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Abstract: Sufficient conditions for destabilizing effects of certain unilateral boundary con-
ditions and for the existence of bifurcation: points for spatial patterns to reaction-diffusion
systems ‘of the activator-inhibitor type are proved. ‘The conditions are telated with the
mollification method employed to overcome difficulties connected with empty interiors of
appropriate convex cones.
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0. INTRODUCTION

Systems of reaction-diffusion and the effect of diffusion driven instability, the
growth of spatial patterns (stationary but spatially nonconstant solutions) and re-
lated eigenvalue and bifurcation problems have been studied for a long time by many
authors. The motivation for-the study of such problems comes from biology and eco-
logy where the behaviour of two or more species is modeled ([11], [21], [22]); the effect
of diffusion’ driven instability was described for the first time in [27]. Multivalued
boundary conditions can describe e.g, a certain control process, a semipermeable or
another type of the membrane on a part of -the boundary. The system with vari-
ous types of unilateral ‘boundary conditions was studied by M. Kulera, P. Quittner,
M. Bosdk, P. Drabek in [2}, [3], [4], [6], [12], [15], [16], [19], [26] (the destabilizing
effect—the bifurcation for the unilateral problem occurs in a domain of stability of

The present, paper. was supported by the grant’No. 201/95/0630 of the Grant Agency
of :the Czech-Republic and by the grant: VS:97156 of the Ministry of Edncation of ‘the
Crech Republic
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the system with classical Dirichlet:and/or Neumann boundary conditions) and:in
[13], [17], [18] (stabilizing effect). For a detailed survey see e.g. [8], [6].

In this' paper, the results of [16]; i.e. the existence of a bifurcation point for system
with multivalued boundary conditions proved for an interval, are generalized to. do-
mains with higher dimension and the localization of bifurcation points is specified."In
[16] the fact that the Sobolev space W12(Q) is embedded into the space of continuous
functions was used. Therefore, the cone K = {v € Wh2(0,1); v(0) = 0,v(1) > 0}
has a nonempty interior. An analogue of this cannot hold for higher dimension. In or-
der to prove the existence of a bifurcation point by a similar process’as in [16], we can
either define a psendointerior of K like in [26], [4] or [6] and use a technique similar
0 [3]—this requires an additional condition for the reaction terms (see Remark 8.1
in“Appendix)-—or approximate our problem (se¢ Section 3) where the corresponding
approximate cone Ji%. defined with help of mollification, has'a nonempty interior.
Similarly to {16] we show the existence of a bifurcation point for the afpproximate
problem and obtain a bifurcation point for the original one by the limiting process
for - 0.

1. PROBLEM FORMULATION

Let © be a bounded domain in R™ with a Lipschitzian boundary, let I'n;, I, Ty
be open (in 69) disjoint subsets of Q. Let 917 be Lipschitz with respect to 9,
meas(OQ\ (I'p Uy U Ty)) =0 and

(1.1) measp >0, dist(lp, Fy) > 8 with dp > 0:8mall.

Let us consider a reaction-diffusion system

KD ue = diAu A+ flu,v), :
D) v =do v+ glusn) m [0, 400) x 0

with multivalued: boundary conditions

w=1, v=10 on[0;+00) x Ip,
du Ou Mm(v-17)

MC) B ’5,;6 T o [0, 400} x I,
ou v
'8’5#5;{:0 on [0;+c0) x T'w,

where dy, dp are positive diffusion parameters, f,¢: R? — R are differentiable func-
tions such that f (%, @) = 9(4;7) = 0, 4,7 € R are constants, m: R —» 28 is a suitable
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multivalued function (e.g.m(€) = 0 for &> 0, m(0) = [m°, 0], m(£) is singlevalued,
negative for £:<.0).

We will prove that there is a bifurcation point d; = [df,d4] at which stationary
spatially nonconstant solutions (“spatial patterns”) for the system (RD) with (MC)
bifurcate from a branch of the trivial solution [, ¢]. Moreover, this bifurcation point
can lie.in the region of stability of [@, ©] as-a solution of (RD) with classical boundary
conditions

u=10, v==0 on[0,+00)x I'p,
(co) du  dv
on - 0n
where the bifurcation for (RD); (CC) is excluded:
CSet by = 3L(,0), bis = 9£(0,6), by = 92(5,0), beo = 22(5, 7). Tt is known
that under the assumption

=0 on'[0,+00) X (I'v UIy),

by >0, bys <0, bo1 >0, bop < 0,

(SICN)
bii+ b2 < 0, bi1bas = bisbn > 0;

the effect of diffusion driven instability occurs: the constant solution [, ¢ is stable -
as a solution of ODE’s

ur = fu,v), v =g(u,v) on [0, +00)

but it is stable as a solution of (RD); (CC) only for some d = [dy,d2] € Rﬁ lying
in the domain of stability. Ds and unstable for the other ones (lying in the domain
of instability Dy )—for the notation see Fig. 1, Notation 2.1 and Section 3. Further,
spatial patterns of (RD), (CC) bifurcate from [4. 7] on the boundary C between Dg
and Dy (see Fig. 1 and e.g.[20], [25]).

For the sake of simplicity ‘'we assume @ = @ = 0 in the sequel. We study only
stationary solutions. Hence we solye the system

didu fu,v).=0

(SRD) in
daAv +gu,v) =0

with boundary conditions (MC) and (CC) in the form

w=v=0 onTn,
du o o m(v)

(1.2) EW L o S P on Iy,
Ou Ov
T E:O on Ty
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and

du v
(13) . . w=u=0 on I'p, = a=0 on Iy U Ty,

2. WEAK FORMULATION, GENERAL ASSUMPTIONS, MODEL EXAMPLE

Notation 2.1, Ry—the set of all positive reals, R2 = Ry xR, R= {~oo}UR

d4 = d® for any d? = [df,d4],d? = [dF,dP] € R% if and only if dff < df and
di < df

w565 (1= 1,2,3,..)—the eigenvalues and eigenvectors of —A with condition (1.3)

Ci={d=ldi,dy] e Ry dy = 220 ba) j =105 (see Fig1)

C—the envelope of the hyperbolas Cj, j = 1,2,3,... (see Fig. 1)

Dy =A{d=[di,d] € RZ 1 dy > db:ilf;l/’i 5};—” for at least one j=1,2,3.. J—the
set of all d € RZ lying to the left from C (domain of instability) (see Fig. 1)

D= B2\ (CU Dp)—the set of all d'€ R2 lying to the right from €' (domain of
stability) (see Fig. 1)

T--the common tangent to all 0,7 =1,2,3,... (see Fig.1)

do

by by LITY 4@
s K2 1
Fig.1

C%clQ)—the space of continuous functions on ¢l equipped with the usual Cheby-

shev norm
V a real Hilbert space, V2 = V x V endowed with the inner product (U, W) =
(uyw) + (v, 2), U = [u, o], W = [w,z) € V2
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A, Ny, Ny—operators satisfying (2.4), (2.5)

M = [{0}, Ms], My = [{0}; Mo2]—multivalued mappings of V2 into 2¥? defined in
Model Example

U = [u,v]-elements of V2, AU = [Au, Av], N(U) = [Ny (U), No(U)] for U= [u,v) €
\/2

U*= [%’;u?v] for U = [u;v] € V?

K:={UeV0¢ My (U)}—closed: convex cone with the vertex at the origin

‘We denote by~ — the strong and weak convergence, respectively.

cldi 0 M d - 0 } b by wo Thin b
W’"[o dJ’D (d)“{ 0 gl BT lbe bl B T b b

Ep(d) = {U € V?; D(d)U~ BAU = 0}

Ep-(d) = {U e V? DU ~ BT AU =0}

Er(d) :={U€V* D(d)U - BAU € =~ My(U))}

critical point of a problem (P) (where (P) stands e.g: for (2:7) or (2,11))-—a parameter
d € R% for which (P) has a nontrivial solution

bifurcation point of a problem (P} (where (P) stands e.g. for (2.6) or (2:10))—
a parameter d° € R such that for any neighbourhood of [d°,0,0] € B2 x V2
there exists [d, U] = [d,u,v], U] # 0 satisfying (P).

Notation 2.2, Set V= {u'e Wh3(Q); 1 =0 on I'p in the sense of traces},
V2=V XY,

n
(2:1) (u,0) = / Zu%%i da for all u;p e V.
04
=1
Then (-,-). is the inner product on V and the corresponding norm || - || is equivalent

to the usual Sobolev norm ‘on the space' V' under the assumption (1.1) and the
embeddings

22 Ve LA,V o L259)

are compact—see e.g. [10].

Set- ny(u,v) = Fu;0) = bt = bigv, na(u,v) = g(u,v) = byyu — bazv and define
operators An Y — V, N; V2= V(5 =1,2) by

(Au, @) = / wpdz forallu, o &V

2:3) 2

W00 = [ na(v)pde forall U= fusle V2, pEV.
Q
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It follows from embedding theorems (see ¢.g.[10]) that
(2:4) A isa linear, symmetric, positive and completely continuous operator.

