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Summary. To every partially ordered set a certain groupoid is assigned. A tolerance on 
it is defined similarly as a congruence, only the requirement of transitivity is omitted. Some 
theorems concerning these tolerances are proved. 
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Partially ordered sets (shortly posets) may be studied by means of algebraic meth­
ods. Here we will investigate poset algebras. They are defined analogously to graph 
algebras which were introduced by G. F. McNulty and C. R. Shalloii [1] and described 
by R. Poschel [2]. 

Let a poset (P, .$) be given. The poset algebra A(P) assigned to P is a commu­
tative groupoid with the support P U {oo}, where oo is an element not contained in 
P , and which has one commutative binary operation o defined in the following way. 
Let a, 6 be two elements of P U {oo}. If a = oo or b = oo, than a o b = oo. If a G P , 
6 G P , a ^ 6, then a o 6 = 6. If a G P , b G P , a \\ 6, then a o b = oo. 

On poset algebras we shall study tolerances. A tolerance on a groupoid G with 
a binary operation o is a reflexive and symmetric binary relation T on G with the 
property that (a\y b\) G T and (a2,62) G T imply (a\ o 02,61 o 62) €T. If a tolerance 
T on G is transitive, it is called a congruence on G. 

On A(P) we define an important relation Q in the following way. We have (a, b) G 
Q if and only if either a = 6, or a and b are comparable, the interval determined by 
them is a chain and each x G P not belonging to that interval is comparable with a 
if and only if it is comparable with 6. 

Theorem 1. The relation Q is a congruence on A(P). 
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P r o o f . The reflexivity and symmetry of Q are evident. We shall prove the 
transitivity. Let (a, 6) £ Q, (6, c) £ Q. If a = 6 or 6 = c, then evidently (a, 6) £ Q; 
thus suppose that a ^ 6, 6 ^ c. The elements a, 6 must be comparable and so must 
6, c. Suppose a ^. 6, 6 -̂  c. Then a ^ c and the elements a, c are comparable. 
The intervals [a, 6], [6,c] are chains and so is their union. Suppose that the interval 
[ayc] contains an element y which is not in [a,6] U [6,c]. Then y \\ 6. As (a,6) £ Q, 
(6, c) £ Qy this implies y || a, y \\ c, which is a contradiction with the assumption 
that y £ [a, c]. Hence [a, c] = [a, 6] U [6, c] and it is a chain. Now let x £ P — [a, c]. 
Then £ G P — [a,6] and thus x is comparable with a if and only if it is comparable 
with 6. As also x £ P — [6, c], the element x is comparable with 6 if and only if it is 
comparable with c. Hence x is comparable with a if and only if it is comparable with 
c; we have (a, c) £ Q. If a ^ 6, 6 *̂  c, the proof is analogous. Suppose a -$: 6, 6 ^ c. 
If c € [a, 6], then c is comparable with a and [a, c] C [a, 6], therefore [a, c],is a chain. 
If c ^ [a, 6], then, as (a, 6) £ Q and c is comparable with 6, also c is comparable with 
a. As [a, 6] is a chain, c £ [a, 6] and c ^ 6, we have c ^ a. As [c, a] C [c, 6], the 
interval [c, a] is a chain. We have (a, c) £ Q. If a ^ 6, 6 -̂  c, the proof is analogous. 
We have proved that Q is an equivalence relation. 

Now let (ai ,6i) £ Q} (a2 ,62) £ Q. If ai || a2, then ai || 62, 6i || 62 and (ai o 
a2 ,6i o 62) = (oo,oo) £ Q. If ai ^ a2, then ai is comparable with 62 and 62 is 
comparable with 6i. If 6i ^ 62, then (ai o a2 ,6i o 62) = (a2,62) £ Q. If 6i ^ 62, 
then (ai o a2 ,6i o 62) = (a2 ,6i) . We shall investigate this pair of elements. As a2 

