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CONDITIONS GIVEN BY INCLUSIONS 
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Abstract. Sufficient conditions for destabilizing effects of certain unilateral boundary con­
ditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion 
systems of the activator-inhibitor type are proved. The conditions are related with the 
mollification method employed to overcome difficulties connected with empty interiors of 
appropriate convex cones. 
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0. INTRODUCTION 

Systems of reaction-diffusion and the effect of diffusion driven instability, the 

growth of spatial patterns (stationary but spatially nonconstant solutions) and re­

lated eigenvalue and bifurcation problems have been studied for a long time by many 

authors. The motivation for the study of such problems comes from biology and eco­

logy where the behaviour of two or more species is modeled ([11], [21], [22]); the effect 

of diffusion driven instability was described for the first time in [27]. Multivalued 

boundary conditions can describe e.g. a certain control process, a semipermeable or 

another type of the membrane on a part of the boundary. The system with vari­

ous types of unilateral boundary conditions was studied by M. Kucera, P. Quittner, 

M.Bosak, P.Drabek in [2], [3], [4], [6], [12], [15], [16], [19], [26] (the destabilizing 

effect—the bifurcation for the unilateral problem occurs in a domain of stability of 

The present paper was supported by the grant No. 201/95/0630 of the Grant Agency 
of the Czech Republic and by the grant VS 97156 of the Ministry of Education of the 
Czech Republic. 
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the system with classical Dirichlet and/or Neumann boundary conditions) and in 
[13], [17], [18] (stabilizing effect). For a detailed survey see e.g. [8], [6]. 

In this'paper, the results of [16], i.e. the existence of a bifurcation point for system 
with multivalued boundary conditions proved for an interval, are generalized to do­
mains with higher dimension and the localization of bifurcation points is specified. In 
[16] the fact that the Sobolev space W1,2(fi) is embedded into the space of continuous 
functions was used. Therefore, the cone K ;= {v £ W1>2(0,1); v(0) = 0,t;(l) >, 0} 
has a nonempty interior. An analogue of this cannot hold for higher dimension. In or­
der to prove the existence of a bifurcation point by a similar process as in [16], we can 
either define a pseudointerior of K like in [26], [4] or [6] and use a technique similar 
to [3]—this requires an additional condition for the reaction terms (see Remark 8.1 
in Appendix)—or approximate our problem (see Section 3) where the corresponding 
approximate cone Ks, defined with help of mollification, has a nonempty interior. 
Similarly to [16] we show the existence of a bifurcation point for the approximate 
problem and obtain a bifurcation point for the original one by the limiting process 
for S -+ 0. 

1. PROBLEM FORMULATION 

Let ft be a bounded domain in R" with a Lipschitzian boundary, let rD, Tw, IV 
be open (in <9ft) disjoint subsets of 9ft. Let STy be Lipschitz with respect to 3ft, 
meas(3ft \ (rD U rN U A/)) = 0 and 

(1.1) measFo > 0, dist(rD,rv) > S0 with 50 > 0 small. 

Let us consider a reaction-diffusion system 

ut=d1Au + f(u,v), 
RD m 0,+po xft 

vt = d2Av + g(u,v) 

with multivalued boundary conditions 

u = u, v = v on [0, +oo) x rD, 
du dv m(v — v) 

(MC) ^ = °' ^ 6 JT1 on [0, +oo) x rv, 
du dv 
^ = ^ = 0 on[0,+oo)xrA„ 

where d\, d® are positive diffusion parameters, / , g: R2 -+ U are differentiable func­
tions such that f(u, v) = g(u, v) = 0, u, v e R are constants, m: R -> 2R is a suitable 
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multivalued function (e.g. m(f) = 0 for £ > 0, ro(0) = [m°,0], ro(f) is singlevalued, 

negative for C < 0). 

We will prove that there is a bifurcation point dj = [d{,d2] at which stationary 

spatially nonconstant solutions ("spatial patterns") for the system (RD) with (MC) 

bifurcate from a branch of the trivial solution [u, v]. Moreover, this bifurcation point 

can lie in the region of stability of [u, v] as a solution of (RD) with classical boundary 

conditions 

u = u, v — v on [0, +oo) x Tp, 
(CC) gu QV 

T~ = 7r=° on [°>+°°) x (-* urf)> dn dn 

where the bifurcation for (RD), (CC) is excluded. 

Set bu = §£(u,v), bl2 = %(v,,v), 621 = | j ( f i , « ) , 622 = §*(«,«)• It is known 
that under the assumption 

611 > 0, 612 < 0, 621 > 0, 622 < 0. 

611 + 622 < 0, 6nfe22 - 612621 > 0, 

the effect of diffusion driven instability occurs: the constant solution [u,v] is stable • 

as a solution of ODE's 

Wt = / (w,v) , vt = g(u,v) on[0 ,+co) 

but it is stable as a solution of (RD), (CC) only for some d = [di,di] € R+ lying 

in the domain of stability D,s and unstable for the other ones (lying in the domain 

of instability Du)—for the notation see Fig. 1, Notation 2.1 and Section 3. Further, 

spatial patterns of (RD), (CC) bifurcate from [u,v] on the boundary C between Ds 

and Dv (see Fig. 1 and e.g. [20], [25]). 

For the sake of simplicity we assume u = v = 0 in the sequel. We study only 

stationary solutions. Hence we solve the system 

dxi\u + f(u,v) = 0 
(SRD) in n 

d2Av + g(u,v) = 0 

with boundary conditions (MC) and (CC) in the form 

u = v = 0 on To, 

du dv m(v) 
( i .2) - ^ = 0, ^ e - — on TV, 

du dv 
TT = 7T- = 0 on FN dn dn 



and 

(1.3) u = v = 0 on Гp, 
дu ___ дv 
дn дn 

= 0 on rN Ul>. 