Further; if ;v € WH3() then it follows from the embedding theorem that u,v €
L9(Q) with any real g = 1 forn < 2and 1 < ¢ < “2‘_“2 forn > 2. If n; satisfy a growth
condition n;(€,n) < C(1+ €72 + Inje=t) for any &1 € R then n;(u;v) € LY (Q)
with ¢* = 7[5“1 by the Nemytskii theorem (see e.g.[10]) and this together with the
compactness of the embedding mentioned implies that

Ny, N, are nonlinear; completely continuous operators from V> to V
2.5 N;(U
29) G

=0 "=1,2
juli=o U]l b )

(for the last condition, see [18], Lemma 1.A in Appendix).
Now, a weak solution of the problem (SRD), (1.3) is & solution of the operator
equations

diw—biyAu = bisAv — Nif{u,v) =0

(2:6) .
dov — boy Au — bas Av — Nao(u;v) = 0.

We also consider the linear problem corresponding to (2.6);1i.e.

die— b Au — bz Av-=10

27
dov:— by A= bas Av = 0.

'\/I odel Example. (Cf.[16].) Let us consider a multivalued mapping m: R —
2% which is a singlevalued real continuous function on R\ {0} and a multivalued one
at.& = 0 such that

m(€) =0 for £0, m{€) <O for £ <0,
g1"11%1 m(€) = m® with some m® € (~00,0); m(0)=[m?,0].

Set
m(§) =m(§) =m(f) for £#£0,
m(0) =m0, mO)=0

and let us assume that

(2:8) IO mE) < k- (1 +1€]) with some k> 0.
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Consider the situation from Notation 2.2 and define a multivalued mapping Ma: V. —
2Y by

M0 ={zev; [ milp ar< < [ mwp ar
(2.9) Iy Iy
forall p €V, >0 0on J“U}.

(The inequalities-on Iy are understood in the senseof traces.) Then a solution of

diu = birAu—bisAv — Ni(u,v) =0

(2.10)
oy —boy A = by Av'— Nu(u, 0) € —M>(v)

is a weak solution of the problem (SRD), (1.2)—see [9] for details. Further, intro-
duce a positively homogeneous mapping Mot V2 — oV corresponding to M(U) =
[{0}, M>(v)}, U = [u; ], which is defined by My(U) = {0}, Moz(v)] with
Moz (v) = {2 € V; (z,0) =0, {z,0) <0 for all 9 €V, = 0ale.on Iy}
fr>0aeonly
Moz (v) 1= 9if v < 0 on a subset of I'y of a positive measure.

Then a solution of

diu = by Au ~ by Av =0

(2.11)
dav = byy Au — bao Av € = Mo (v)

is-a weal solution of
didu+bnut b =0

nQ
dyAv + boyu +baov = 0
with the boundary. conditions
w=v=00n1Tp,
O O
212) %:071;20,6—220,5'”0@&7,
ou - Ov
o 0 on I'y:

Note that the problem (2:11) is still nonlinear because My is cone-valued and non-
linear. Hence we cannot use the standard technique (as e.g. the degree theory for
linear mappings) to.obtain the bifurcation points:

Remark 2.1 We can also consiaer m? = ~oo'in Model Example. Then we
define M in the same way as Mo and do not assume (2.8).
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Remark 22, It is easy to see from the definition of M, that the inclusion
problem (2.11) is equivalent to the variational inequality

(213) Ue ks
: (D(d)U— BAU,V —U) > 0forany Ve K
with
(2.14) K ={UeV*0e M)} =V x{pgeVip>0on Iy}

Therefore, the inclusion (2.10) is a generalization 'of such problems (2.13) and also
of variational inequalities

(D(A)U — BAU — N(U), V.= U} + W(V) = (TU) >0 for any V € K

with a positive convex lower semicontinuous functional ¥: V* — (=00, 400], ¥ #
+00, where M = 0¥—the subdifferential of ¥ (cf.e.g.[5]).

3. PROPERTIES OF THE LINEAR EQUATION

In the sequel, we consider a general real Hilbert-space V and operators 4: V =V,
N2 V2 — Y satisfying (2.4), (2:5).

Observation 3.1. (CL[4], Section 2, [6], Section 4.) It follows from (2.4)
that the characteristic values of A (i.e.the eigenvalues of the Laplacian with (1.3)
for A from Notation 2.2) form a sequence {k;}32,, (ki = oo for i — +o0) of
positive numbers. The set of all corresponding eigenvectors {e;}22, forms a complete
orthonormal system in V.

Proposition 3.1. " The eigenvalue problem
(3:1) DU — BAU.+ AU =10
has a system of eigenvalues
(3.2) A7) = by 4l — (dy + d)ri =YD = 1,2

with D = [biy +bas — (dy +d2)ki)? — 4 [(dyse = bin ) (daks —bag) = biaby], 1 = 1,2, .,
which are roots of

(383) 12— by + bay = (dh + do)ri] F (dimi —bia) (daky — byz) = bishoy = 0.
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I particular, d = [di, dy] is a critical point of (2.7) if and only if j= 0 is a solution
of (3.3), Le If and only if

(34) (dy o = b1y ) (darss — bya) = biabor = 0,

by
biobai [iE baz } o

e if dlieson a hyperbola C; = {d =(dydo) € R: 5 do = e Tohm
i = b m

some i =71,2;.. "

For the proof see e.g.[4], Section 2.

Observation 3.2. (See [20] and [4] for the proof-of the followmg statement.)
Under the assumption (SIGN), for a given i there are two real roots u (d ‘2) (d)-of

(3.3) for any d lying to the left from C; or in the right neighbourhood of C; (mcludmg
C;). The smaller one (say /éQ) (d)) is always negative.

It follows from the definition of C; that pm(d) <Dor ,um (d) > 0for d to the right
orto the left, respectively, from € and in a neighbourhood of ¢} For d lying to the
right and sufficiently far from C;, we have p{” (d) € C\R with Re /zé”(d) <0,r=1,2
Further, for any.d € R%, let us set j(d) i= max{u,(»l)(d); p::l}(d) € R} Hence, u(d)
is.the greatest eigenvalue of (3.1). Then the envelope Coof all Cj, 4 = 1,2, s
equal to {d € B3 ; p(d) = 0} and p(d) < 0 or u(d) > 0 for d from a neighbourhood
of C-and to the right or to the left from C, respectively.

Observation 3.3 It follows from Proposition 3.1 and Observation 3.2 that
o

(d).# {0} it and only if d € J Cj. Moreover, let p be an index such that the
=1

3
characteristic value k, of A (i.e. the eigenvalue of the Laplacian with (1.3} for A from
Notation 2.2) has a multiplicity &k, k, = ... = kpysp Thenforany d € Oy = =
Cpikmi, A ¢ C, for Cy # €, we have
(3.5) Es(d) = Lin{ U2 T with Uild) = [ea(d)es edls

i=p

where ¢;(d) = i‘—'ﬁ’?—bzﬁ > 0. Further, if d € C, N C, for some Oy # Cp, Ky # Kg =
co= e (K has the multiplicity £) then

(3.6) Ep(d) = Lin{Us(d) Yimp, . prk=1,q,. gt l—1-

For the proof sce [4], Section 2.



4. THE MAIN RESULT

We will show’in Theorem 4.1 the existence of a bifurcation point to (2.10). The
method of the proof of this fact will be the same as'in [16]. One of the assumptions
in [16] was int K # 0. Here, we have n.> 1 and therefore int &' = § in general. ‘We
consider an auxiliary problem with an additional parameter ¢ (see below) which has
the property int JC* # ¢ and which approximates our original problem for § - 0.

Notation 4.1 Let d > 0 be fixed. Let G be a hounded ‘domain in R" with a
Lipschitz boundary such that c1Q ¢ G. We define a mollification mapping ®%: V —
WL2(G) in the following way: Let ®: R® — [0, +00) be a ¢**-smooth function such
that ©%(0) > 0, @ (x) < ¢%(0) for any v € RY, @%(x) = 0 for all @ ¢ B;s(0) (the ball
with a radius 6 centered at the origin) and [, %(z)de = 1. Then ¢ is bounded
on R and ® converges in the sense of distributions to the Dirac measure centered
at the origin for 6 — 04 For an example of such a function see [23]: There exists a
continuous “extension” mapping E: WH2(Q) — Wg 2(G) (see [23]). Let us define a
mapping

v, x) = / Pz =y Euly) dy foranyveV, 2 €0,
G

Hence, ®%(v,-) is a contimous function on ¢l Q-and it is easy to see that if v, v €V,
Uy = v in Vothen (v, ) = ®4(v,+) in C°(cl Q). Further, define M?, M8, K¢ by
MUY = [{0}, MS(0)], M§(U) = [{0}, M&, ()], K% =V x KL with

M) = {z ev; /F m(®%v, ) [ ()]t al — /T (B2 (v, 2)) [0, )] Al

<Gy < /F M@ (0 )@ ) A0 - [ (@008 (o, 2))ar

U Ty
forall p e W};

MHw) = {zeV;(z0) =0, (z,p) < 0forall p €V, 9%(¢, ) 2 0on Iy}

if @6(1},-) >0only;
M(v) =0 if % (v, 20) <0 for'some 2o € Iy

K5 = {p € V5 0e M (p)).

