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Summary. Certain numerical invariants of directed graphs, analogous to the domatic 
number and to the total domatic number of an undirected graph, are introduced and studied. 
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The domatic number of an undirected graph was introduced by E. J. Cockayne 
and S. T. Hedetniemi in [1] and [2], the total domatic number by the same authors 
and R. Dawes in [3]. The concept of domatic number was transferred to directed 
by introducing semidomatic numbers in [6]. Here we will continue the study of 
semidomatic numbers. Further, we shall transfer the concept of total domatic number 
to directed graphs, analogously to [6]. 

All graphs considered will be finite directed graphs without loops, except the case 
when we explicitly state the contrary. Two vertices may be joined by at most two 
edges; if there are two edges joining the same pair of vertices, then they must be 
directed oppositely. The symbol xy, where x and y are vertices, always denotes the 
directed edge from x to y (we omit arrows). 

A subset D of the vertex set V(G) of a graph G is called outside-semidominating 
(or inside-semidominating) in G, if for each vertex x G V(G) — D there exists a 
vertex y £ D such that yx (or xy, respectively) is an edge of G. A partition of V(G), 
all of whose classes are outside-semidominating (or inside-semidominating) in G, 
is called outside-semidomatic (or inside-semidomatic, respectively). The maximum 
number of classes of an outside-semidomatic (or inside-semidomatic) partition of G 
is called the outside-semidomatic (or inside-semidomatic, respectively) number of G. 
The outside-semidomatic number of G is denoted by d+(G), the inside-semidomatic 
number of G is denoted by d~(G). 
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A subset D of V(G) is called total outside-semidominating (or total inside-
semidominating) in G, if for each vertex x G V(G) there exists a vertex y G D 
such that yx (or xy, respectively) is an edge of G. There exists at least one total 
outside-semidominating (or total inside-semidominating) set in G if and only if G has 
no source (or no sink, respectively). Namely, the whole set V(G) has this property. 
If G contains a source x, then there is no vertex y G V(G) such that yx is an edge of 
G and thus no total outside-semidominating set in G exists; analogously for a sink. 
Note that isolated vertices are simultaneously sources and sinks. 

Let G be without sources. A partition of V(G), all of whose classes are total 
outside-semidominating sets in G, is called total outside-semidomatic. The maximum 
number of classes of a total outside-semidomatic partition of G is called the total 
outside-semidomatic number of G and denoted by df(G). Analogously for a graph 
G without sinks we define its total inside-domatic number dt~"(G). 

The expressions "outside" and "inside" will be shortened to the letters O and 
I. Most of the assertions will concern the O-semidomatic number and the total O-
semidomatic number. For these assertions it is possible to formulate dual assertions 
concerning the 7-semidomatic number and the total 7-semidomatic number; this is 
left to the reader. 

2. SEMIDOMATIC NUMBERS 

We shall treat quasicomponents of graphs. A quasicomponent Q of G is called 
initial, if no edge comes into Q from another quasicomponent. It is called terminal, 
if no edge goes from Q to another quasicomponent. 

Theorem 1. Let G be a directed graph, let d+ be the minimum of O-semidomatic 
numbers of its quasicomponents, let d£ be the minimum of O-semidomatic numbers 
of its initial quasicomponents. Then 

4 ^ d+(G) ^ d%. 

P r o o f . As the union of two O-semidominating sets is evidently again an O-
semidominating set, in every graph there exist O-semidomatic partitions of all cardi
nalities not exceending the O-semidomatic number. Therefore in each quasicompo
nent Q we may choose an O-semidomatic partition {D\(Q),..., Dd+(Q)}. Now for 
i = 1, . . . , df let Di be the union of all sets D%(Q) for all quasicomponents Q of G. 
Each Di is an O-semidominating set in G\ namely if x belongs to V(G) - Di, then 
x belongs to some quasicomponent Q of G and there exists and edge into x from a 
vertex of Di(Q) C Di. This implies d+ ^ d+(G). 