2. WEAK FORMULATION, GENERAL ASSUMPTIONS, MODEL EXAMPLE 

N o t a t i o n 2.1. R+-—the set of all positive reals, R+ = R + x R + , l = {-oo}Ul 
dA < dB for any dA = [dA,dA],dB = [dB,dB] G R+ if and only if dA < rff and 

d|<df 
%, e i (j — 1,2,3,...)—the eigenvalues and eigenvectors of -A with condition (1.3) 

C_ := {d = [dud2] € R%; d2 = ^ ^ y j + | f }, J = 1,2,3,... (see Fig. 1) 

C—the envelope of the hyperbolas Cj, j = 1,2,3 (see Fig. 1) 

Du := {d = [dud2] e i + ; d2 > ^"J/% + 7-7 for at least one j = 1,2,3,.. .}--the 
set of all d e R+ lying to the left from C (domain of instability) (see Fig. 1) 

Ds ••— R+ \ (C U Du)—the set of all d 6 R+ lying to the right from C (domain of 
stability) (see Fig. 1) 

T—the common tangent to all C_, j = 1,2,3,... (see Fig. 1) 

d2; 
c'\ 

\ 
ì 
í 

/ 
/ 

Di, f 

c/ 

І 
/" c/ Ds 

Ci, 

Fig.l 

C°(cl fi)—the space of continuous functions on cl SI equipped with the usual Cheby-
shev norm 

V a real Hilbert space, V2 = V x V endowed with the inner product (U, W) = 
(u,w) + (v, z),U = [u, v], W = [w,z] e V2 



A, N'i, Ar2—operators satisfying (2.4), (2.5) 
M = [{0},M'i], Mo = [{0},Mo2]—multivalued mappings of V2 into 2y2 defined in 

Model Example 
f7 = [u,v] elements of ¥2, AU = [Au,Av], N(U) = [Ari(r7),JV3(i7)] for U = [u,v] € 

¥2 

U* = [fcu,v] for U = [u,v] € V2 

K := {17 e ¥2 ; 0 e M0(U)}—closed convex cone with the vertex at the origin 
We denote by —>, —s- the strong and weak convergence, respectively. 

<><Mo' ; ] • - • < - ) - [ ? :;,}• [&n &12I „„ = [&11 621" 
[hi 622J ' [&12 622. 

EB(d) := {Lr e V2 ; D(d)U •- BAU = 0} 
EB* (d) := {<7 e ¥2 ; Z?(d)?7 - B* Af7 = 0} 
Ej(d) := {f7 e ¥2 ; U(d)l7 - R4f7 e -M0(<7)} 
critical point of aproblem (P) (where (P) stands e.g. for (2.7) or (2.11))—a parameter 

d e R | for which (P) has a nontrivial solution 
bifurcation point of a problem (P) (where (P) stands e.g. for (2.6) or (2.10))— 

a parameter d° e R | such that for any neighbourhood of [d°,0,0] e R+ x V2 

there exists [d,U] = [d,u,v], \\U\\ # 0 satisfying (P). 

N o t a t i o n 2.2. Set ¥ := {u e Wlt2(£l); u = 0 on FD in the sense of traces}, 
¥2 := ¥ x ¥, 

(2.1) (u,ip):= / y^ux.ipXi(\x for a l l u d e ¥. 

Then (•, •) is the inner product on ¥ and the corresponding norm || • || is equivalent 
to the usual Sobolev norm on the space ¥ under the assumption (1,1) and the 
embeddings 

(2.2) V w- £-2(fi), ¥ M- L2(dtt) 

are compact—see e.g. [10]. 

Set m(u,v) = f(u,v) — buu - b12v, n2(u,v) = g(u,v) - &2i« - &22V and define 
operators A: ¥ ->• ¥, JV,-: ¥2 ->• ¥ (3 = 1,2) by 

(Au, <p) = / uy> dx for all u, <p € ¥ 
7n 

(Nj(U),<p) = [ rij(u,v)<pdx for all (7 = [«,-y] e V2, f 6 V. 
7Q 
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It follows from embedding theorems (see e.g. [10]) that 

(2.4) -A is a linear, symmetric, positive and completely continuous operator. 

Further, if u,v 6 W1,2(Q) then it follows from the embedding theorem that u,v 6 

Lq(Sl) with any real q >- 1 for n <. 2 and 1 <. q ^ ^ 3 ; for n > 2. If rij satisfy a growth 

condition %•(£,»?) ^ C(l + I f ] ' - 1 + |T? | 9 _ 1 ) for any f , j ; e R then «,•(«,!>) £ Lq'(Q) 

with g* = jr^j by the Nemytskii theorem (see e.g. [10]) and this together with the 

compactness of the embedding mentioned implies that 

N\, N2 are nonlinear, completely continuous operators from V to V 

( 2 ' 5 ) M - » l - f l 0 - - l , 2 ) 
HUH-+0 | |r j | | 

(for the last condition, see [18], Lemma l.A in Appendix). 

Now, a weak solution of the problem (SRD), (1.3) is a solution of the operator 

equations 

diu - buAu - by2Av — Ni (u, v) — 0 

d2v - b2iAu - b22Av - N2(u, v) = 0. 

We also consider the linear problem corresponding to (2.6), i.e. 

d\u — buAu — bi2Av = 0 
(2.7) 

d2v - b2\Au — b22Av — 0. 

M o d e l E x a m p l e . (Cf. [16].) Let us consider a multivalued mapping m : R —v 

2R which is a singlevalued real continuous function on R \ {0} and a multivalued one 

at f = 0 such that 

m(0 = 0 for £ > 0, m(f) <. 0 for £ < 0, 

lim m(0 = m° with some m° € ( -oo , 0), m(0) = [m°, 0]. 

Set 

m(i) = m(0 = m(0 for £ # 0, 

m(0) = m°, m(0) = 0 

and let us assume that 

(2.8) |m(OI, |w(OI < fe • (1 + |f |) with some fc > 0. 
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Consider the situation from Notation 2.2 and define a multivalued mapping M2: V -» 

2V by 

M2(v) := \z e V; / m(v)ip d P <. ( a , ^ <. f m(v)ip d P 
(2,9) !A7 -lAr 

for all p e V, <£ > O o n / v j . 

(The inequalities on JTy are understood in the sense of traces.) Then a solution of 

diu — buAu - bv2Av - Nj (u, v) = 0 

d2v — 621-4« - 6 2 2 ^ - N2(u,v) e -M2(v) 

is-a weak solution of the problem (SRD), (1.2)—see [9] for details. Further, intro­

duce a positively homogeneous mapping M0: V2 ->• 2V" corresponding to M(U) = 

{{0},M2(v)], U = [« ,D] , which is defined by M0(U) = [{0},M02(iO] with 

M02(v) := { z e V : (z,v) = 0, <z,<^) sC 0 for all <peV,<p^0 a.e.on JV} 

if tr ^ 0 a.e. on A/ 

Mo2(f) := 0 if v < 0 on a subset of ft / of a positive measure. 

Then a solution of 

(2.11) 

is a weak solution of 

d\u - buAu - b\2Av = 0 

d2v - b2iAu - b22Av e -M02(v) 

di&u + bnu + b\2v = 0 
in fi 

d2Av + b2íu + b22v = 0 

with the boundary conditions 

u = v = 0 on FD, 

(2.12) § H = 0 , v > 0 , | £ . * 0 , g . v = 0 a n r t , , 

fM^oonZV 
on on 

Note that the problem (2.11) is still nonlinear because M0 is cone-valued and non­

linear. Hence we cannot use the standard technique (as e.g. the degree theory for 

linear mappings) to obtain the bifurcation points. 