Here, ¢+, 7 denote the positive and negative parts of p, respectively, ¢ = ot — 7.
Note that we have K§ = {p € 'V; ®(p,) > Oon Iy} and int K3 D {p € V;

®%(p,+) > 0 on LI} # 0 because 3% is (V — C2(c10))-continuous and the interior
of K9 is the preimage of an open set.
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Opseryation 4.1, The mappings M and M§ obviously satisfy the following

conditions:
(4.1) 0 € M%(0); :
(4.2) K% is a closedconvex cone with the vertex at the origin; {0} # K Sy
(4.3) iU € K% then U™ € K,
(44) MS(@V) = tMS(V) forall t > 0.V € V2
(4.5) i U-€ V2 then (Z,U) =0 for all Z € MJ(U);
(4.6)if € V2 then (Z. W) 2 0 for all W€ K, Z € =ME(U).

' Proposition 4.1, Let U, —0, W, = Tg—"—ﬁ W, Znyes Z in V2 and'd, — din

1]
R2 such that D(dp) Wy + Zn € ~*1{56). Then W, — W, DWW +2 € —M§(W).
The proof is given in 9]
There exists a system of contintious functions p,: R — R with a real parameter
7€ [0, +00) such that

(4.7) Do = 0,0 (8) = 0 for £ 20, pal6) € (m{€),0l for £ <0
satistying the following conditions:
if 7, — 7 € [0,400); & & then pr, (62) = o (€);

Prln)

7

i, €(0,400), & =0 then Proi=limint >0;
o

(48) 7, =04, & =0 then P—T—g@—”z —0; limimu”&iéﬁ >0
n nodool TG

7, = +00y & £ Py (&) —p
then p.c m(&) or p=m(§) for £ =0 or £ #0, respectively.

Let us define for any 7€ [0, +00) a function o+ B — B such that po-(6) =0
for all £ = 0.and po{€) = p, £ for all £ < 0. Moreover; a system of operators
P2 PE V2 5 W2 with a parameter T € [0, +oc) is defined by PHU) = [0, P, (v)],
PEAU) =[0. P8 o (0)] for U = [, vl where

(P (v),0) :/ (@20, )80 (0, 2) AT
T forall v, 1 e V.
Bra) )= | p- (@ (0.a)@:0) a0
Iy



Observation 4.2. For such a system of operators and a fixed § € (0,05) the
following conditions are clearly fulfilled:

{ PHU) =0 for all U K7,

4.9 -
(49 (PAU), V) L0 forall Ue Vx V., Ve K% €0 +oo);

(4.10) (P, UY 20 (P&,(U),U) 20 forall 7 € Vix V. 7 €[0;+00):
The proofs of the following propositions for Model Example will be given'in [9]:
Proposition 4.2, Let U, = U in V2, 1,20, d,, - d'€ B2, Then

1539+anf<D*‘(dn)Pfﬂ (Up) Un = Uy 0.

If, moreover, U.= 0, Piu(f/”) are bounded and W, = ‘[g":’ T LW then
DL Aoy P (U
Hming (2 @) P ) whzo
noton 101

Proposition 4.3, Let Uy > Uy 7, = 1 € [0,+0). Then P2 (U,) 5 P(1).
For 7 = 400 and P? (Uy) v Z this Z belongs to M2(U). For U= 0 and 7 = 0 the
convergence
U= B2 () B 0
holds.. Moreover, iU = 0, Wo = |Ual720s 8 W and 1 = 7 € [0, +o0), then
JEPE (Un) B BE(W). For = +o0 and U7 PE (1) 5 Z we have Z €
MEW).

¥2

Proposition 4.4, Let U, 5 0, Wy = U7, = W g K8 7 7 > 0 and
V€ int . Then limsup [[U,)I=" (P2, (U5), V) < 0. Forr = 0. moreover,

nHoo

Bim sup(ra Ul 7 (P2 (T), V) <0,
N~ oo

2 vz
Proposition 4.5, Let us assuwe that U, > U, 2. % 7.4, L de R2 and
6, — U4 Then the following implications hold: :

- 4 /2 N
(A1) D)+ 2o € =M (U) = U B U, DU+ Z € < y(U):
(412)  D)Ush Zp € =M U) = U 5 U DU 4 2 € = ML),
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Let us remark that, (4.11) is esgential for the proof of Theorem 4.1 and (4.12)is used
for the proof of the destabilizing effect (s > so)-—sce Remark 4.2,

Let 6o be from (1.1) and let &% € C, be a fixed point such that there is an
eigenfunction e corresponding to'the eigenvalue ., of the Laplacian with (1.3) such
that

(4.13) e < —gon a dp-neighbourhood of Iy incl € for some £ > 0.
Then the system {e;}52, can be chosen in such a way that &, = ... = Kppp1; b is

the multiplicity of &, and (4.13) holds with e = e, In particular, it follows from
Observation 3.3 and the definition of K% that

(4.14) Uy € Ep(d®) nint K¢ for any 4 € (0,6,)
is fulfilled with U = Up(d®) ( = [an(d®)ep, ep); see (3.5)).

In the sequel we consider a curve o given by a differentiable mapping o: R — M_
satisfying

o(s) € Dg for all s € (so,+00),

o intersects the envelope € at the point o(sq) = d2,
(4.15) o intersects the line di = &% at a point 0(), § > s,

oi(s)< %}f for all s.€ (s0,8),

o1(s) > %,_ for 5 € (5,8 + (o) with some (5 > 0.
Tt is essential that if d° € € N C, and (4.14) holds with Uy = U,(d°) then
(4.16) the curve ois transversal to C,, at d%

Note that if; moreover, d® € (0 Cy, Cp # C, then o has to be transversal to €,
but not necessarily to both C, and C,:

Remark 4.1 Byintroducing the curve o{s) we have changed the two-parametric
system (2.10) with [di,ds] € R% to the system

(4.17) D{o(8))U — BAU = N(U) € ~M(U)
with a single parameter s € R. Further, by a critical point of
(4.18) Dio(s)U ~ BAU =0
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or (2.11) written with di,dy replaced by 01(s),02(s) we mean a parameter s; such
that Ep(o(s1)) # {0} or Er(a(s1)) # {0}, respectively, and by a bifurcation point
of (4.17) we mean a parameter s, € R such that for any neighbourhood of [s»,0,0] €
R x V? there exists [s,U] = [s,u,v], U]l # 0 satisfying (4.17). - Therefore, by
the assumption (4.15) s¢-is the largest critical point of (4.18), because a nontrivial
solution of (4.18) exists only for o(s) €.C; for some j = 1;2,. . see Observation 3.3,

Theorem 4.1.  Let (SIGN), (1.1), (2.2), (2.4) and (2.5) hold, let o(s) be a
differentiable curve satisfying (4.15), let d° € C, and (4.16) hold. -Let-(4.14) hold
with Uy = Up(d®) { = [op(d)e, e, see (3.5)). Consider a multivalued mapping
M such that there exists a system of multivalued ‘mappings M S and the corre-
sponding homogeneous multivalued mappings My and M, the operators P2, P!
(7 € [0, +00), 6 € (0,40)) satistying the assumptions (4,1)~(4.6), (4.9), (4.10) and for
which Propositions 4.1-4.4 and (4.11) in Proposition 4.5 vemain valid: Then there
exists a bifurcation point sy € [so. 8] of the inclusion (4.17). Hence, there is oo > 0
such that for any 0 € (0, 00) there are s,, U, satistying:(4.17), [U,l|> =0, 5, €[50, 4]
and such that if pn = 0, 5, sy then sy € [so, 8]

Proof will be given in Section 7. For n = 1, ¢f. [16], Theoreny 2.10.

Remark 4.2, If, moreover, either int K # @.or (2.11) is equivalent to (2:13) (this
assumption is satisfied in many reasonable situations)-and the conditions

(4.19) HU K then U € K,
(4.20) e V2 then (Z,0) > 0forall T e K. Z € — My(U)

and (4.12) hold then we can prove s; > so; which implies that s,, U, from Theo-
rem 4.1 do not satisfy

(421) D(o())U — BAU — N(U) =0

—see the proof of destabilizing effect in Appendix.