Now let V be an O-semidomatic partition of G with d+(G) classes. Let Qo be an 
initial quasicomponent of G with d+(Q0) = 4 - L e t vo = {DnV(Q0) \ D G V}. Let 



D e V, x e V(Q0)-D, Do = DDV(Qo). Then there exists y e D such that an edge 
of G goes from y t o i , As x e V(Qo) and QQ is an initial quasicomponent of G, the 
vertex y must belong to QQ. Therefore y G D C\ V(Qo) = Do. We have proved that 
each set from VQ is O-semidominating in Qo and VQ is an O-semidomatic partition 
of QQ. This implies that d+(G) ^ d+(Q0) = d%. • 

Theorem 2. Let d+, d%, d+ be three positive integers, let d+ ^ d+ ^ d$. Then 
there exists a directed graph G with the property that d+(G) = d+, the minimum 
of O-semidomatic numbers of quasicomponents of G is df and the minimum ofO-
semidomatic numbers of initial quasicomponents ofG is rfj. 

P r o o f . First, let df ^ 2. Let Qi, Q2 be two vertex-disjoint complete di
rected graphs, let V(Qi) = {u(l),..., u(d+)}, V(Q2) = { v ( l ) , . . . , v(d+)}. Evidently 
d+(Qi) = df, d+(Q2) = c#. If d+ = df, then let G be the graph obtained from 
Qi and Q2 by adding the edge from v(l) to u(l). Then Qi, Q2 are quasicompo
nents of G and Q2 is its unique initial quasicomponent. According to Theorem 1 
we have d+(G) ^ d+(Qx) = df = d+. Now suppose that d+(G) > d+ and let £> be 
an O-semidomatic partition of G with d+(G) classes. According to the Pigeon Hole 
Principle there exists a class D G V which contains no vertex of Q\. As d+ ^ 2, there 
exists a vertex u(2) into which no edge from Q2 comes, hence also no edge from D, 
which is a contradiction. Therefore d+(G) = d+d+. Now let d+ > d+. Then let G be 
the graph obtained from Qi and Q2 by adding all edges from the vertices v(d+ + 1), 
..., v(d+) into all vertices of Qx. Let Dx = {u(l), v(l)} U {v(j) | cf+ + 1 < j ^ d+}, 
£>,- = {w(f), v(f)} for i = 2, ..., df, A = Mi')} for t = df + 1, . . . , d+ . Evidently, 
the classes D, for i = 1, . . . , <f+ form an O-semidomatic partition of G and thus 
d+(G) ^ d+. Suppose that d+(G) > d+ and let V* be an O-semidomatic parti
tion of G with d+(G) classes. Then, by the Pigeon Hole Principle, there are at 
least d+ — d+ + 1 classes of V* containing no vertex of Qi. By the same principle, 
among these classes there is at least one class D which contains none of the vertices 
v(d+ + 1), . . . , v(d+). Each edge with a terminal vertex in Q\ has its initial vertex 
either in Q\, or among the vertices v(df + 1), . . . , v(d+); this is a contradiction with 
the assumption that D is an O-semidominating set. Therefore d+(G) = d+. Thus 
the proof is complete for d+ ^ 2. If d+ = 1, we modify the construction of G in such 
a way that Q\ is a cycle of lenght 3 with the vertices u(l), u(2), u(i). O 

The concept of the O-semidominating set is related to the concepts described 
already in the classical books of D. Konig [4] ("Punktbasis") and O. Ore [5], and 
also to the problem of C. F. Gauss concerning eight queens on the chessboard. 



3. TOTAL SEMIDOMATIC NUMBERS 

Proposition 1. Let G be a directed graph without sources, let 6"~(G) be the 
minimum indegree of a vertex ofG. Then 

dt(G)^6~(G). 

P r o o f . Let df(G) = d and let V = {Dlf. ..,£><*} be a total O-semidomatic 
partition of G with d classes. Let x G V(G)\ then in each Di for i = 1, . . . , d there 
exists a vertex j/,- such that y tx is an edge of G. The vertices yi, . . . , yd are pair wise 
distinct, therefore the indegree of x is at least d. As x was chosen arbitrarily, we 
h a v e # < « - ( G ) . D 

Proposition 2. Let G be a directed graph without sources. Then 

dt(G)>\±d+(G)\. 

P r o o f . If d+(G) = 1, the assertion is evident. Thus suppose d+(G) ^ 2. It is 
easy to prove that the union of at least two disjoint O-semidominating sets is a total 
O-semidominating set. If an O-semidomatic partition V with d+(G) classes is given, 
then we can construct a total O-semidomatic partition of G in such a way that at 
most one of its classes is the union of three classes of V and each other class is the 
union of two classes of V. The partition thus obtained has [ |d+(G)J classes, which 
implies the assertion. D 

Proposition 3 . Let G be a directed graph with n vertices without sources. Then 

dt(G)$\±n\. 