R e m a r k 2.1. We can also consider m° = - 0 0 in Model Example. Then we 

define M in the same way as M0 and do not assume (2.8). 
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R e m a r k 2.2. It is easy to see from the definition of M0 that the inclusion 
problem (2.11) is equivalent to the variational inequality 

U €K; 
(2.13) 

(D(d)U - BAU, V-U)>0 for any VeK 

with 

(2.14) K := {U € V2; 0 € M0(U)} = V x {ip G V; <p > 0 on rv). 

Therefore, the inclusion (2.10) is a generalization of such problems (2.13) and also 
of variational inequalities 

(D(d)U - BAU - N(U), V -U) + <S(V) - <S(U) > 0 for any VeK 

with a positive convex lower semieontinuous functional \P: V2 -> (—oo,+oo], $ ^ 
+oo, where M = 9$—the subdifferential of 9 (cf. e.g. [5]). 

3. PROPERTIES OF THE LINEAR EQUATION 

In the sequel, we consider a general real Hilbert space V and operators A: V -+ V, 
N: V2 -> V satisfying (2.4), (2.5). 

O b s e r v a t i o n 3.1. (Cf. [4], Section 2, [6], Section 4.) It follows from (2.4) 
that the characteristic values of A (i.e. the eigenvalues of the Laplacian with (1.3) 
for A from Notation 2.2) form a sequence {«;}£], (K; —> +oo for i —> +oo) of 
positive numbers. The set of all corresponding eigenvectors {e;}°^.l forms a complete 
orthonormal system in ¥. 

Proposition 3.1. The eigenvalue problem 

(3.1) D(d)U - BAU + 1.1.AU = 0 

has a system of eigenvalues 

(3.2) / 4 r ) = §P>" + 622 - ( * + * ) * ; ± v /^]> r = M 

witii V := [6U +622 - (di +d2)Kif -A- [(duu - bu)(d2Ki-622) -6i2621], -i = 1,2,..., 
which are roots of 

(3.3) /x2 - n[bn + 622 - (d% + d2)«i] + (di/t; - 6u)(d2«; - 622) - 6l262i = 0. 
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In particular, d = [di,<k] is a critical point of (2.7) if and only if n. = 0 is a solution 

of (3.3), i.e. if and only if 

(3.4) (dlKt- - 6u)(d2Ki - 622) - 612621 = 0, 

i.e.if d lies on a hyperbola d = id = [di,d2] € R i ; d2 = —: ^ - ^ — I \ for 
I dj — bu/Ki Ki 1 

some i = 1,2, — 

For the proof see e.g. [4], Section 2, 

O b s e r v a t i o n 3.2. (See [20] and [4] for the proof of the following statement.) 

Under the assumption (SIGN), for a given i there are two real roots p\ ' (d), u\ (d) of 

(3.3) for any d lying to the left from C; or in the right neighbourhood of C, (including 

Ci). The smaller one (say /4' (d))' is always negative. 

It follows from the definition of C; that LI{1) (d) < 0 or LI{1) (d) > 0 for d to the right 

or to the left, respectively, from C. and in a neighbourhood of C;. For d lying to the 

right and sufficiently far from C,:, we have fi\T\d) 6 C\R with Re p f \d) < 0, r = 1,2. 

Further, for any d € R+ , let us set jj(d) := max{/if }(d); / ^ ( d ) 6 R}. Hence, n(d) 

is the greatest eigenvalue of (3.1). Then the envelope C of all Cj, i = 1,2, . , . is 

equal to {d e R"+; n(d) = 0} and /r(d) < 0 or n(d) > 0 for d from a neighbourhood 

of C and to the right or to the left from C, respectively. 

O b s e r v a t i o n 3.3, It follows from Proposition 3.1 and Observation 3.2 that 

Es(d) # {0} if and only if d € [) Cj. Moreover, let p be an index such that the 
i=l 

characteristic value KP of A (i.e. the eigenvalue of the Laplacian with (1.3) for A from 
Notation 2.2) has a multiplicity k, KP = ... = Kp+k-i- Then for any d e C p = . . . = 
Cp+k-i, d$.Cq for Cq ^ Cp we have 

(3.5) EB(d) = L i n ^ d ) } ? * * - 1 with U{(d) = [a . (d)ej ,e j , 

where at(d) = ^f^- > 0. Further, if d € Cp n C, for some C, # CP , rep # K, = 

. . . = Kq+t~x (re, has the multiplicity £) then 

(3.6) J3B(d) = Lin{D'i(d)}i=p,....,p+^1>g,...,,+i-i. 

For the proof see [4], Section 2. 
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4. THE MAIN RESULT 

We will show in Theorem 4.1 the existence of a bifurcation point to (2.10). The 
method of the proof of this fact will be the same as in [16]. One of the assumptions 
in [16] was intfi # 0. Here, we have n > 1 and therefore intii = 0 in general. We 
consider an auxiliary problem with an additional parameter 5 (see below) which has 
the property int K jt 0 and which approximates our original problem for 8 —> 0. 

N o t a t i o n 4.1. Let 5 > 0 be fixed. Let G be a bounded domain in Rn with a 
Lipschitz boundary such that cl ficG. We define a mollification mapping §s: V -4 
Wl'2(G) in the following way: Let <p6: Rn -4 [0, +oo) be a C°°-smooth function such 
that <ps(0) > 0, <ps(x) sC </(Q) for any x e R'\ <p6(x) = 0 for all x <f Bs(0) (the ball 
with a radius 6 centered at the origin) and jR„ <ps(x) dx = 1. Then <ps is bounded 
on Rn and <ps converges in the sense of distributions to the Dirac measure centered 
at the origin for <5 -4 0+. For an example of such a function see [23]. There exists a 
continuous "extension" mapping E: W1'2(Q) -4 WQ'2(G) (see [23]). Let us define a 
mapping 

<$>s(v,x) := / <ps(x - y)Ev(y) dy for any v e V, x e G. 

Hence, $s(v, •) is a continuous function on elf! and it is easy to see that iivn, v e V, 
vn -4 v in V then <$>s(vn,-) -4 $s(v,-) in C°(clfi). Further, define Ms, M$, Ks by 
MS(U) = [{0},M|(-y)], M

6(U) = [{0},M<f2(t>)], Ks = Vx Ks with 

Mi(v):=\z€V; f m(¥(v,x)M>s(p,x)}+ cLT - / fn(¥(v,x))[¥(<p,x)]~ dP 
1 Jrv Jru 

<.(z,<p)^ f m(¥(v,x))[$s(<p,x)]+dr- I m($s(v,x))[<!i>s(<p,x)]-dr 
Jrv Jrv 

for all <pe v } ; 

M$2(v) := [z e V; (z,v) = 0, (z,<p) s$ 0 for all <p e V,¥(<p,-) >. 0 on rv) 

if ¥(v,-) Js OonTy; 

M$2(v) := 0 if ¥(v,x0) < 0 for some x0 G ly; 

Ks:={<peV;0eMs
2(<p)}. 