is comparable with a i , it is comparable also with 6i. If a2 ^ 6i, then we have 
the interval [a2,6i]. This interval is a subset of [ai,6i]; as [ai,6i] is a chain, so is 
[a2,6i]. Let x £ P — [a2,6i]. If x \\ 6i, then x £ P - [ai,6i] and also x \\ a\. The 
comparability of x with a2 would imply its comparability with ai or 6i, which would 
be a contradiction. If x > 6i, then also x > a2. If x < 6i, then either x ^ a\ -̂  a2, 
or (as x £ P — [a2,6i] and [ai,6i] is a chain) a\ ^ x < a2. We have proved that 
x is comparable with a2 if and only if it is comparable with 6X and (a2, b\) £ Q. If 
6i ^ a2, we have the interval [6i, a2]. This interval is a subset of 62, a2; as [62, a2] is 
a chain, so is [6i, a2]. If x £ P — [6i, a2], we can prove that x is comparable with a2 

if and only if it is comparable with 6i; we do it analogously to the preceding case. 
We proceed analogously also in the case when ai ^ a2. Thus it is proved that Q is 
a congruence on A(P). • 

Theorem 2. Let T be a tolerance on A(P) such that (x, oo) £ T implies x = oo. 
Then T C Q. 

P r o o f . Suppose that there exist elements a, 6 of P such that (a,6) £ T and 
(a, 6) £ Q. Then either one of the elements a, 6 is oo while the order is not, or a £ P, 
b £ P , a || 6, or a £ P , 6 £ P , a and 6 are comparable and the interval determined by 
them is not a chain, or a £ P , a and 6 are comparable and there exists an element 
x £ P comparable with one of them and not with the other. In the first case it is clear 
that T does not fulfil the condition of the theorem. If a || 6, then from (a, 6) £ T, 
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(a, a) G T we obtain (aoa, 6oa) = (a, oo) £T. As a G -P, we see that T does not fulfil 
the condition of the theorem. Now suppose that the third case occurs. Without loss 
of generality let a < 6. Then the interval [a, 6] contains two incomparable elements 
x, y. From (a, 6) G T, (x, x) G T we obtain (a o x, 6o x) = (x, 6) G T and analogously 
(y, 6) G T. Now from (x, 6) G T, (y, 6) G T we have (x o y, 6 o 6) = (oo, 6) G T and 
also (6, oo) G T. Again T does not fulfil the condition of the theorem. In the fourth 
case let again a < 6; then [a, 6] is a chain. Let there exist x G P such that x is 
comparable with a and not with 6. Then a o x = a o r a o x = x, while 6 o x = oo. 
We can proceed analogously in the case when x is comparable with 6 and not with 
a. Again T does not fulfil the condition of the theorem. Hence T C Q. D 

Corollary 1. Let C be a congruence on A(P), one of whose classes is {oo}. Then 
all other classes ofC are intervals on P such that each element of P not belonging 
to that interval is either comparable with all of its elements, or incomparable with 
all of them. 

If a, 6 are two elements of P U {oo}, then by T(a,6) (or C(a,6)) we denote the 
intersection of all tolerances (or congruences, respectively) on A(P) which contain 
the pair (a,6). By A we denote the identity relation on P U {oo}. 

T h e o r e m 3. Let a £ P. Then T(a, oo) consists of A and of all pairs (x,oo), 
(oo,x) with x ^ a. 

P r o o f is easy. D 

Corollary 2. Let a £ P. Then one class of C'(a, oo) consists of all elements 
greater that or equal to a, and all its other classes are one-element sets. 

T h e o r e m 4. Let a, 6 be two incomparable elements of P. Then T(a,6) consists 
of A, of the pairs (a, 6), (6, a), and of the pairs (x, oo), (oo, x) for all x ^ a and for 
all x ^ 6. 