Remark 4.3 There are two main improvements in comparison to {16}, Theo-
rem 2.10. First, the localization of the bifurcation point is specified—we show that
57 < 8 5is from (4.15), 1e.d; = o(si) & Zo in the sense of [7], 1e.df = a3 (s7) € 2%,
Second, in {16] the case n'= 1, dim Ep(d®) = 1 and int K # § was considered. Here,
n > 11is admitted and therefore the possible difficulties dim Ep(d?) > Tand int K = ()
must be overcome: To get over the former one the operator Is-is involved. (see No-
tation 5:2), to get over the latter; the approximate problem (5:13)-—-see below—-is
considered. Notice that for §-fixed; the existence of a hifurcation point s‘} for this
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d-problem can be shown in the same way as in {16], ¢f. Remark 8.1 in Appendix for
another technique overcoming the emptiness of intK by using the notion of pseu-
dointerior:

Corollary 4.1, - Let (SIGN) and (1.1) hold; let o(s) be a differentiable curve
satisfying (4.15), Jet d° € C, and (4.16) hold: Let m be the multivalued function from
Model Example and Jet ns assume that there exists an eigenfunction e, corresponding
toan eigenvalue k, of the Laplacian with (1.3) such that (4.13) is fulfilled withe = ¢,
Then stationary spatially nonconstant wealk solutions-(spatial patterns) of (SRD),
(1.2) bifurcate at some s € (s0, 8]

This follows from Theorem 4.1; Propositions 4.1-4.5. Remark 4.2 and the fact that
no nontrivial constant functions.can satisfy (1.3):

5. REDUCTION OF DIMENSION OF THE SPACE. Ep{d®)

In'this section we will keep the assumptions of Theorem 4.1. The following propo-
sition holds (cf. [16], Remark 4.5):

Proposition 5.1, Let o satisfy (4,15) and (4.16). Then

(kpo2(s0) — baa)?

ai(sg) +.04(s0) <0
byabay

For the proof see Appendix.
Observation 51, Similarly asin [6], Section 4 we will consider an eigenvalue
problem

(5.1) (DM BA = DU = ul.

We: will study the hehaviour of eigenvalues of (5.'1) with respect to-the changing d
along the curve a(s): The process will be the same as in [6]. Therefore; the detailed
calculations are explained in Appendix and here only the main steps are sketched. -

All cigenvalues of (5.1) are the roots of
(5.2) wrdidsk? = Bi(dkip +mi(d) = 0,
ie.the numbers

(5.3) (@) = POV

2dydar; b2
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Here, Bi(d) = dibay + dobyr — 2didokiss wi(d) = (diki— biy)(daki — bap) = biabar,
w(d) 1= dibs, + d3bE; ~ 2didobyiboy + 4didsbisbar, 1= 1,2, 0 The set {d € RZ;
w(d) = 0} 18 a couple of half-lines; one of them is a common tangent 7 fo all
hyperbolas Cy, j = 1.2,.. (see also [20] and Figures 1 and 2). The calculations
of the crucial signs of the eigenyalues u?)(d), uﬁ” (d) from. (5.3) in the domaing
Dy, iy De, are described in Appendix. They lead to the conclugion that for d lying
to the left from Cj, there is one positive root of (5.2) and for d lying to the right
from C;, either none or both roots of (5.2) are positive.

ds Gi= 0 yi=0
= —

/ Dy
/
De 7)5// 3 - i 0
g o o +
/ i T
(l‘L
Fig.2

Notation 5.1. (Cf.[8], Notation 4.1.) The vectors

) :
Mﬂiﬁﬂa@wﬁa feN reio

(5.4) v = | —

are the eigenvectors of (5.1) corresponding to uﬁ’)(d).

Letn > 0 be a small number. Let d” € €, == Chyioy; d% ¢ T. Then the
curve o(s) for s € (sp — 1,80+ 1) goes either from Dy into Dy or from D; into Dg
for 5 small—see Fig. 2. By up(s) for s € (50 ~ 1,50 + 1) we denote the root of (5.2)
changing the sign at d°, i.e.

Hpls) = ug)(rr(s)) to,nT = &
(5.5) =o)L =CNT

(see Appendix for details).
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Let € Cp= ... = Cpypy, d° € T. Then the curve o(s) goes from the domains
(D1UD,) into (D4 UDs): By u;(s) we denote the positive root of (5 2) on (50 —1,50)
(e: it (s) = b (o (s)) ) and for [sg, 8o +n) we put p,(s) = Repd (:7(5)), r=12

Let us denote by
[02(5)'?1 = bop + pi(8)oa(s) ks

(5.6)  Ui(s)= =

el i=p o pth-1

the corresponding eigenvectors if d® ¢ 7 or d° € 7 and s € (so — 7, S0, or their real
parts in the case d® € T and s € (50,50 +17).

Observation 5.2 (Cf.[8], Observation 4.2.) Let q(s) # is(8) for all g satis-
fying kg # #p. Then

Ker(D™Ha{s))BA — (1 + pp(s))]) = Lin{Ui(s)} 2542
for all s € (sg — 1,80 +n) in the case d° ¢ T and for all s € (s0 — 7,30] in the case
d® € T. In particular, if d° € C, and d° ¢ C, for all C; # C,, then
(5.7)  Ep(d®) = Lin{Us(so) )2

PN
If po(s) = p(s) for some ¢ satisfying K, # kg = .. .= Kgpe—1, Where kg has the mul-
tiplicity ¢, then Ker(D™%(a(s))BA— (1 +pp(s))T) = Lin{Ui(s) Fimp,..pth—1,0, gt b1
for all s € (so — 17,80 + 7). In particular, if d € C, 1 C, for some Cy # Cj, then

(5:8) Ep(d®) = Lin{Ui(s0) biop,pihatiasigteats

Notation 5:2. (Cf [8], Notation 4.2.) Set [(d®) = {i € N\ {p}; d° € Ci}. Set
L(d%) = {i € I{d%); C; = C,} and I,(d°) = I(d®) \ 1,(d°). Choose 7 > 0 such that
Lp(s) is well defined for any s € (3o — 7, S0 +n). Moreover, for i € I(d°) set

vi(d®) =1 it ps(se) = () ar p () = 0,
vi(d) = —1if us(s0) = p () and (&) # 0,

introduce a continuous cut-off function y with a support in (so = %; 50 +7) such that
x{(s0) = 1, x{R) ¢ [0,1] and for any 6 > 0, the linear completely continuous operator
L;(s) in V2 (for any s fixed) by

(6LU)

TeE e

(59 La(s): U bx(s)- Y ui(d")<
i€1(dY)

Let us notice that in [4] and [6] a simpler definition of I was taken without a
sign term. Here we need also a proper sign in (5.11) below for the proof of the fact
that s; > so in Theorem 4.1. Hence, the proof of Lemma 5.1 below is slightly more
complicated but its assertion is the same as that in [6].
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Observation 5.3 (CL[8) Remark 4.2.) (5.9) vields that-Ls(s) = 0 for s € R
i L) =0, teif dim Fp(d%) = 1. From (5.4), (5.6), the form of U* and the fact
that (¢;,e;) = 0 for i 5 j we deduce that for any s € (so ~ 1, 50 +7) the identities
WUP(@(9)), U (0 () = {Ui(s),U5()) = ([UF(3),U;(s)) = 0 hold for all J # 4,
r=:1,2and

Li($)Up(s) = La(8)U; (s) = 0, Le()U (0(s)) = 0dor i ¢ I{d), n = 1,2,
(5:10)  Ls(s)Uils) = ox(s)Ui(s) for i € I(d°), -if d” lies above or in C; N T,

Ls()Ui(s) = —6x(s)Ui(s) for i € I(d%). if d° lies below C; 1T
Moreover, we have for o(s) lying in the neighbourhood of Cy, o(s) ¢ T that

.11) (D(a())Ls (U, Up(s)) = {D(o(8)) Ls(s)U, Up(s)) =0 for any U e V3
' (D(o(s)Ls(8)Ui(s), Uz (s)) < 0 for i € I{d°).

See Appendix for-the proof of the last assertion. Note that if d° € €, 01 Cy; Cp # €

and p < g, then d° ¢ 7 and d° lies helow C,, 0 T and above C, N 7.

Lemma 5.1, (Cf.[6], Lemma 4.1.) There exists 6o > 0 such that for all § € (0,40)
there is n. > 0 such that the following assertions hold.

(a) Let d° € C\T. Then forall s € (sg—1; So-k1); the eigenvalue i, (s) from (5.5)
is simultaneously an algebraically simple eigenvalue of the operator D71 (g (s))BA —
Ls(s) — I with the corresponding eigenvector U, (s), It changes the sign as 8 crosses
so. The otlier eigenvalues have constant signs and constant multiplicities on (sg
80 1):

(b) Let d” e C,00T. Then for's € (so =1, 50]; ppls) is an eigenvalue of
D~Yo(s))BA — Lsls) ~ I with the only nermed eigenvectors iﬁ% Foris€
(801, 80), 1t,(8) is positive and algebraically simple, 1, (s0) = 0is not algebraically
simple. . The sum of algebraic multiplicities of the other positive eigenvalyes of
D7 o(s))BA — Ls(s) = I is even for all 5 € (50—, 50). For s € (s,80 +1n);
all eigenvalues of this operator are coniplex.

In both cases (a), (b);, Ker(D71(a(s0))BA — Ls(s0) = I) = Lin{U,(s0)} ‘and the
number ©(sg—¢)~0(so+e) isiodd foralle € (0,n) where ©(s) is the sum of algebraic
multiplicities of all positive eigenvalues of the operator D= (o (8))BA — Ls(s) = I.

The proof, similar to that of [6], Lemma 4.1, is given in Appendix.
Let the parameter § > 0 be admissible for Lemma 5.1. For 1 > 0 as in Lemma 5.1
and such that

(5.12) sotn< s
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where 3is from the assumption (4.15), we arrive at the following inclusions: '
(5.13) D(a(s))U ~ BAU — N(U) + D(a(s)) Ls(s)U- € =M°(U),

(5.14) D(o(s))U ~ BAU + D(o(s)) Ls(s)U € =MS(U)

and the corresponding linear equation

(5.15) D(o(s)U = BAU + D(o(s)) Ls(s)U =0,

which is the aim of this section.