Here, <p+, <p- denote the positive and negative parts of <p, respectively, <p = <p+ — <p-. 
Note that we have K§, = {<p e V; §s(<p, •) > 0 on rv} and int.K| D {<p 6 V; 
$4(V, •) > 0 on cl ly} j=- 0 because $* is (V -4 C°(clfi))-continuous and the interior 
of Ks is the preimage of an open set. 

394 



O b s e r v a l i o n 4.1. The mappings Ms and _/,'} obviously satisfy the following 

conditions: 

(4.1) 0 6 i l P ( 0 ) : 

(4.2) K" is a closedconvex cone with the vertex at the origin, {0} 5- K6 5- V"; 

(4.3) if C £ l<" then U~ € K5: 

(4.4) M$(tV) = M ^ ( Y ) for all , > 0. S' _ V2: 

(4.5) if F e V2 then (Z, U) rr. 0 Cor all Z £ M;](U): 

(4.6) if tr e V- then (Z, _>) > t) for all _ e A''\ Z e - _ / 0 ( n . 

P r o p o s i t i o n 4 . 1 . Let I „ -> 0. If',, = T^jr -^ H". Z„ -> Z in V2 and _„ -+ _ in 

R2. such that D(d„)W„ + Z„ e ^^Tjrfif1. TJien IV„ -+ W, D(d)W + Z £ -M$(W). 

The proof is given in [9], 

There exists a system of com iuuous functions pT: ft -+ R with a real parameter 

r £ [O.+DOJ such that 

(4.7) p0 = 0. p r(£) = 0 for £ ^ 0. pT(£) G (/»(£}.0] for £ < 0 

satisfying the following conditions: 

if Tn ^ r e [0, +.00). £„ -+ £ then pT„ (£„) -+ pT(0~ 

if T„ ~r r e (l), +00). £„ -+ ()_ then />T := liinuif - ^ — — > 0: 
I . - - v. £„ 

( " 1 8 ) if r„ -> 0+, £„ -> 0_ then ^ + ^ -* 0. iiminf % - f ^ > 0: 

then JJ 6 m(,£) or p = mt£) for £ = 0 or £ 5- 0. respectively. 

Let us (u.ine for any r € [0.— ''x7i a function M> 7 : E. -4 R such that Po,r(£) = 0 

for all £ Js 0 and Po.Tt'£) = /_• • 5 for aiJ £ < ()• Moreover, a system of operators 

Pf . / r ? T : *'2 ~» V" with a parameter T t [0. +-x • is delined by PS(U) = [0, Pf,2(r)}. 

PijU) = [0.P,;s
T,;(e)j for U = Ut.r). where 

( P f , f r ; . c v _ / ljT;^ir . - ) ) ' .*f , ._) 'IT ) 
i r 7 ' i o r a i i r , c - V . 

( P o ^ ^ r ) , £•) _= / ,-,„ , l$' ;(e..r))*5(i. ' . .rj d P I 



O b s e r v a t i o n 4.2. For such a system of operators and a fixed 5 € (0,S0) the 
following conditions are clearly fulfilled: 

( P.f(U) = 0 for all U 6 Ks, 
(4.9) { I 

{ (P'(U), V) < 0 for all U e V x V, V G Ks, r e [0, +co); 

(4.10) (PS(U), U) > 0, (P0*T(£/),!/) Js 0 for all U e V x V, r e [0, +oo). 

The proofs of the following propositions for Model Example will be given in [9]. 

Proposition 4.2. Let Un -- U in V2, r„ > 0, rfn -+ d 6 R|. Then 

liminf(D-1(dn)PT (*/„),£/„ - U) ^ 0. 

n—>+co n 

If, moreover, U = 0, Ti'̂  ,p- are bounded and Wn = Tyjj+r ~^ W, then 

r • c/D^(dn)PJ(Un) v 
hmmf ( rrrr^ Wn ~W)^0. 
JJ-+ + CO \ | | [ / n | | ' / 

Proposition 4.3. Let Un ^ U, r„ -> r e [0,+oo). TJien PsJUn) -I PS(U). 
For T = +oo and Ps

n (Un) -I Z this Z belongs to MS(U). For U = 0 and T-0 the 
convergence 

\\Un\\^PsJUn)"^0 
holds. Moreover, if U = 0, Wn = \\Un\\-

1Un -^ W and rn -» r 6 [0,+oo), then 
Illtnll^P/jr/J ^ P(f,T(W/). For r = +oo and WU^PfJUn) ~l Z we have Z 6 
MjW). " 

Proposition 4.4. Let £/„ +̂ 0, Wn = \\Un\J
lUn -^ W <fc Ks,Tn -> r0 > 0 and 

V e intKs. Then limsup \\Un\\~
x (Ps

n (Un), V) < 0. For r0 = 0, moreover, 
„->+«> 

limsup(Tn||t/n||)-1 (P?JUn),V) < 0. 

Proposition 4.5. Let us assume that Un -1- U, Zn -t• Z, dn -+ d € R+ and 
<Sn -+ 0+. Then the following implications hold: 

(4.11) D(d„)?Jn + Zne ~MS"(Un) -=>Un-lu, D(d)U + ZZ -M(U)\ 

(4.12) D(dn)Un + Zn € ~Mt (UJ => Un -\ U, D(d)U + Ze ~~Mo(U). 



Let us remark that (4.11) is essential for the proof of Theorem 4.1 and (4.12) is used 

for the proof of the destabilizing effect (*•/ > s 0)—see Remark 4.2. 

Let du be from (1.1) and let d" G Cp be a fixed point such that there is an 

eigenfunction e corresponding to the eigenvalue KP of the Laplacian with (1.3) such 

that 

(4.13) e $J — e on a (^-neighbourhood of D{, in <•! fi for some c > 0. 

Then the system {^,-Jjli can lie chosen in such a way that K,, = . . . = « p + f c _ l, I; is 

the multiplicity of KP and (4.13) holds with e = e,,. In particular, it follows from 

Observation 3.3 aud the definition of K° that 

(4.14) -Uo Є E'н(d°) ПiatЛ '* for ;шy <i Є (0,òo) 

is fulfilled with U0 = Up(d°)( = {ap(d
r')ep.ep}. see (3.5)). 