If, moreover, in G any pair of vertices is joined by at most one edge, then 

dt(G) ^ [inj . 

P r o o f . Let D be a total O-semidominating set in G. As G has no loops, for 
each vertex x £ D there exists another vertex y 6 D such that yx is an edge of 
G. Hence \D\ ^ 2. If \D\ = 2, then \D\ = {x,y} and both xy and yx are edges 
of G. Thus if in G any pair of vertices is joined by at most one edge, then any 
total O-semidominating set in G must have at least three vertices. This implies the 
assertions. D 



Now we will state a theorem analogous to Theorem 1. 

Theorem 3. Let G be a directed graph without sources, let df be the minimum 
of total O-semidomatic numbers of its quasicomponents, let d2 be the minimum of 
total O-semidomatic numbers of its initial quasicomponents. Then 

d+ ̂  4(G) ^ 4 -

P r o o f is analogous to the proof of Theorem 1. D 

The following theorem is analogous to Theorem 2. 

Theorem 4. Let di, d^, c(+ be three positive integers, let di ^ d+ < d2 . Then 
there exists a directed graph G with the property that d*(G) = d+, the minimum 
of total O-semidomatic numbers of quasicomponents of G is di and the minimum 
of total O-semidomatic numbers of initial quasicomponents ofG id d2. 

P r o o f . Let Q\, Q2 be two vertex-disjoint complete directed graphs, let 

V(Q\) = {ti(l),.. . , u(di), u'(l),..., u'(di)}, 
V(Q2) = M l ) , . . . , v(dt), v'(l),..., t/(d+)}. 

Evidently df(Q\) = di, df(Q2) = d$. If d+ = di, then let G be the graph 
obtained from Q\ and Q2 by adding an edge from v(l) to u(l). Then Q\, Qi are 
quasicomponents of G and Q2 is its unique initial quasicomponent. According to 
Theorem 3 we have d+(G) ^ df(Q\) = di = d+. Now suppose that df(G) > d+ 
and let V be a total O-semidomatic partition of G with d+(G) classes. According 
to the Pigeon Hole Principle either there exists a class D 6 V which contains no 
vertex of Q\, or there exist classes D\ G V, Di G V, each of which contains exactly 
one vertex of Q\. In the first case no edge from D comes into u'(l), which is a 
contradiction. In the second case at least one of the sets D\, Di does not contain 
u(l)\ then no edge from this class comes into its vertex being in Q\, which is again 
a contradiction. Therefore df(G) = df = d+. Now let d+ > di. Then let G be the 
graph obtained from Q\ and Q2 by adding all edges from the vertices v(d+ + 1), . . . , 
v(d+) into all vertices of Q\. Let D\ = {u(l),u'(l),v(l),v'(l)} U {u(j) | df + 1 < 
j ^ di} u K / ) | d+ + 1 ^ j <; d+}, Di = {u(i),u'(i),v(i),v'(i)} for i = 2, . . . , 
di, Di = {v(i),v'(i)} for t = df + 1, . . . , d+. Evidently, the classes Di for i = 1, 
. . . , d+ form a total O-semidomatic partition of G and thus df(G) ^ d+. Suppose 
that df(G) > d+ and let V* be a total O-semidomatic partition of G with d+(G) 
classes. Then, by the Pigeon Hole Principle, there are at least d+ — d + + 1 classes of 
V* containing at most one vertex of Q\. By the same principle, among these classes 
there is at least one class D which contains none of the vertices v(d+ +1) , . . . , v(d+). 
Each edge with a terminal vertex on Q\ has its initial vertex either in Q\, or among 
the vertices v(d+ + 1), . . . , u(d+); this is a contradiction with the assumption that 
D is a total O-semidominating set. Therefore df(G) = d+. • 



Now we shall prove a theorem concerning tournaments. 

Theorem 5. Let cf+, d , n be three positive integers, let d+ ^ [ |n j , d ^ [ |n j . 
Then there exists a tournament T with n vertices such that df(T) = d+ , d^(T) = d~. 