P r o o f . From (a, 6) G T(a,6), (a, a) G T(a,6) we obtain (aoa,6o6) = (a,oo) G 
T(a, 6) and, by symmetry, (oo, a) G T(a, 6). Analogously (6, oo) and (oo, 6) belong to 
T(a,6). If x ^ a, then from (a,oo) G T(a,6), (x,x) G T(a,6) we have (aox,ooox) = 
(x,oo) G T(a,6); analogously for x ^ 6. Therefore T(a,6) contains all the pairs 
mentioned. Now it is easy to verify that the relation described is really a tolerance 
on A(P). D 

Corollary 3. Let a, 6 be two incomparable elements of P. Then one class of 
C(a, 6) consists of all elements x ^ a and all elements x ^ 6, and all its other classes 
are one-element sets. 

T h e o r e m 5. Let a, 6 be two elements of P such that a < 6, (a, 6) G Q. Then 
P(a, 6) consists of A and of all pairs (x, 6), (6, x) for x G [a, 6]. 
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P r o o f . Let x G [a,6]. Then from (a,6) G T(a,6), (x,x) G T(a,6) we have 
(a o x, b o x) = (x, 6) G T(a, b) and, by symmetry, (6, x) G T(a, 6). Now it is easy to 
verify that the relation descirbed is really a tolerance on A(P). D 

Corollary 4. Let a, 6 be two elements of P such that a < b, (a,b) G Q. Then 
one class ofC(a, 6) is [a, 6] and all its other classes are one-element sets. 

We will not describe T(a,6) for the other cases. We mention only that in the 
case when a < 6 and (a, 6) G Q the tolerance T(a, 6) contains all pairs described in 
Theorem 5 and, moreover, some pairs of the form (x,oo) and (oo,x). 

In the end we will define another important relation R on P. If a, 6 are two 
elements of P, then (a, 6) G R if and only if either a = 6, or a || 6 and each element 
x G P — {a, 6} is comparable with a if and only if it is comparable with 6. 

Theorem 6. The relation R is an equivalence on P. 

P r o o f . The reflexivity and symmetry of R are obvious. Let (a, 6) G R, (6, c) G 
R. If a = 6 or 6 = c or c = a, then evidently (a,c) G R. Suppose that a, 6, c are 
pairwise distinct. We have c G P — {a, 6} and c || 6, therefore also c \\ a. Now let 
x € P — {a,c}. If x ^ 6, then x G P — {a, 6} and x is comparable with a if and only if 
it is comparable with 6. Also x G P — {6, c} and x is comparable with 6 if and only if 
it is comparable with c. Hence x is comparable with a if and only if it is comparable 
with c. If x = 6, then x || o, x || c. Therefore (a, c) G -ft is transitive. • 

By R* we denote the relation on P U {oo} consisting of R, of the pair (oo, oo) and 
of all pairs (x, oo), (oo, x) with x such that there exist elements y, z of P such that 
y^z,y\\x and (y, z) G R. 

T h e o r e m 7. The relation R* is a tolerance on A(P). 

P r o o f . The relation R* is evedently reflexive and symmetric. Let (ai, b\) G R*, 
(02,62) £ R*. If some of the elements a\, a?, 61, 62 is 00, then it is clear that 
(a\ 002,61 o 62) G R*. Thus suppose that all these elements are in P. Also the cases 
a\ = 61 and 02 = 62 are simple; thus suppose a\ ^ 61, a^ ^ 62. If a2 = 61, then 
(ai 002,61 o 62) = (00,00) G R*. If 61 = 62, then (a\ oa 2 ,6 i o 62) = (00,61) G R*. 
Similarly in the cases ai = 02 and a\ = 62. Now suppose that a\, a<i, 61, 62 are 
pairwise distinct. If a\ || 02, then ai || 62, 62 || 61 and (a\ o a2 ,6i o 62) = (00,00) G 
.ft*. If a\ > 02, then a\ is comparable with 62 and a% is comparable with 61. We 
have a\ > 62; otherwise a% < a\ < 62 and 02, 62 would be comparable. Further, 
61 is comparable with 62 and also 61 > 62; otherwise 61 < 62 < a\. Therefore 
(a\ o 02,61 o 62) = (ai, 61) G -ft*. Analogously if a\ < a^. Hence R* is a tolerance on 
A(P). D 
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