In the sequel we consider a curve a given by a differentiable mapping a: 

satisfying 

(4.15) 

' a(s) e Ds for all s 6 (s0, +co), 

a intersects the envelope C at the point a(s0) = d°, 

a intersects the line d\ = ^ - at a point a(s). s > s0, 

<7i(s) < ^ for all se (.s0,«), 

, cr1(a) > ^J- for *• 6 (s ,s 4- Co) with some Co > 0. 

It is essential that if d° 6 C n Cp and (4.14) holds with U0 = [^(il0) then 

(4.16) the curve a is transversal to Cp at d°. 

Note that if. moreover, d° 6 Cp n Cg , Cp ^ C,( then <j has to be transversal to Cp 

but not necessarily to both C„ and C, r 

R e m a r k 4.1. By introducing the curve a(s) we have changed the two-parametric 

system (2.10) with [di,d-2} € R'i to the system 

(4.17) D(a(s))U - BAU - N(U) G -M(U) 

with a single parameter s 6 R. Further, by a critical point of 

(4.18) D(a(s))U ~BAU = 0 



or (2.11) written with rA.,ri2 replaced by cri(s).a-2(s) we mean a parameter sL .such 

that EB(C(SI)) •£ {0} or Ej(o(s\)) ^ {0}, respectively, and by a bifurcation point 

of (4.17) we mean a parameter s-2 6 R such that for any neighbourhood of [s^.O.O] e 

R x ¥ 2 there exists [s,U] = [s. «.<>], Ijf'l! ^ <J satisfying (1.17). Therefore, by 

the assumption (4.15) s0 is the largest critical point of (4.IS), because a nontrivinl 

solution of (4.18) exists only for a(s) € Cj for some j = 1,2,. . . --see Observation 3.3. 

T h e o r e m 4 . 1 . Let (SIGN). (1.1). (2.2). (2.4) nnd (2.5) hold, let a(s) he a 

differentiate curve satisfying (4.15), let rZ° 6 C,, and (4.16) uofri. Let (4.14) /loJri 

tn'tii L'o = C^fr/0) ( = [a p ( r /° ) r ; > , r j . see (3.5)). Consider a multivalued mapping 

M such that there exists a system of multivalued mappings M" nucl the corre­

sponding homogeneous multivalued mnppiugs M0 and M0, the operators P]'. P;] r 

(r e [0,+oo), 6 e (0,S0)) satisfying the assumptions (4.i)-(4.6l, (4.9), (4.10) .'lad for 

which Propositions 4.1 4.4 and (4.11) hi Proposition 4.5 reimiiu valid. Then l here 

exists a hifurcarion point sj e [xiuS] of the inclusion (4.17). Hence, there is g0 > 0 

such that for any e G (0. Qo) there are se. Ue satisfying (4.17), ||(7„]p = •>. s„ € | s u . *] 

and sucii f ia t if g„ -> 0 + , se„ ~> s; then sj e [so. 5]. 

Proof will be given in Section 7. For n = 1, cf. [1CJ. Theorem 2.10. 

R e m a r k 4.2. If, moreover, either int A' ^ 0 or (2.11) is equivalent to (2.13) (this 

assumption is satisfied in many reasonable situations) and the conditions 

(4.19) if U e K then U' G A'. 

(4.20) if U e V- then (Z. $ ) >- 0 for all * e K. Z € ~Mtt(U) 

and (4.12) hold then we can prove sj > so, which implies that a ,, Ue from Theo­

rem 4.1 do not satisfy 

(4.21) D(a(s))U - BAU - N(U) = 0 

- see the proof of destabilizing effect in Appendix. 

R e n i a i k 4.3. There are two main improvements iu comparison to [10], Theo­

rem 2.10. First, the localization of the bifurcation point is specified—we show that 

sj < S, 5 is from (4.15), i.e. dj = a(sj) $ Z0 in the sense of [7], i.e. cl{ = <TJ (SJ) < !iru-. 

Second, in |1CJ the case n = 1, dim EB(du) = 1 and hit A' ^ 0 was considered. Here, 

n > 1 is admitted and therefore the possible difficulties dim En(cP) > 1 and hit A" --- 0 

must be overcome. To get over the former one the operator L.\ is involved (see -No­

tation 5.2). to get over the latter, the approximate problem (5.13)--see below—is 

considered. Notice that for S fixed, the existence of a bifurcation point «'| for this 



5-problem can be shown in the same way as in [16], cf. Remark 8.1 in Appendix for 

another technique overcoming the emptiness of int K by using the notion of pseu-

dointerior. 

Corol la ry 4 . 1 . Let (SIGN) and (1.1) hoJd, Jet a(s) be a differentiabJe curve 

satisfying (4.15), Jet d° £ Cp and (4.16) hold. Let m be the muJtivaJued function from 

Model Example and let us assume that there exists an eigenfunction e.p corresponding 

to an eigenvalue KP of the Laplacian with (1.3) such that (4.13) is fulfilled with e = ep. 

Then stationary spatially nonconstant weak solutions (spatial patterns) of (SRD), 

(1.2) bifurcate at some sj € (SQ,,S]. 

This follows from Theorem 4.1, Propositions 4.1-4.5, Remark 4.2 and the fact that 

no nontrivial constant functions can satisfy (1.3). 

5. REDUCTION OF DIMENSION OF THE SPACE J3s(d°) 

In this section we will keep the assumptions of Theorem 4.1. The following propo­

sition holds (cf. [16], Remark 4.5): 

P r o p o s i t i o n 5 .1 . Let a satisfy (4.15) and (4.16). Then 

( /CP<T 2(SO) - 0 2 2 ) 2 , , , , , , , „ „ 

— ^ — — ox s0) + cr2(s0 < 0. 
O12O21 

For the proof see Appendix. 

O b s e r v a t i o n 5.1. Similarly as in [6], Section 4 we will consider an eigenvalue 

problem 

(5.1) (D~1(d)BA-I)U = pU. 

We will study the behaviour of eigenvalues of (5.1) with respect to the changing d 

along the curve a(s). The process will be the same as in [6]. Therefore, the detailed 

calculations are explained in Appendix and here only the main steps are sketched. 