P r o o f . Let V be a set of n vertices. If 3d+ -f 3</"" ^ n, then we choose a 
subset C of V of the cardinality n — 3d+ — 3d". Then we decompose V — C into 
two disjoint subsets A, B such that |>i| = 3d+ , \B\ = 3d"*". If 3d!+ -f Sd" > n, then 
we choose a subset C of V such that | C | ^ 2 , |C | = n( mod 3). Then we choose two 
sets A, B such that A U # = V - C, |.4| = 3rf+, | £ | =.3</-. (In both cases C may 
be empty.) In both cases the number of vertices of A U B is divisible by 3 and (by 
the Inclusion-Exclusion Principle) so are the numbers of vertices of A f] B, A — B 
and B — A. Thus we choose a partition D of A U B into three-element sets with the 
property that each class of V is a subset of one of the sets AD B, A — B, B — A. If 
D E V, then we denote the vertices of D by x(D), y(D), z(D) and lead edges from 
x(D) to y(D), from y(D) to z(D) and form z(D) to x(F>). Now we choose a linear 
ordering -< of V in such a way that if either D\ C A — B, D2 C AD15, or D\ C AflB, 
D 2 C B - -4, then always D\ ~< D2. Now we lead edges between vertices of different 
classes of D. If D\ C A — B, D2 C A, D H A*, then we lead edges as in Fig. 1. 
If D\ C A 0 B, D2 C J5 - A, D\ -< D2, we lead them as in Fig. 3. If D\ C A (1 B, 
D2CAnB,Dx-<D2,vfe lead them as in Fig. 2. 

Further, we draw edges from all vertices of A—B into all vertices of (B—A)UC and 
(if C ^ 0) from all vertices of C into all vertices of B - A. If AD B±$,C ^ 0 , then 
we draw edges from all vertices of C into all vertices x(D) for D C A(1B and from 
all vertices y(D), z(D) for D C A D B into all vertices of C. In the graph in Fig. 2 
the sets D\, D2 are both O-semidominating and I-semidominating. In the graph in 
Fig. 1 they are both O-semidominating, but only D2 is I semidominating. In the 
graph in Fig. 3 they are both I-semidominating, but only D\ is O-semidominating. 
Let VA (or VB) be the partition of A (or B, respectively) induced by V. From the 
construction of T it follows that VA is total O-semidomatic partition of T and VB 
is a total I-semidomatic partition of T; this implies df(T) ^ d+ , d^(T) ^ d". Let 
Anin be the first element in the ordering -<. Consider z(Dmm). Into z(Dmm) edges 
go only from the vertex y(Dmm) and from the vertices z(D) for all D G VA — {Anin}-
Hence the indegree if z(Anin) is d+, which implies df(T) ^ 6"(T) ^ d+ and thus 
d?(T) = d+ . Similarly, if Anax is the least element in -<, then from x(Dm*x) edges 
go only to all vertices z(D) for D € VB- the outdegree of x(Dm*x) id d~, which 
implies dt-(T) ^ 6+(T) ^ d~- and thus dJ(T) = <T. • 
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4. REMARKS ON INFINITE GRAPHS 

The semidomatic number and the total semidomatic numbers can be extended 
also to infinite graphs in such a way that instead of minima we consider suprema. 

Theorem 6. Let G be a directed graph. If one of the numbers d+(G), df(G) is 
infinite, then 

d+(G) = d+(G). 



P r o o f . This assertion can be proved analogously as Proposition 2. • 

Theorem 7. There exists a directed graph G such that 

d+(G) = d+(o ) = No, 

while all quasicomponents ofG are finite. 

P r o o f . The vertex set V(G) is the set of all ordered pairs (iyj) of positive 
integers such that t ^ j . If (t"i,ii), (t*2,i2) are two vertices of G, then an edge 
goes from ( i i - i i ) into (t2,i2) if and only if t*i ^ i\. (In particular, if t'i = t'2, then 
these vertices are jointed by a pair of oppositely directed edges.) The graph G has 
quasicomponents Q,- for all positive integers t. For each t the vertex set V^Qi) of 
Qi is the set of all pairs (i,j) for j ^ t. Each quasicomponent Qi is a complete 
directed graph with t vertices. Now for each positive integer j let Dj be the set of 
all pairs (i,j) for t "̂  j . Let (to, in) be a vertex of G, let j be a positive integer, let 
k = max(to + l , i ) . Then (ib,i) G Dj and, as k > j , there exists an edge from (k,j) 
into («o-io)« As (t*o,io) was chosen arbitrarily, Dj is a total O-semidomatic set in 
G. As i was chosen arbitrarily, the sets Dj for all positive integers j form a total 
O-domatic partition of G and thus df(G) = No- (Evidently it cannot be greater.) 

• 
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