6. PROPERTIES OF SOLUTIONS TO THE PENALTY: EQUATION

~We will consider the system of penalty equations
6.1) D{a(s))U.— BAU — »1-«?}711\"(0') +D(a(s)Ls(s)U + PA(U) =0
with the norm condition

oT

. Ut = :
©2) o = 5=
Throughout this section d.>>0.is a fixed parameter admissible for Lemma 5.1; hence
we can use int K2 #:0. Moreover, p > 0'is fixed and 7 € [0, +00) is a penalty
parameter. The penalty equation (6:1) is a linear equation (5.15)-for 7.= 0 while for
T = +0c we get the inclusion (5.13) (for the proof see Lemma 6.2).

Lemma 6.1 If[s,, Un, 7] € Rx V2 X RY s, s, Uy = U, 1 =7 € [0,+00],

: $ ST =
T NUn) + Do (sn) Ls{sa)Un + P2, (Un) =0

then U, — U. If, moreover; |U|| =0, W, = ”—,S-LW ='W then W, = W.

Tn

(6:3) . D(o(s,))Uy = BAU, —

Since the operator Li(s) is completely: continuous, the proofis identical to that of
[16], Remark 3.1,

Lemma 6.2, - (CL[16], Lemma 3.2.) Let [s,,, U ma]l € Rx V2 RY 5, — s,
Up =, 7= +oc and let (6.3) hold. Then

D(o(s))U = BAU ~ N{U7) + D(o(s)) Ls(s)U € —M*(U).

Proof. From the continuity of Ls; Proposition 4.3 and (6.3) it follows that

2 = =P8 (Us) = D{a(sn))Un = BAU, = == N(Uy) + D{o{sn)) Ls(s0)Us

- D(o(s))U = BAU — N(U) + D{o(s) Ls(s)U = —Z € =M*(U).
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Lemma 6.3.  (Cf.[17], Lemma 1.1.) Any bifurcation point s € R of (5.13) is
simultaneously a critical point of (5.14).

Proof. If s is a bifurcation point: of (5.13) then there exist s, —'s and a
sequence {U,} such that JU, || = 0, U #0, W, = HZUI—nH = W and

N(U)
U1l

MU,

(6.4) - D(o(sp))Wy = BAW, — [

+ D(o(s,)) Ls(spn)Wn € =

Using the compactness of A and Ls, the assumption (2.5) and Proposition 4.1 we
obtain W, — W and

(6.5) D(o(é})w’ — BAW -+ D(a(8))Ls(s)W € —MS(W).
0

Lemma 6.4.  If Ker(D(o(so)) — B*A + Ls(s0)) Nint K # 0 then {U € V?;
D(o(s0))U —BAU + Ls(s0)U € =ME(U)} = Ker(D(o(so)) = BA + Ls(so)). 0I5,

The proof is identical to the proof of [16], Lemma 3.3, if we put Up ==U,(s0).

Lemma 6.5, Ifo;(s) > %}f (i.e.0(s) € Zy in the notation of [7}) then the only
solution of (5.14) is trivial. (The line dy = I’ZL,L is the asymptote to Cy—see Fig.1.)

Proof is done in a similar way as in [7], proof of Theorem 2.1. Note that the
condition (MO) in the notation of [7] holds for any § > 0 small enough due to the
assumption (4.5). Moreover, it follows from (5.12) that Ls(s) = 0 for's > 3,

Lemma 6.6, Ifd=[dy,d5] € R%, d > ¥ and 7 € [0,+00) then the equation
D(d)U — BAU 4 P$_(U) =0
has only the trivial solution.
The proof is identical to that of Lemma 3.4 in [7].

Lemma 6.7. Let (; be from the assumption (4.15). For any ¢ € (0,() there
exists po >0 such that there is no nontrivial solution U 'of (6:1) with s =3 4 ¢,
7 € [0, +00) and [U1? < go:

Proof follows from Lemmas 6.5 and 6.6 and can be done in the same way as that
of 8], Lemma 3.9
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Lemma 6.8, If (55, Un: 7] = [50,0,0], Wa = 1y — oy and (6.3) holds then

L 8 TS
liminf 22 > 0.
e = Tn,

Proof is'done in the same way as that of [16], Lemma 3.6 if we put Up = — [g") (:; T

Observation 6.1. (Cf[16], Remark 3.8.)° The assumption (4.9) implies: If
6.
[Un, 7] € V2 x R and fﬁ%}ﬂ — F' then

PE (Un), W)

S 5
. W= & < : /e K°.
(6 6) (FyW) n_l_lg}w A 0 forany W€ K

Moreover; let F# 0 and V€ V2, W € int K¢ be such that (F, V) > 0, (F,W) = 0.
Then (F,W +1V}):> 0 for ¢ > 0 and simultaneously W + V. € K¢ for t > 0 small
enough. Therefore (F, W) < 0 for all W € int K® and any F' # 0 satisfying (6.6).

Lemma 6.9. There exists go > 0.such that if p € (0, 00), Sn, Un; o Satisfy (6.1); -
(6.2), Un' ¢ K%, (50, Upym] = [80.U, 1), Wy = i—‘g—d = W, s, 2 80 and 7€ [0, +00]
then W ¢ K°. :

Proof is similar to that of Lemma 3.7 in [16). For the sake of completeness, it can
be found in Appendix.

Lemma 6.10.  There exists oo > 0 such that if s, U, 7 satisfy (6.1); U ¢ K*,
Ul < oo then s # sy.

Proof can be done'in the same way as the proof of [16], Lemma 3.9 where we
take Up = —7 Z;E;g;, again, which is the only normed solution to (5.15) for s = 5o
belonging to K°.

Lemma 6.11. There exists oy > 0 such that if s, U, T satisty (6.1); 5> so,
0# Ul < o then U ¢ OK?.

The proof is identical to that of [16], Lemma 3.10. Again; we take Uy = *ﬁ?‘—‘?ﬁ
p S0,
and use the fact that it is-the only normed solution to (5.15) for 5 = so belongi’ng to
K°.
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7. PROOF OF THE MAIN RESULT

Let 0 >.0 he fixed and such that Lemma 5.1 is'satisfied. We rewrite the system
(6.1) into the form

7.1) U-TU +H(s.U) =0,

where

T(s)U = D7 o(s))BAU = 6 Ls(s)U,

H(5,0) = D™ (o) | - 1= N(0) + PA(O)).

(7.2)

If we define PS(U) = P%_(U) for 7 < 0 then

for-any s-€ R, T(s): V2 = V2 is linear completely continuous,
the mapping ¢ = T'(s) of R into the space of linear continuous
(7.3) mappings in V2 (equipped with the operator norm) is continuous,
‘ the mapping Q: R x V2 x R —» V2 defined by
Q(s,U, 1) = T(s)U = H:(s,U) is completely continuous;

it O
(7.4) U)o 171
uniformly with respect to s € [sq — 7,50+ 7). 7 € (0, +00)

are satisfied under the assumptions from Sections 1 and 4.

The rroof of Theorem 4.1 is based on the following theorem (where by a critical
pointof T we mean the parameter s € R such that there exists a nontrivial solution
of U —T(s)U = 0 and by ©7(s) we denote the sum of algebraic multiplicities of all
positive eigenvalues of the operator T'(s) — I):

Theorem 7.1. Tet K # V2 be a closed convex cone in V? with its vertex at
the origin and let the mappings T, H satisfy (7.3) and (7.4). Assume that sq is the
greatest critical point of T', so Is an isolated critical point of T, Ker(I'— T(so)) =
Lin{lp}, —Us € int/C and

(7:5) Or(so+6) — Orp(sp—£) s odd for any £ €(0,4)
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with ‘some €0 > 0. Let the following assumaptions hold for any o € (0, )y 00 >0
small, [s,U, 7] and [s;,, Uy, 7,] satisfying (7:1), (6.2), 7 € [0, +00):

(7.6) there exists C = C'(go) >0 such that s < (‘

@D (Un K 120, [50.Unm] = [50,0,0), nt )
= 3 Y sn >0

Ty BT

78 (Ua K ma>0 [s0 U] = 50, Uyr) o2 2 W e e x)

[iUnl‘
== 3 Y g, < s0;

onzne

(7.9)  ifU &K then s # sp;
(710) if s > so U # 0 then U ¢ 0K
Then for any o € {0; 0o) there exists & closed connected set CypinRx V2% R containing
[50,0, 0} such that

(1) if s, U, 7] € C, is such that [s0,0,0] # [s, U, 7] then (7.1), (6.2) are fulfilled,

5> 80, U @K

(i) for any 7 > O there exists at least one couple [s; U] such that [s, U, 7] € C,.