All eigenvalues of (5.1) are the roots of 

(5.2) p2d1d2K
2
i - Bi(d)Kni + y,{d) = 0, 

i.e. the numbers 

(5.3) ^^y^.r-U 
2did2tii 



Here, ,-),((!) ~ d,b-j2 + d 2 6 u - 2d]d2/,-,, ^ ;(d) :-- (<ilf;, - bu ud 2 «; - 622) - 6,262.,. 

u-'(d) := di62
;
2 f d^6ja - 2d1d-d,nb2-2 + Ad^h-.h-n, i - 1.2. . . . The set \<l (- «H : 

Lj(d) = 0} is a couple of half-lines, one of them is a common tangent 7" to al! 

hyperbolas C,. j = 1,2 (see also [20] and Figures j anil •_>). The I'alculaiions 

of the crucial signs of the eigenvalues 11) '(d). u,"u') from (5.3) iu the domains 

Vi I>6, are described in Appendix. Thev lead u> The conclusion that for d lying 

to the left from (?,-, there is one positive root oi (5.2) and I'm ii lying to the light 

from C'i, either none or both roots of (5.2) are poMiive. 

Fig. 2 

N o t a t i o n 5.1. (Cf. [8], Notation 4.1.) The vectors 

( 5 .4) t/f(d) = \±^^jil^^iei,el i e N. r = 1,2 
L 621 J 

are the eigenvectors of (5.1) corresponding to 11V (d). 

Let r\ > 0 be a small number. Let d° € Cp - ... = Cv+k-i, d° $ T. Then the 

curve a(s) for s € (so — r\, so + 77) goes either from V% into V3 or from Vi into V6 

for i] small—see Fig. 2. By fip(s) for s 6 (so - r),so + '?) we denote the root of (5.2) 

changing the sign at d°, i.e. 

pPW = 41)Ws)) ifcPnrdd° 
(5.5) =42)Ws)) i f d °^C p nr 

(see Appendix for details), 



Let d° € Cp = . . . = Cp+k-i ,dPeT. Then the curve a(s) goes from the domains 
(Vi UD2) into (V4, UVS). By nP(s) we denote the positive root of (5.2) on (s0 -i), s0) 
(i.e. /^(s) = Hp}(cr(s)) ) and for [s0, s0 +77) we put /J.P(S) = Re/4 (<x(s)), r = 1,2. 

Let us denote by 

(5.6) Ui(S) = pis)Ki~b2\+l'liis)a2{s)Kiei,ei}, i =p , • • • ,P + k - 1 
I b2i J 

the corresponding eigenvectors if d° ^ T or d° 6 T and s 6 (s0 — »?, s0], or their real 
parts in the case dP eT and s e (s0,s0 + rf). 

O b s e r v a t i o n 5.2. (Cf. [8], Observation 4.2.) Let y,q(s) j= nP(s) for all q satis­
fying /c, 5_ Kp. Then 

Ker(D-1(cr(s))B/l - (1 + )iP(s))I) = L i n ^ - ) } ^ - 1 

for all s e (s0 — T), so + JJ) in the case dP $ T and for all s £ (s0 — »?, -0] in the case 
d° € T. In particular, if d° 6 Cp and d° £ Cq for all C, # Cp, then 

(5.7) _JB(d0) = Lin{(7i(so)}|,+;-1. 

If fiq(s) = yttp(s) for some q satisfying KP 5- Kq = ... = K9+£_I , where K, has the mul­
tiplicity I, then Kex(D-1(a(s))BA-(l+)ip(s))I) = Lm{Ui(s)}i=P,...,P+k-i,q,...,q+t-i 
for all s e (s0 — T), so + r)). In particular, if d € Op n Cg for some Cq 5- Cp, then 

(5.8) EB(cf>) = -^{^(so)}.-,,...^.*-!,,....,^-/-!-

N o t a t i o n 5.2. (Cf. [8], Notation 4.2.) Set I(dP) = {i 6 N \ {p}; dP e Ct}. Set 
Ip(d°) = {ie I(d°); Ct = Cp} and Ig(dP) = I(dP) \ Ip(cP). Choose t) > 0 such that 
j_p(s) is well defined for any s 6 (s0 — r), s0 + rf). Moreover, for i € I(dP) set 

J/i(d°) = 1 if Lii(s0) = n(1)(d°) or $\<P) = 0, 

^(d°) = - 1 if ^(so) = Mf HcC) and Mi 'V) 7̂  0, 

introduce a continuous cut-off function x with a support in (s0 — TJ, S0 + rf) such that 
x(so) = 1, X(R) C [0,1] and for any S > 0, the linear completely continuous operator 
Ls(s) in V2 (for any s fixed) by 

(5.9) Ls(s):U^SX(s)- £ ^(d°) ( ^ g • ^(s ) . 

Let us notice that in [4] and [6] a simpler definition of L was taken without a 
sign term. Here we need also a proper sign in (5.11) below for the proof of the fact 
that sj > SQ in Theorem 4.1. Hence, the proof of Lemma 5.1 below is slightly more 
complicated but its assertion is the same as that in [6]. 



O b s e r v a t i o n 5.3. (Cf. [8]. Remark 4.2.) (5.9) yields thai Ls(s) ~ 0 for .s 6 ft 

if /(//") = 0, i.e.if dhuEn((P) = 1. From (5.4), (5.0). the form of /."' and the fact 

that (ci.ej) — 0 for i ^ j we deduce that for any s 6 (s0 -- //,so +'//) the idealities 

(Ul'')(c(s)).U{
j
r)(a(s))) = ((s(s).Uj(s)) = (U;(s).Uj(s)) = 0 hold for all j f- /, 

/• = 1,2 and 

L0(s)Uv(s) = Ls(s)U;,(s) =- 0, Ls(s)Uy](a(s)) =-. 0 for / g /(c/°), r = 1,2. 

(5.10) Lf,(s)Ui(s) = d'\(s)C ;(s) for / e I(du), if </" lies above or in C; O T , 

i<s(-s')Ci(s) = "(5\(,s)C;(.s) for J € /(r/°). if </° lies below C; n T. 

Moreover, we have for <r(s) lyin;_>, in the neighbourhood of Cv. a(s) (f. T that 

(i9(r/(.s))Z0(s)C. t > ) > = (7J (a ( i ' ) ) i J ^) t ' , U;(s)) = 0 lb,- any C C-'.V'. 

(iD(r/(i'))T,(.s)tr;(.s). C; (.s)> < 0 for / 6 IkP). 

See Appendix for the proof of the last assertion. Note that if iP e (',, n C,;, Cp ^ ('„ 

and /J < t/, then rf° 0 T and d° lies below Cp n T and above C,y n T . 

L e m m a 5 .1 . (Of. [G]. Lemma 4.1.) There exists 60 > 0 such that for alio € (Q,d0) 

fiiejr- is // > 0 sueii fiia/ rJre following assertions hold 

(a) Let d° G C,,\T. Then for ail s £ ( , ^ - j ; , ,s„+ ;y). ,'ije eigeuralue p,Js) from (5.5) 

is simultaneously an algebraically simple eigenvalue of the operator D~~'' (a(s))B.! 

