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Abstract. We discuss the characterization of the inequality 

\ -/g / r \i/p 
fqu) < C / fpv) , 0<q7p<oo, 

for monotone functions / ^ 0 and nonnegative weights u and v and N ^ 1. We prove a 
new multidimensional integral modular inequality for monotone functions. This inequality 
generalizes and unifies some recent results in one and several dimensions. 
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1. INTRODUCTION 

Let K+ := {(x i , . ..,xp?); X{ > 0,i = 1,2,... ,N} and R+ :-= R+ . Assume that 
/ : IR+ —>• R4. is monotone which means that it is monotone with respect to each 
variable. We denote / 1 , when / is decreasing (= nonincreasing) and / f when / is 
increasing (— nondecreasing). Throughout this paper u>, u, v are positive measurable 
functions defined on R + , N ^ 1. 

A function P on [0, oo) is called a modular function if it is strictly increasing, with 
the values 0 at 0 and oo at oo. For the definition of an N-function we refer to [7]. We 
say that a modular function P is weakly convex if 2P(t) < P{Mt), for alH > 0 and 
some constant M > 1. All convex modular functions are obviously weakly convex. 
The function P\(t) = ip , 0 < p < 1 and the function F2W = exp(\/-0 — 1 are weakly 
convex, but not convex. See also [6]. 
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In order to motivate this investigation and put it into a frame we use Section 2 to 
present the characterization of the inequality 

i/g / [ \1/P 

(1) ! / / * « ) $C[ fpv) , 0 < p , g < o o , 
Rï / V й ţ 

for all / 4- or / t* 
In Section 3 we will characterize the weights w, u and v such that 

-1 / / / " i / . ./„\X/„\\ , . / „ \ J™ \ / D-l (2) Q-Ч Q M ï ) / ( ï ) ) . ( i ) d i U P - ' P(C/(ж)) i»(a:)dx 
£ / VJR* 

holds for modular functions P and Q, where P is weakly convex and 0 ^ / 4 - Here 
and in the sequel C > 0 denotes a constant independent of / . 

C o n v e n t i o n s and notation. Products and quotients of the form 0-oo, ~|, § are 
taken to be 0. 2 stands for the set of all integers and XE denotes the characteristic 
function of a set E. 

2. WEIGHTED Lp INEQUALITIES FOR MONOTONE FUNCTIONS 

In the one-dimensional case the inequality (1) was characterized in [8, Proposi
tion 1] for both alternative cases 0 < p ^ q < oo and 0 < o / < p < o o a s follows: 

(a) If N = 1, 0 < p < q < oo, then (1) is valid for all / 4 if and only if 

1/9 / ft \ -i/p 
Ao .= sup ( / u ) ( / t;) < oo 

->o \Jo 

and the constant C = AQ is sharp. 
(b) If N = 1, 0 < q < p < oo, 1/r = l/q - 1/p, then (1) is true for all / 4 if and 

only if 
oo / t-t \ r/p / rt \ -r/p \ l'T 

.B0:= I / ( / « ! -( / v I «(í)dřj <oo. 

Moreover, 

and 

2 \ V P / \ i/ r 

t ) Bo « c <: (=) ' B„ 

«-í^+?nr.n/'.r'.w* 
Ч / o 0 0 " ) " P J o V o 0 
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(c) Similar characterizations are valid when / t . w - t n * n e o n - v change that the 
integrals over [0, t] are replaced by integrals over [£,oo]. 

Since the one-dimensional inequality (1) expresses the embedding of classical 
Lorentz spaces, further generalizations and references in this directions can be found 
in [3]. 

The multidimensional case was recently treated in [1, Theorem 2.2], for the case 
0 < p ̂  q < oo and in [2, Theorem 4.1], for the case 0 < o < p < o o a s follows: 

(a) If 0 < p ̂  q < oo, then (1) is valid for all / 4 if and only if 

tы 1/9 

AN :— sup ,, < oo 
DeVd (J v) г/p 

and the constant C ~ AN is sharp. Here the supremum is taken over the set Vd of 
all "decreasing" domains, i.e., for which the characteristic function is a decreasing 
function in each variable. 

(b) If 0 < q < p < oo, then (1) is valid for all / I if and only if 

Br

N — supf ( f v) < - ( - ( / « ) ) < o o , 
0<hlJo \JDhft J \ \JDh.t 

where 
N. Dh,t~{xe UZ;h(x)>t}. 

Moreover, 

2-/*(2 гA -j-lr/p)1/' 
BN ^C^4l/WN. 

If N — 1, P and Q are N-functions and Q o P x is convex, then some weight 
characterizations of the inequality (2) have been obtained in [4] and [5]. 

For N > 1, P and Q N-functions and Q o P"1 convex, (2) holds for all 0 ̂  / | if 
and only if there exists a constant A = A($i, $2, u, v, UJ) such that, for all e > 0 and 
Devd, 

Q-1 ( f Q(ew(x))u(x)áx\ ^ P"1 (p(Ae) f v(x)&x\ . 

This characterization can be found in [2, Theorem 2.1]. 
However, if Q and P are not N-functions (hence not convex) and Q o P~l is not 

convex, then the problem of characterizing weights for which (2) holds seems to be 
to a large extent open. For N = 1 the first characterization of this type was given 
in [6]. 

In the next section we characterize the weights for which (2) holds when P is 
weakly convex. This result generalizes both the corresponding one-dimensional result 
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obtained in [6] and the multidimensional case obtained in [2]. Some particular cases 
of (2) will also be pointed out. 

