) ; Z_{s}\left(C_{0}\right)=Z_{s s}\left(C_{0}\right)$ is closed under the above operations. The previous results yield:

Theorem 1. By means of + , the set $Z_{s}\left(C_{0}\right)=Z_{s}\left(C_{0}\right)$ is generated by maps of the following form:

$$
\begin{equation*}
(a, v, b) \mapsto \xi(\langle v, a\rangle)_{i}\left(\vartheta(\langle v, a\rangle)_{\mathrm{i}}(a, v, b)\right), \tag{14}
\end{equation*}
$$

where $\boldsymbol{\xi}, \boldsymbol{\vartheta}: \mathbf{R} \rightarrow \mathbf{R}$ are arbitrary differentiable functions;

$$
\begin{equation*}
(a, v, b) \mapsto(0,0, \iota(\langle v, a\rangle) \cdot a) \tag{15}
\end{equation*}
$$

where $\iota: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable.

3. Natural transformations of $T T^{*}$ into $T T^{*}$

Since any two of the functors $T T^{*}, T^{*} T$ and $T^{*} T^{*}$ are naturally equivalent, [2], it suffices to investigate any one of them. We choose $T T^{*}$ here. The case $T T$ is essentially different, [2, 6].
$T T^{*}$ is a second order lifting functor. Moreover, it assigns to any differentiable manifold M a $\mathcal{D L}$-fibration $T T^{*} M$ and to a diffeomorphism $\varphi: M \rightarrow N$ a $\mathcal{D} \mathcal{L}$ isomorphism $T T^{*}\left(\varphi^{-1}\right): T T^{*} M \rightarrow T T^{*} N$. The underlying vector fibrations of $T T^{*} M$ are $\mathcal{A}=T^{*} M, \mathcal{B}=T M, \mathcal{V}=T^{*} M$ with projections $\Pi_{1}: T T^{*} M \rightarrow \mathcal{A}$, $\Pi_{2}: T T^{*} M \rightarrow B$ given as follows. If $X \in T_{\omega}\left(T^{*} M\right)$ we set $\Pi_{1} X=\omega, \Pi_{2} X=T q(X)$ where $q: T^{*} M \rightarrow M$ is a natural projection. $T T^{*} M$ has a natural structure of a $\mathcal{D} \mathcal{L}$ fibration with $T T^{*}$-soldering (similar statements hold for $T T M, T^{*} T M, T^{*} T^{*} M$, $T E$ or $T^{*} E$ which explains the terminology introduced in Definition 1 where the case $T^{*} T^{*}$ was omitted).

It is known that the natural transformations $F \rightarrow G$ of two r-th order lifting functors F, G are bijectively related with the L_{n}^{r}-equivariant maps $F_{0} R^{n} \rightarrow G_{0} R^{n}$ where $F_{0} \mathbf{R}^{n}=\left(F \mathbf{R}^{n}\right)_{0}$ denotes a fibre over the origin $0 \in \mathbf{R}^{n}$, and $L_{n}^{r}=\operatorname{inv} J_{0}^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)_{0}$ is the group of all invertible r-jets on $\mathbf{R}^{\boldsymbol{n}}$ with source and target $0,[2]$.

In our case, $\left(T T^{*}\right)_{0} R^{n}$ is canonically $\mathcal{D} \mathcal{L}$-isomorphic with the trivial $\mathcal{D} \mathcal{L}$-space $\mathbf{R}^{\boldsymbol{n} *} \times \mathbf{R}^{n} \times \mathbf{R}^{n *}$ so we can identify them. The Taylor decomposition yields a bijection $L_{n}^{2} \rightarrow L_{n}^{1} \times \operatorname{Hom}_{s}\left(\mathbf{R}^{n} \times \mathbf{R}^{n}, \mathbf{R}^{n}\right)$ where Hom_{s} denotes the vector space of symmetric bilinear maps. In fact, a local diffeomorphism $\alpha: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ with $\alpha(0)=0$ may be written as

$$
\alpha(x)=(T \alpha)_{0}+\sigma_{\alpha}(x, x)+R(x)
$$

in some neighborhood of 0 (σ_{α} is a symmetric bilinear form on $R^{n}, \lim _{x \rightarrow 0} \frac{R(x)}{\|x\|^{2}}=0$). The above identification is given by $j_{0}^{2} \alpha \mapsto\left((T \alpha)_{0}, \sigma_{\alpha}\right)$.

It can be verified that L_{n}^{2} is a semidirect product of L_{n}^{1} and a commutative group $\operatorname{Hom}_{s}\left(\mathbf{R}^{n} \times \mathbf{R}^{n}, \mathbf{R}^{n}\right)$.