/ „ ( s ) -- f irifii fiie corresponding cigenvecror U,,{s). It chauge< the sign as s crosses 

si,. The other eigenvalues have cou-iatti sights and constant multiplicities on (:-0 -

r/.so + i]). 

(b) Let (?> (- C,, r,T. Then for s £ (s0 - //. so]- jUPN '« an ei/rejmiiuc oi 

D~'' (a(s))B-i - L0(s) — I with the only normed eigeurectors ±--f^L &'0i' s ^ 

(.so — //, .so) /-<;,(s) is pnsitire and algebraically siuyib'. n,Jsn) — " is »of algebraically 

simple. The sum of algebraic multiplicities of the otlwi po-iiire eigenvalues of 

D~1(a(s))BA - Ls(s) - I is even for all s £ is,, - /;..s0). For s G ( S 0 , A 0 + //). 

all eigeilvalues of this operator are complex. 

hi both cases (a), (b). Ker(L>-V(*o))-EU - L^-'o) - / ) = Lm{Up(s0)} and the 

number &(&0-~)—<-)(s0 + s) is odd for all s G (0,/y) \vhere&(s) is the sum of algebraic 

multiplicities of all positive eigenvalues of the operator D~~1(a(s))BA - Ls(s) - 1. 

The proof, similar to that of [6]. Lemma 4.1, is given in Appendix. 

Lot the parameter S > 0 be admissible for Lemma 5.1. For // > 0 as in Lemma 5.1 

and such that 

(5.12) so + iK S 
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where s is from the assumption (4.15), we arrive at the following inclusions: 

(5.13) D(a(s))U - BAU - N(U) + D(a(s))Ls(s)U £ -M5(U), 

(5.14) D(a(s))U - BAU + D(a(s))Ls(s)U 6 -M^(U) 

and the corresponding linear equation 

(5.15) D(a(s))V - BAU + D(a(s))Ls(s)U = 0, 

which is the aim of this section. 

6. PROPERTIES OF SOLUTIONS TO THE PENALTY EQUATION 

We will consider the system of penalty equations 

(6.1) D(a(s))U - BAU — N(U) + D(a(s))Ls(s)U + P5(U) = 0 
1 + T 

with the norm condition 

(6.2) \\Uf = J f - . 

Throughout this section S > 0 is a fixed parameter admissible for Lemma 5.1, hence 

we can use int Ks =£ 0. Moreover, Q > 0 is fixed and r e [0, +oo) is a penalty 

parameter. The penalty equation (6.1) is a linear equation (5.15) for T = 0 while for 

r ~+ +oo we get the inclusion (5.13) (for the proof see Lemma 6.2). 

L e m m a 6 .1 . If[sn,Un,rn] € R x V2 x R+, s„ -> s, Un -± U', r„ -> r e [0,+coJ, 

(6.3) D(a(sn))Un - BAVn - -^—N(Un) + D(a(sn))Ls(sn)Vn + PfjUn) = 0 

then Un -4 U. If, moreover, \\U\\ = 0, Wn = -^- -* W then Wn -+ W. 

Since the operator Ls(s) is completely continuous, the proof is identical to that of 

[16], Remark 3.1. 

L e m m a 6.2. (Cf. [16], Lemma 3.2.J Let [sn,Un,Tn] e R x V2 x R+, sn ~+ s, 

Un -+ U, Tn -> +oo and let (6.3) hold. Then 

D(p(s))U - BAU - N(U) + D(a(s))Ls(s)U G -M5(U). 

P r o o f . From the continuity of Ls, Proposition 4.3 and (6.3) it follows that 

-Zn := -Pi (Vn) = D(a(sn))Vn - BAVn - -I^—N(Un) + D(a(sn))Ls(sn)Vn 

-> D(a(s))V - BAU - N(U) + D(a(s))Ls(s)U = -Z e ~MS(U). 

a 



Lemma 6.3. (Cf. [17], Lemma 1.1.) Any bifurcation point s e R of (5.13) is 
simultaneously a critical point of (5.14). 

Proof. If s is a bifurcation point of (5.13) then there exist sn -4 s and a 
sequence {Un} such that ||E/n|| -» 0, \\Un\\ ^ 0, W„ = p»iT -*• W and 

(6.4) D(o-(sn))Wn - BAWn - ^ i p l l + D(a(sn))Ls(sn)Wn e —M ^ 

Using the compactness of A and Lj, the assumption (2.5) and Proposition 4.1 we 
obtain Wn -+ W' and 

(6.5) D(<x(s))W - BAW + D(a(S))Ls(s)W € -M|(W). 

Lemma 6.4. If Ker(D(ff(s0)) - B* A + I<s(s0)) n kit If* # 0 then {t/ e V2; 
D(a(s0))U - BAU + Ls(s0)U e -M$(U)} = Ker(D(<r(s0)) - BA + Ls(s0)) n il'6'. 

The proof is identical to the proof of [16], Lemma 3.3, if we put U0 = -Up(s0), 

Lemma 6.5. If ax(s) > ^ (i,e,a(s) € Z0 in the notation of [7]) then the only 
solution of (5.14) is trivial. (The line di = &*• is the asymptote to C\—see Fig, 1.) 

Proof is done in a similar way as in [7], proof of Theorem 2.1. Note that the 
condition (MO) in the notation of [7] holds for any 6 > 0 small enough due to the 
assumption (4.5). Moreover, it follows from (5.12) that Ls(s) = 0 for s > S. 

Lemma 6.6. Ifd = [dlyd2] 6 U%, d% > ^ and r € [0, +oo) then the equation 

D(d)U - BAU + PlT{U) = 0 

has only the trivial solution. 

The proof is identical to that of Lemma 3,4 in [7]. 

Lemma 6.7. Let (0 be from the assumption (4.15). For any £ € (0, Co) there 
exists @o > 0 such that there is no nontrivial solution U of (6.1) with s = l + (, 
T € [0,+OO) and \\U\\2 < g0. 

Proof follows from Lemmas 6.5 and 6.6 and can be done in the same way as that 
of [8], Lemma 3.9. 



Lemma 6.8. If [sn, Un, r„] -+ [s0,0,0], Wn = ^ -+ p ^ and (6.3) holds then 

l i m i r i f £ ! l Z i o > o . 
n-++oo T„ 

Proof is done in the same way as that of [16], Lemma 3.6 if we put U0 = — mr
tn"s)S• 

O b s e r v a t i o n 6.1. (Cf. [16], Remark 3.8.) The assumption (4.9) implies: If 

[Un,Tn] e V2 x R+ and ^f- -* F then 

(Ps (Un),W) x 

(6.6) (F, W) = n lirn^ ^-^yth^J. <g o for any WeKs. 