Proof of this theoremn is based on Dancer’s global bifurcation theorem ([1], Theo-
rem 2) and on a general continuation theorem proved by Kutera in {14]. The main
ideas of the proof are given in [16], proof of Theorem 4.2, Note that the role of the

sets CFand CF is reversed here in comparison with [16]:

Proof of Theorem 1. We will prove Theorem 4.1 in several steps: [n
Step 1 we will show for fixed § > 0 and ¢ > 0 small the existence of ‘a solution
[s2, U] of (5.13). In Step 2 we obtain by a limiting process ¢ ~» 0 (still with 6 > 0
fixed) a bifurcation point s5 € [so, -+ Go] of (5.13). Finally, we will show in Step 3
the existence of a bifurcation point s7-€ [s0, 5] of (4.17) by a limiting process § — 0.

Step 1. For afixed & » 0 we show that the assumptions of Theorem 7.1 are
fulfilled with the operators from (7.2), Uy = m and with K = K% from No-
tation 4.1: Tt follows from Remadrk 4.1 andthe assumptiou: (4,15) that sy from
the assumptions of Theorem 4.1 is the greatest critical point of 7" and Lemma 5:1
gives Ker(/ — Ti(sp)) = Lin{U,}; =U, € int K°. The assumption (7.5) follows from
Lemma 5.1, the assumptions (7.6)-(7.10) follow from Lemmas 6.7-6.11. Hence it fol-
lows from Theorem 7.1 that for any 0 € (0, 00) fixed thcre are (s, Up; 15) satisfying
(7.1) and (6:2). (i.c: (6.1) and (6.2)), Un & K%, s, — 55 > s0, 70 = +00. We can
assume U,, — U? and Lemmas 6.1, 6.2 imply that U, ¥> US and U} satisfies

(7.11) D(o($$)U = BAU — N(U) + D(o(s9) Ls (U € ~ M*(U).
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Moreover, U2 ¢ int K and the limiting process in (6.2) implies || 74||2 = p. Further,
Lemma 6.7 gives sg € [s; 5+ (o)

Step 2. We can construct s5, U? for any ¢ € (0, 00) and obtain by a limiting
process o — 0 a bifurcation point 5§ € [so, 5+ (o} of (5.13). Lemma 6.3 yields that
% is & critical point of (5:14). If s§ = sy for some 6 > 0 then Lemma 6.4 would
imply UJ € K¢ and

D(o(s0)Uf = BAU? + D(o(s0)) Ls(50)US = 0.

Therefore Uf = — gty € int K would hold. On-the other hand we'had US ¢ K?

& o

by Theorem 7.1 and the limiting process T!'?f%n? — U$ gives a contradiction. This
onll

implies s§ > so forany 6 > 0 small.

If int K # 0 and dim Eg(o(sg)) = 1 then the assertion of Theorem 41 is‘proved;
because we can take ®%(v) = v for any ¢ and we have s; = 5% € (s0,3).

Step 3. By the limiting process in (7.11) with 6, — 04, sg" = 8, Ul -2 U,
(after choosing subsequences) we obtain by using (4.11) that U, gn = U U2 =0
and [s,, U,] satisfies (4.17). This process can be done forany o € (0, 00). Using the
fact that (o can be chosen arbitrarily small we obtain by this procedure a bifurcation
point 57 € [s0,35] of (4.17),

Remark 7.1. Let us notice that Steps 1 and 2 can be done in the same way as
n [16]. Step 3, where ¢ is not fixed, is new in comparison to [16]. The fact s; > sg
can be proved under the additional assumptions from Remark 4.2—see the end of
Appendix.

8. APPENDIX

Proof of Proposition 5.1. If g{(so) = 0 then oh(sg) < 0 due to the
orientation of the curve ¢(s) and there is nothing to prove. If of(so) # 0 then we
can consider a curve o(s) = [01(s), 2(3)] as aa(s) = G(a1(s)) on (so 1,80 +n) with

some 7 > 0 small and the hyperbola C, as-a curve
biobor /K% by
dy = hy(di) = m ;;,

Differenting h, with respect to dy, we obtain at the point d§’ that

dhp(d?) brobor /K2 bigbay

A T @ Eale T @Ry bl
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It follows that :
dhp(dg) S (dg"p —bag)?

ddy biaby
by using (3.4) for df, d3. Differenting & with respect to a1, we obtain ﬂ;’;‘l@ = —Z-%%
for any s € (s — 1,55 +m). If the curve o(s) intersects C, at the point d° = o(so)
transversally then either :4;%2—; = d—‘z%ﬁ < _ggﬁ(,s%i_;%g@ﬁ in the case o (50) > O or
{3}:—3% = gd—(d%h > —%ﬁ—b—:ﬁ in the case ¢} (so) < 0..In both cases we obtain

_ (oa{s0)sp — b3)?

oy (so).
Brabon 1(s0)

oh(s0) <

Our assertion follows.

Detailed version of Observation 51. (Cf Section 2, [6], Section 4,
[4], Section 2.) We can write (5.1) as a system

b biy o

U T Au— I Av =~
ba1 bag

v % Au——E;Aun- v

and the elements U = [u,v] € V2 in the form

(8.1) u= Z('u,65)ej, = z(v,ej)ej,

=l =1

Using these expansions and the fact that k, is a characteristic value of 4, multiplying
the first equation by dyk;e; and the second by dixie;, we obtain

(uye)(difp— by =+ pdyks) = (v, edbia = 0;
(u,e3)bar = (v, e){daki — baz + pidoks) = 0

fori=1,2,... A couple {u,e:); (v e;) can be nontrivial for some 4 if and only if
(8.2) (di ki — biy + Bt ki) (do ki — by + pudpiss) = byaboy = 0.
'Hence, 1 is an eigenvalue of (5:1) if and only if 14is a root of

wrdydai? — Bild)sik + vi(d) =0
(8.3) with 8;(d) = dibag + dabyy — 2dydasss,
%i(d) = (diksi = biy)(dani — boz) = braba
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for at least one §. Now, the coefficient. 8;(d) can be positive, negative or zero. (Note
that the corresponding coefficient in (3.3) in Section 3 was negative by (SIGN) for
any d in a neighbourhood of C;.): The term #:(d) is negative or positive for d lying
to'the left or to the right; respectively,from C;. It is easy to simplify: the term

wild) = BH(d) — 4didoyi(d) = d3b2, + d3b3, — 2didabi1bis + 4didabizbn

and see that it does'not depend on'i. Therefore we will write only w(d) instead of
wi(d). The set {d € R%; w(d) = 0} is the sef of all d satisfying

303, + 30T, — 241 dabiibyy +4didobishy = 0.
Solving this equation for da with dy as a parameter we obtain

oo d o
dy?) = g [—bizhon + det B £ 2/“bizbon Vet B], r = 1,2,
it

Thus the set {d € R% ; w(d) = 0} is a couple of half-lines, one of them is a common
tangent T to all hyperbolas €5, § = 1,2, (see also [20) and Figures 1 and 2).
Further, the set C; = {d € R2 ; 8;(d) = 0} is a hyperbola with the property C;NC; =
TnC.

The roots 4 of (8.3) are

(o Bild)Ewld)
w (d) = TmEe r=1,2.

Ifv:(d) < 0 then w(d) > 0 and |B:(d)| < /wld). Therefore there are two different real
roots ygl’ (d), uﬁz) (d), one is negative and the other one is positive. If 7;(d) > 0 then
w(d) can be either negative (and we have a couple of complex roots) or nonnegative
but [8;(d)] > /w(d) {and we have two real roots, both having the same sign). The
possibilities for the signs of ,ugl)(d), ;L?) (d) are the following-—see Fig. 2:
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domain: Bi(d)yi(d) w(d) relation between eigenvalues:

den o @< e@ s o0, w0 gD 22
2)

dely 00— lm@ < Ve@d w0 uP <ot = i
deD == @] < VE@ w0 WP ol
dec =0+ E@=VeD w) =0 P o W
deDs o s> Vo@D d <0 WP 0, W) 20

deT -t 0 B> Ved) w) =u <o

deDy et pgl) # uﬁz), py) € C\R, Re,ugr) <0
deC; 04 = w2 P v Rep? =0

d €Dy iR e ygl) # u?), ;Lﬁ") €CA\R, RE[IA?) >0
deT o+ 0 ) > Ve wP =P

deDg O el A O e e
dec; 40 @ = VD pY >0, b =0 0 g
deCinGnT 0 0 0 (Bl =ve@d uN=p? =0

These calculations lead to the conclusion that for d lying to the left there is one
positive root of (8:3) and for d lying to the right from C;, either none or both roots
of (8.3) are positive.