A diffeomorphism α of \mathbf{R}^{n} with $\alpha(0)=0$ induces an automorphism ($\left.T T^{*}\right)_{0} \alpha^{-1}$ of a $\mathcal{D} \mathcal{L}$-space $\mathbf{R}^{n *} \times \mathbf{R}^{n} \times \mathbf{R}^{n *},\left(T T^{*}\right)_{0} \alpha^{-1}=\left(\left(T_{0} \alpha\right)^{*-1}, T_{0} \alpha,\left(T_{0} \alpha\right)^{*-1}, \sigma\right)$ where $T_{0} \alpha$ is a tangent map (differential) at $0 \in \mathbf{R}^{n}, \sigma: \mathbf{R}^{n *} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n *}$ is a bilinear map given by

$$
\begin{equation*}
\left\langle\left(T_{0} \alpha\right)^{-1} \delta\left(v^{\prime},\left(T_{0} \alpha\right)^{-1} v\right), a\right\rangle=-\left\langle v, \sigma\left(a, v^{\prime}\right)\right\rangle \text { for } v, v^{\prime} \in \mathbf{R}^{n}, a \in \mathbf{R}^{n *} \tag{16}
\end{equation*}
$$

δ denotes the second differential of α at 0 .

Lemma 11. The bilinear map σ is $T_{0} \alpha$-symmetric.
Consequently, $\left(T T^{*}\right)_{0} \alpha^{-1}$ is a strongly soldered $\mathcal{D} \mathcal{L}$-automorphism depending on $j_{0}^{2} \alpha$ only. This enables us to define a map

$$
\nu: L_{n}^{2} \rightarrow \operatorname{Aut}\left(\mathbf{R}^{n *} \times \mathbf{R}^{n} \times \mathbf{R}^{n *}\right), \quad \nu\left(j_{0}^{2} \alpha\right)=\left(\left(T_{0} \alpha\right)^{*-1}, T_{0} \alpha,\left(T_{0} \alpha\right)^{-1}, \sigma\right)
$$

where Aut。 denotes the group of strongly soldered automorphisms. If we use an expression of L_{n}^{2} as a semidirect product we can rewrite ν in the form $\nu(f, \delta)=$ ($f^{*-1}, f, f^{*-1}, \sigma$) where the bilinear maps δ, σ are related by the condition (16). Therefore ν is a group isomorphism.

Proposition 7. There is a bijective correspondence between all natural transformations $T T^{*} \rightarrow T T^{*}$ and the elements of $Z_{s s}\left(\left(T T^{*}\right)_{0} \mathbf{R}^{n}\right)$.

Theorem 2. By means of + , the set of all natural transformations of the functor $T T^{*}$ into itself is generated by the transformations

$$
\begin{equation*}
X \in T_{a}\left(T^{*} M\right) \mapsto \xi\left(\left\langle T_{q_{M}} X, a\right\rangle\right)_{\dot{2}}\left(\vartheta\left(\left\langle T_{q_{M}} X, a\right\rangle\right)_{\mathrm{i}} X\right) \tag{17}
\end{equation*}
$$

where ξ, ϑ are arbitrary differentiable functions and $q_{M}: T^{*} M \rightarrow M$ is a natural projection

$$
\begin{equation*}
X \in T_{a}\left(T^{*} M\right) \mapsto \iota\left(\left\langle T_{q_{M}} X, a\right\rangle\right) \cdot e_{M}(a) \tag{18}
\end{equation*}
$$

where ι is differentiable, $q_{M}(a)=x$, and $e_{M}: T_{x}^{*} M \rightarrow T_{0}\left(T_{x}^{*} M\right)$ means a canonical isomorphism.

By Proposition 7, it suffices to show that the transformations (17), (18) correspond to the generators (14), (15) of Theorem 1. The proof in local coordinates is straightforward.

References

[1] I. Kolář: On jet prolongations of smooth categories, Bull. Acad. Polon. Sci., Math., astr. et phys. Vol. XXIV 10 (1976), 883-887.
[2] I. Koláŕr and Z.Radzisewski: Natural transformations of second tangent and cotangent functors, Czech. Math. Journal 38 (113) (1988), 274-279, Praha.
[3] J. Pradines: Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C.R.Acad. Sci Paris Sér. A 278 (1974), 1523-1527.
[4] A. Vanz̈urová: Double vector spaces, Acta Univ. Palac. Olom., Fac. Rer. Nat., Math. XXVI 88 (1987), 9-25.
[5] A. Vanżurová: Double linear connections, AUPO (in press).
[6] A. Vanżurová: Natural transformations of the second tangent functor and soldered morphisms, AUPO, to appear in 1992.

Souhrn
 VÁZANÉ DVOJNÉ LINEÁRNI MORFISMY

Alena Vanžurová, Olomouc
Cílem článku je prezentovat invariantní postup pro nalezení všech přirozených transformací funktoru $T T^{*}$ do sebe. Užíváme zde terminologie zavedené v [4, 5]. Definujeme zde pojem dvojně lineárního morfismu dvojně lineárních vektorových prostorů resp. fibrací. Dále vyšetřujeme diferencovatelná zobrazení $f: C_{0} \rightarrow C_{0}$, která komutují s $T T^{*}$-vázanými automorfismy dvojně vektorového prostoru $C_{0}=V^{*} \times V \times V^{*}$. Na množině $Z_{s}\left(C_{0}\right)$ takových zobrazení jsou zavedeny potřebné parciální operace a jejich žitím je vhodně nagenerována množina $Z_{s}\left(\left(T T^{*}\right)_{0} R^{n}\right)$. Její prvky jsou ve vzájemně jednoznačné korespondenci s přirozenými transformacemi funktoru $T T^{*}$ do sebe.

Author's address: Palacký University, fak. prírodovèdecká, Svobody 26, 77142 Olomouc.