3 . A MULTIDIMENSIONAL MODULAR INEQUALITY 

Let 0 < h(x) i and t > 0. Denote 

Dhtt:z:{x<~R$;h(x)>t}t 

and 
Vd:= |J UDM-

The set T>d consists of all "decreasing" domains Dh,t- In particular, XDKt is de
creasing in each variable. For a strictly decreasing, positive sequence {tk}, such that 
tk -* 0 as k —•> oo we put 

Dk = DhM := {x £ R£; h(^) > tfc},k e 1. 

Obviously, Dk+i D Dk and we define 

Ak = Ah,tk := Dfc+i \ Dfc-

Hence, A& f| An = 0, k ^ n and R^ = IJ A*. For simplicity we also assume in the 
k 

sequel that 

(3) / г?(x) da: = oo 
R? 

Theorem 3.1. Let Q and P be modular functions and P weakly convex. Then 
(2) holds for alio £ f I if and only if there exists a constant B > 0 such that 

(4) Q ' M E / Q(%»(*))<*)te)$P-1('ZP(ek)[ v(x)dx 

-i 

is satisfied for all positive decreasing sequences {sk}kei and ail increasing sequences 
of decreasing sets {Dk}kei suc& && fDk v(x) dx = 2k. 

Proof . The necessity follows, if we replace / in (2) by the decreasing function 
/ = E f̂cXAfc, {£&}fc being a decreasing sequence. 

kei 
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Next we consider t h e sufficiency. Fix / 4- and set Ek — Btk, Dk == Dfttk and 
At -=- A/,t fc. Because M+ = U A& we obtain, using also (4) and the facts t h a t Q, P, 

к 
-X D - l Q , P are increasing and / is decreasing, 

-1/ / nř..MíMU.MjJ_/.-lí,r / Q-M / 0 (*(-)/(*)) u(s) dx = Q-M > / Q (u>(x)f(x)) u(x) dx 
+ y v*ez R ? J \Z7-;JAt. 

š Q ~ a f e / Q ("(-*)**) u(s)da. 
•fcez */A'-' 

Чєz 7 л ^ 

P~M]T2P(£tfc) / t;(o;)dx 

^ P~1' __ / 2P(£/(aOMa;) dx 
_ • 

Therefore, by using the assumption tha t P is weakly convex, we find that 

Q~l (jNQ (u(x)f(x)) u(x) dx\ ^ P'1 fa J P(MBf(x))v(x) dx 
+ ' чєz 

P-Ң / P(MBf(x))v(x)dx , 
N 
+ 

i.e., (2) holds with C — M B . The proof is complete. D 

We will give now two important corollaries of Theorem 3.1. 

Coro l lary 3,2. If P and Q are as in Theorem 3.1 and Q o P " 1 is convex, then 
(2) holds if and only if, for all e > 0 and decreasing sets D, there exists a C > 0 such 
that 

-i ( f ^ M ^ ю - l ŕ є (5) ^iJAc^&h^)^1^ 
P r o o f . For the necessity we just have t o substitute / in (2) with the function 

P •ш fo(x) M S _ _ X I , ( X ) . 

Next we prove the sufficiency, i.e., t h a t (5) implies (2). According t o Theorem 3.1 it is 
sufficient to prove t h a t (5) implies (4). By applying (5) with e = P(Cek) j D v for 
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each decreasing set Dk+x and using the convexity of Q op~l and the weak convexity 
of P we find that 

Y f Q(єкш(x))u(x)åx) SC ( £ f Q(єкш(x))u(x)áx 
keiJAk ' xkeiJDk+l 

^J^QoP^fpiCek) f v 
kel ^ -1-̂ fc+i 

V f c € 2 JDk 

^Q o P~1(Y^P(MCek)2 

QoP-1(YJP(MCek) 
kel JAk 

v 

Hence (4) follows with B = MC and the corollary is proved. D 

R e m a r k . If Q(x) = xq and P(x) = xp
y 0 < p ^ q < oo, then Q o P " 1 is convex 

and the condition (5) coincides with condition (3). Hence, Corollary 3.2 generalizes 
•Theorem 2.2(d) in [1]. 

R e m a r k . For N = 1 the condition (5) reads 

Q-1 ([Q(^rp^(fi))u{x)dx) ^ p_1 (e)' Vr > °-
Thus, if N = 1, then Corollary 3.2 coincides with Corollary 1 in [6], 

Finally we apply Theorem 3.1 with P(x) = xp and Q(x) = x9, 0 < p, q < oo, and 
obtain the following result: 

Corollary 3.3. The inequality (1) holds for all 0 < / | if and only if there exists 
a constant K = K(p,q) such that 

Y > J l ...» dx)* 9< if ( VJ 4 / «(.r)dxN 

&ez *Afc 7 ^fcez , / A^ 

for ail positive decreasing sequences {£k)kei ana* sucn tnat Iok
 v(x) ^x ~ 2** 

R e m a r k . For N = 1 a similar characterization is given in [6]. For other mul
tidimensional characterizations of (1) in the case 0 < p < q < oo see [1] and in the 
case 0 < q < p < oo see [2] (cf. Section 2). 
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F i n a l r e m a r k s , ( i ) The results in this paper can also be formulated when 
we remove the technical assumption (3) (cf. [2], [8]), 

(ii) Similar results to all results in this paper can be formulated also for increasing 
functions of several variables. 
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