Proof of the second part of (5.11). Using (5.9), (5.6), (8.2), (SIGN)
and (5.3) we obtain

(D(o(s))Ls(s)Uils). Ui (5)) = dx(s) - > wi(d) (Dl (). U (5))

JEI(d)
= (o) | 2D b L) g
e

% {02 (8)biy + 01 (8)bas = 201(5)02(8) ks — 201 (8)aa(8)kipi(s)]

i Sx(s) [o2(8)ks = bon + ;;iz:g(s)m] w(a(s)) 0 fori G‘I(do),

Proof of Lemma 5.1, ‘Analogously as in Observation 5.1 we obtain that p
is‘an eigenvalue of the problem

D7} o(s))BAU = Ls(s)U = U = uU
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if and only if 1 is a root of the quadratic equation
(8.4) . =B+ i) =0

with coefficients 8(s), 7%(s) depending continuously on s and §. For the sake of
efficiency, the structure of the proof differs from the structure of the lemma. We
shall distinguish the following cases:

A1, Let i ¢ I(d®). Tt follows from (5.10) that u{" (o(s)) and U (a(s)), r =12,
from Observation 5.1 and Notation 5:1 are simultaneously eigenvalues and'eigenvec-
tors of D7} (o (s))BA — Ls(s) — I and (8.4) is equivalent to (5.2) for any s € R. In
particular; this means by the definitions of u,(s), U,(s) that p,(s) and Uy(s) is-an
eigenvalue and an eigenvector of D™ (0 (s))BA~ Ls(s)~1 for any s € (sg =1, 50+17)
or 5 € (50— 7y50) in the case d® € C, \ T ord® € €, N T, respectively. ;

A2. Tfi ¢ I(d®) U {p} then d° and also a(s) for any s € (so.— 1,80 + 1), lie
to the right from C;. (Recall that d° € C.) It follows from Observation 5.1 that
D€ Cp\NT, i ¢ 1(d®) U{p} then the sign of both p(0(s) # pP(a(s)) is
constant on (so — 7, so+n) (more precisely, pgl) (ols)) # “iz) (c(s)) are both negative
or positive on (so — 17,80+ 1) for C;NT = d% or ¢ = C; 1 T, respectively). If
e C, 0T, i ¢ Kd°) U {p} then 1 (s)) £ 1P (5(5)) are both negative or
positive on (so—17,80) for C;NT = d° or &® < C; N T, respectively, and complex on
(80,80 + 1) :

A3. For i = p, up(s) changes its sign at sq and the sign of the other root is
constant-on {sg — 7, S0:+n) in the case-d® € C, \ T. More precisely; if C;0n'T =-d°
then p,(s) = u(pl)((f(s)) > 0on {55 —1,80); Up(s) = ,u;l)(cy(s)) < 0.on (so;80 +1);
p§,2)(a(s)) < 0on (sg—n, 80+ and if & < C;N T then u,(s) = }.1.1(,2) (o(s)) < 0on
(501 50), ipl5) = 157 (0(5)) > Don (s0, 50+, b (0(8)) > Oon (50—, s0-+1). In
the case d® € C,NT we have 1, (s) > 0 and the other root is negative on (so =1, s0);
both the roots being complex on (sg,so =+ 7).

Bl. Leti € I(d). Let d € Cy, d% ¢ C, for €, # C,.  Then i € I,(d),
1i(8) = pp(s) and I,(d%) = 0. Let &30 T = d° Notation 5.1, 5.2 and (5.10) yield
that p;(s) = 0x(s) is an eigenvalue of D~ (0 (s))BA — Ls(s) ~ I and one of the toots
of (8.4); 1t follows from Notation 5.1 and Observation 5.1 that we can choose dg > 0
and 17 > 0 such that p;(s) — éx(s) < 0 on (so — 1,80 +n) for any 0 € (0,40): The
roots of (8.4) depend continuously on s € R; § > 0'and therefore the choice of §p >0
and n > 0 can-be such that the other root-is negative on (o0 — S0+ 1) for any
8 €(0,6). Let d® < ;N T. Similarly as above, Notation 5.1, 5:2 and (5.10) yield
that 1:(s) +0x(s) is an eigenvalue of D™*(o(8))BA ~ Ls(s) — I and one of the roots
of (8.4). It follows from Notation 5.1 and Observation 5.1 that we can choose do > 0
and 1> 0 such that () + dx(s) > 0'on (sq =, 80+ n) for any d € (0,00) and that
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the other toot is also positive on (sq =17, 50 + 1) Let d® € CiNT. Notation 5.1,
5.2 and (5.10) yield that p:(s) — 8x(s) is an eigenvalue of D™ (0 (s))BA — Ly(s) ~ I
and one of the roots of (8.4) again. It follows from Notation 5.1 and Observation 5.1
that we can choose dp > 0'and 7 > 0 such that both () — dx(s) and the other root
of (8.4) are negative on (sp — 1, 50] and complex on (sg, 5o +n) for any 6 € (0,80).
(See Observation 5.1.)

B2. Leti € [(d). Let d € C,nCy, Co#C,. Letn>q Then C:NT = d° =
Cy T fori € I(d®) Udpl, -5 € 1,(d°). Similarly as above, Notation 5.1, 5.2 and
(5.10) vield that f:(s) = 6x(s) = pp(s) = 0x(s) or 1i(8) + 6x(8) = ag(8) + Ox(s) for
i € I,{d%) ori € I,(d°), respectively, is an eigenvalue of D=Y(c(s))BA~Ls(s)~I and
one of the roots of (8:4). (Let us note that () =0 for any i € I(d®).) It follows
from: Notation 5.1 and Observation 5.1 that we can choose dg > 0 and 7 > 0 such
that p;(s) = 6x(s) < 0 or p;(s) +dx(s) >0 fori € L(d% ori € I,(d%), respectively,
on (sp = 1,80 +1m), 6 € (0,6). The roots of (8.4) depend continuously on s € R,
6 >0 and therefore the choice of ¢y > 0:and 12> 0 can besuch that the other root
is negative or positive for i€ L,(d%) ori € L,(do), respectively; on (8o — 1,80+ 1),
3.€(0,4p).

B3. Letic I(d%). Let &2 € C,NCy, Cp #Cp. Let p<g. Then C; AT < d° <
CyN T for j € I(d®) U {p}, i € I,(d°). Similarly as above, Notation 5.1, 5.2 and
(5.10) yield that u;(s) + x(s) = pp(s) + dx(s) or wi(s) = 8x(s) = pe(s) = Ox(s) for
i€ I(d%) or i€ I,(d%), respectively, is an eigenvalue of D~*(c(s))BA — Ls(s) = I
and one of the roots of (8.4). It follows from Notation 5.1 and Observation 5.1 that
we can choose dg > 0-and 7 > 0 such that pi(s) +x(s) > 0 or pi(s)— dx(s) <0 for
i €.1,(d%) ori € I,(d°), respectively, on (so =17, 80 +7); 6 € (0,480). The roots of (8.4)
depend continuously on's'€ R; 4 > 0-and therefore the choice of dp > 0 andn > 0
can be such that the other root is positive or negative for i € I,(d%) ori € I,(d%),
respectively, on {so — 7, 80 + 1), 6€ (0,d0).

Now, it follows from the relation of the eigenvalues of the operator D7 (o (s))BA—
L;(s)—1I and the roots of (8.4) mentioned above that there are no further eigenvalues
and eigenvectors besides those discussed in A1-B3:

Let us show that for s € (80 —1; 80 +17).0r 8 € (s ~1, 5p) in the case d° € C,\ T or
d® € C, N T, respectively, the algebraic and geometric multiplicities of any positive
eigenvalue of the operator D~(o(s))BA~ Ls(s) —I coincide. First, we will show the
~coincidence of the algebraic and geometric multiplicities of any positive eigenvalue
/LET) (d), 7 =1,2, of the operator D" *(o(s))BA = I.

The adjoint equation to (5.1) 18

B DAY ~ U = pUu

413



and similar considerations as in Observation 5.1 imply that the eigenvectors of this
equation corresponding to u,m (d) are

: ()
O g}_dzl‘h‘"bm*’-ui (d)d2 ki G d_l«fzg O ideied r=12

U (d) = {dz = e Ezvez] [dz % ( /)61161]7 r=1,2.
(Recall that U (d) = [aﬁ” (d)ei: ei], r = 1,2—see Observation 5.2.) An elementary
caleulation using (5.3) gives for u{"(d) > 0 that

KU ), T (ap)) +1

. ldl (darii = bz + u{Hd)da ki)
d b12boy

o O i
,wwbu + dibs ~ 2 dais — 24y ds e ()]

55 =

dabiabay :
- (r) N
e T O N e D 44T
dybyzbyy

U, TO(d)) = 0forany i #j,r =1,2,
cf(5.11). Hence,
(86) . det({T7(d), Ui jes £O0forany JCN, 7= 1,2, d¢ T

This 'yields that the algebraic and geometric multiplicities of pﬁ”(d) coincide for
i €N, r=1,2,d¢7T (see eg [24]). In particular, this holds for d = o(s) with
s € Uy(s0), where Uy (s0) = (s0 — 1,80 +1) for d° € Cu \ T, Uy(s0) 1= (s0 =1, 50)
for d° € C, N T (let us note-that o(s) ¢ -7 for s € U, (s0)).

By a standard treatment of the adjoint operator we obtain

Li) 0 (a(5) = 0for all i ¢ I(d2), 1= 1,2, s € Uy (s0).

This implies that U\ (o(s)) fors ¢ I(d), r = 1,2, s € Uy (50), is simultaneously
an eigenvector of the adjoint operator (D7*(o(s))BA)* ~ L¥(s) — I corresponding
to ;aw (o(s)). The above considerations imply the coincidence of the algebraic and
geometric multiplicities of any MST)(d) >0 with i ¢ I(d%), 1 = 1,2, s € Uy,(s0), as
the eigenvalue of the operator D7 (a(s))BA — Ls(s) — I.

If d° € C, N T then all eigenvalues of D'(a(s))BA — Ls(s) — I corresponding to
i€ I{d°) are negative on (sp — 7, s0) and complex on (s, s +7)-—see the first part
of this proof.

If & € Gy, \ T then, due to the continuous dependence on s € R, & 3 0, we can
choose dg > 0 such that for any 6 € (0,4dp) there is > 0 for which the determinant
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corresponding to (8.6) with the scalar products of the corresponding eigenvectors of
the operators D74 (g(s)) BA~L;(s)~ T and (D7 (0 (s))BA)* —Li(s)~1, respectively,
with 4,7 € J C I(d), remains nonzero on (5o — 17, 0 +1). Therefore, the algebraic
and. geometric multiplicities of any positive eigenvalue: corresponding to 4 € I(d®)
coincide again.

Our considerations lead to the following conclusion. I:d® € €, \ T then y,(s)
is:the only eigenvalue of the operator D7 (o(s)) B4 — Ls(s) — I changing its sign
at so and it is algebraically simple. The other eigenvalues have constant signs and
multiplicities on (so — 0,80 +n). 1f d° € C, N'T then py(s) is a real positive alge-
braically simple eigenvalue on (s0 =7, 8). The other possiblo positive eigenvalues
(which can correspond only to i ¢ I{d%)) form pairs ji; )(o(s)/ # ,u(z) (o(s)) where
pﬁl) (o(5)); ;xéz) (o(s)) have the same algebraic multiplicity, i:e.the sum of algebraic
multiplicities for any such pair is even. All eigenvalues are complex for (g, 0 -+ 177).
The assertion of Lienima 5.1 follows.

Proof of Lemma 6.9
fixed there exist 87t UM o™ (n.=1,2;...) satisfying

ssume that there are o™ — 04 such that for any m

(8.7) Dla(sm))Ur - me

1 + TP WU A+ DA (7)) La (550U A+ P (UT) = 0,

mm

M2 Loin ”n
8 e =

with U™ ¢ I8, [sm Umt i)y (50, U™ 2] nu o W e Kl ifn - oo We
have [[U™]2 = z;;; < 0™~ 0 by (8:8). We can choose a subsequence {Ux 1155
from {UZ}E%_, such that 2, = F%fT ER 7 > Ze K and my— 7 € [0, +00]:

Lemma 6.1 gives Zy, - Z.

First let 7 = 0. Dividing (8.7) by ||Us ||, the limiting process gives
(8.9) D(a(s0))Z — BAZ + D(o(s0)) Ls{(s0)Z =0

with help of (2.5) and Pmposmon 4.3. It means Z = "—LW € int K% because of
W™ € K¢ and the fact that = MW 7 @re the only normed solutions of (8.9). For

7 € (0, +c0] the equation (8.7) gives that “:#/('T‘L are bounded and therefore we can
assume -—1%5—‘;2 B,
(8:10) D(o(s0))Z — BAZ + D(a(s))Ls(s0)Z + F = 0,
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where we have employed (2.5) again. Multiplying (5.10) by — U, the equation

D(e(o)U; ~ B avz — 0

by Z and adding them we obtain (F, U") =0 due to (5,10). Observation 6.1 implies
F=0,ie wehave (8.9) and Z = "WL again. In both cases, this is a contradiction
because Zx ¢ K® and Z, - Z = rﬁy € int K¢ and our assertion is proved.

Remark 8.1. The other possibility to avoid the condition int K # 0 is to define
a pseudointerior

“={Uek; v (PVU)<0& .y g (FW)y>0, U+WeK}

(cf.[26], [6]) and assume ~U,. ~U; € K= instead of the assumption —U, ~Us €
int K% for any 6 € (0,6p) in (4.14), In order to prove Lemmas in Section 5, one has
to add a special assumption about the nonlinearity term N or:about the sign of a
scalar product of a certain type, respectively:

U,
if Up =0, Wy g o
* A A
(8.11) N
n) rw 5 ;
then < oo ,LP> 2 0 for n large enough.

The meaning of this condition fc\r (24 6) is the following: Let s,, U, satisfy (2.6).

Let sy = sp, Up =0, W= m - ]—L} After some calculation (similar to that
in the proof of [16], Lemma 3.6), condition (8.11) leads us to the conclusion that
$n K so. This corresponds to the fact that a branch of bifurcating spatial patternsof
(2.6) goes to the left from C, i.e to the domain of instability of the trivial solution.

Proof of the destabilizing effect in Theorem 4.1 under the
additional assumption from Remark 4.2.

We will show that there exists £ > 0 such that
(8.12) s8> 5o +¢ for all § > 0 small enough.
Assume that for &, — 0 we have s3* — so, U, = Ul — U satistying
(813) D{o(sy))Un = BAU, + D{(a(s7)) L, (57 U € =M (Un),

where U7 are from Step 2 of the proof of Theorem 4.1.. With help of (4.12) the
limiting process in (8.13) gives U, — U and

D{e(so))U ~ BAU € = Mo(U),
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i.e.U € Fr(d%). Under the assumption of the equivalence of relations (2.11) and
(2:13) we can use Lemma 7 together with Remark 5 from [26] to obtain U K and
U.€ Eg(d°). Hence

(8.14) U= 5 aUlso)

i€(a){p}
with some a; € R (see (5.7) or (5.8), respectively). Setting
(8.15) Fy i= D(o(sj"))Un = BAU, +D(a(s7)) L, (572 )Un

we rewrite (8.13) into the form F;, € —Mo(U,). Then the assumptions (4.19) and
(4.20) imply

(8.16) (B, U7 20
To get a contradiction we prove that

(FoU) = (D(o(5))Un — BAU, + Dlo(s)) s, (58U, U")
(8.17) = ([D(o(s5*)) = D(o(so))Un, U?) + (Dle(s6))U ~ BAU,U")
+ (Rlolsy ) Le, (s7)Un U <0,

Indeed, the first scalar product is negative for 3 > so because we have
{ID(a () = D(@(50)Un, U") = (5" = 50) R

where Ry = 07 (85) (Un; U*) 4 05(5,) (20, %) with some 5y, §, lying between s7* and
sq. It follows from (8.14) and Proposition 5.1 that

. 5 (309 (50) = baz)
(8.18) Jim R, = D {—W—WUI(QO)+@(50] <0
1€I(d9)u{p}

Note that (4.16) implies that the term in brackets in (8.18) is negative for all i €

I,(d%) U {p} and nonpositive for i € I,(d°) in the case &> € C, N Cy, C, # Cy—see
Notation 5.2. The second scalar product in (8.17) vanishes because

(D(a(30))Un — BAUn, U") = (Uy, D(a(0))U”" = B*AU”) = 0.



U = i\TﬁL then the last term in (8:17)is zero by (5.11). Further, we have

o -
5—”(9(0(8§"))L5 (s7)Un U")

; (st
=x(sp) 3 yi(d0)<U‘<'5] i

seria) U sy 1?

i o W)U i s ooy
= x{s; 12220)”( )mw((’(bz Wilsy), el (s0))
Z a; [k — baa] /(O]

biabor

(D(o (s NU(s3),U")

forn = +oo
i€ 1{d%)

(see the proof of the second part of (5.11) with 5= o). If d° ¢ 7" then the fimit in
(8.19) is negative and therefore the last term in (8.17) is negative for large n.

It d° € T then w(d®) = 0 and therefore the limit in (8.19) is zero. But
IdY) = {p+1,...,p+k—1} (kis the multiplicity of k), »:(d%) = 1 and
(D(o(56))Ui(s0); U (s0)) = SLLBm=bl o@) _ o oy any j € J(d). Therefore,
by: the definition of Ls and by (5:11) we have

1
Ew((r(s‘}">)Ls,.(s§">UmU*>
1
= 5 (Dla(sp N Lo s )V, U

fy S (U100 :
—xls ’,-g%n T et el (s0)

(8.90)
") s (31 ), Un)
= ze%g U:(sy) Hz
x ([D(o (5 DU(s5) = D(a(s0))Us (s0)]ya:Uz (50))
Al %L__ = sg)a; Rl
X(s, )iej(div) ”U,(séﬂ)( (s so)aiky

with RY = o4 (3L) (n, e2) + 04 (85) (20, v7) for suitable 5%, 57 € (so,si") Hence the
last expression in: (8.20) is negative for large n by the same argument used for the
first term in the last part of (8:17) (cf.(8.18)). The assertion (8:17) follows and we
liave a contradiction with s3» = so. Therefore, 53 > s +¢ with some £ > 0 for any
n-and thus sy 2> 50 +€.
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It remains to show that [s,.U,] do not satisfy (4.21): Assume by contradiction
that there are g, —+ 0, 55, =7 51, U, = 0 satisfying

(8:21) Dlo(5,.))U,, ~ BAU,, — N(U,,) =0.

Dividing this equation by |z, | we obtain after the limiting process

D(o(s;))U; ~ BAU; =0

where Uy is an accumulating: point of Wﬁ This is impossible because so < sy is
the greatest critical point of (4.18).
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