Moreover, let F # 0 and V e V2, W € intKs be such that (F,V) > 0, (F,W) = 0. 
Then (F, W + tV) > 0 for t > 0 and simultaneously W + tV 6 Ks for t > 0 small 
enough. Therefore (F, W) < 0 for all W 6 int If'5 and any F ^ 0 satisfying (6.6). 

Lemma 6.9. TJiere exists Q0 > 0 such that if Q e (0, QQ), sn, Un, Tn satisfy (6.1), 
(6.2), Un <£ Ks, [sn,Un,Tn] -+ [S0,U,T], Wn = ^ -4 W, s„ Js s0 and T e [0,+oo] 
tien W $ Ks. 

Proof is similar to that of Lemma 3.7 in [16]. For the sake of completeness, it can 
be found in Appendix. 

Lemma 6.10. There exists Q0 > 0 such that if s, U, T satisfy (6.1), U $ Ks, 
\\U\\ < Q0 then s ^ s0. 

Proof can be done in the same way as the proof of [16], Lemma 3.9 where we 
take U0 = — TTtTjrxŜTIT aSain> which is the only normed solution to (5.15) for s — s0 

belonging to Ks. 

Lemma 6.11. There exists Q0 > 0 such that if s, U, r satisfy (6.1), s > so, 
0 £ \\U\\ < QO then U $ dKs. 

The proof is identical to that of [16], Lemma 3.10. Again, we take U0 = -JMstL 
and use the fact that it is the only normed solution to (5.15) for s — s0 belonging to 
Ks. 
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7. PROOF OF THE MAIN RESULT 

Let S > 0 be fixed and such that Lemma 5.1 is satisfied. We rewrite the system 
(6.1) into the form 

(7.1) U-T(s)U + HT(s,U) = 0, 

where 

(7.2) 
T(s)U = D~1(a(s))BAU - SLs(s)U, 

Hr(s, V) = D-\a(S)) [ - Y^W) + Pf(U)] • 

If we define P*(U) = Pir(U) for r < 0 then 

(7.3) 

' for any s 6 U, T(s): V2 -+ V2 is linear completely continuous, 

the mapping s t-» T(s) of R into the space of linear continuous 

mappings in V2 (equipped with the operator norm) is continuous, 

the mapping Q : R x V 2 x l - > V 2 defined by 

„ Q(S,U,T) = T(s)U — HT(s, U).is completely continuous; 

l i m MziiEíi! - o 
Ulil li/7!i_íJ-7-í ~"~ u 

(7.4) ) IlUII+lrl-*" l | í / í í + |T | 

uniformly with respect to s € [s0 — j , so + 7], 7 € (0, +00) 

are satisfied under the assumptions from Sections 1 and 4. 
The proof of Theorem 4.1 is based on the following theorem (where by a critical 

point of T we mean the parameter s € R such that there exists a nontrivial solution 
of U — T(s)U = 0 and by &T(S) we denote the sum of algebraic multiplicities of all 
positive eigenvalues of the operator T(s) — I): 

Theorem 7.1, Let fC 5̂  V2 be a closed convex cone in V2 with its vertex at 
the origin and let the mappings T, H satisfy (7.3) and (7.4). Assume that s0 is the 
greatest critical point ofT, s0 is an isolated critical point ofT, Ker(J — T(s0)) = 
Lin{D'o}, — UQ e int/C and 

(7.5) GT(s0 + 0 - ©T(S0 - 0 is odd for any £ € (0, ft) 
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with some £u > 0. Let the following assumptions hold for any Q € (0, go), Qo > (J 

small, [ s . t r . r ] and f.s„.r„, r„] satisfying (7.1), (6.2), r 6 [0.+x<): 

(7.G) there exists C ~ C(QU) > 0 such that s sC C: 

(T.7) (t"„ ^ K, r„ > (), [,s„. t '„ , r„] --> [so,0,0], - ^ - -> t '„) 

=4> 3 V s„ > s0: 

(7.8) (U„ i k \ r„ > 0 , [.9,,f '„,r„]->[so,tf. r],j^--+\V 6 Ai) 

=*• 3 V s„ < s„: 

(7.0) i /f '<^ A.' rlien ,s'^.s'0: 

(i .10) i/.s > .s'u- | | t ' | | ^ 0 fheii /•' g o>A, . 

Then for any Q £ (ft n0) there exists a closed connected set Cy in R x V2 x R containing 

f.so.0.0] surii fiiaf 

(i) i/[.s.f ' ,rj r C, is such, that [s0 ,0.0 | ^ [.s.f.r] riien (7.1),. (6.2) are fulfilled, 

s > s0. U f K: 

(ii) for nn\ r > 0 fiiei'e exists af least one eonpjo [s, [/] sncti t i a t [s, tr, r] e C„. 

Pi oof of :ni,: theoie-i;; is b^sed on Dancer's global biftucatiou theorem ([1], Theo-

ic;u :?> au.'l an a gem-mi contlimaiion theorem jnoved by Kucora in [1 1]. The main 

idea-of dr. pi oof are given ie |1G|, proof of Theoieni 1.2. NOIL-thai the role ol the 

sei? Cj and C~ is userfed heo- in couipariKon with [1G]. 

P r o o f of T h e o r e m 4.1. We will prove Theorem 44 in several sts-p-; in 

btep 1 we will show tor nxed S > 0 and o > 0 sinaii ilie i-xlsteuce of a sohuioii 

[sf,. t ,"] of (5.13). Jn Step ''.: we obtain by a linniiug j>roeess o - i f;.; (stiff with n' > 0 

fixed) a hifurcatioii point ,•>)' 6 ,su.,s - r (o] of (5.13). Finally, we will show in Step 'i 

rhe existence of a bifurcation poini s/ £ [su 5] of (4.1 7) by a lijnitijiji process fi -r if, . 

G i e p ] . jb r a fixed S J- 0 we show that the assuiuplions of Theorem ".J are 

fuifillej with the operators from (7.2), Uu ~ jifj and wirJi IC = lC' froui No 

fation 4.1: It follows from Remark 4.1 and the assumption (4.15) lhat so from 

the assumptions of Theorem 4.1 is the greatest critical point of T and Lemma 5 i 

gives Ker(f — T(s0)) = Ltn{tb}, - / ' , , 6 hit A'*. The assumption (7.5) follows from 

Lemma 5.1, the assumptions (7.6)- (7.10) follow from Lemmas 0.7 6,11. Hence ii fol­

lows from Theorem 7.1 that for any Q 6 (0, g0) fixed there are [«„.£/„,T„] satisfying 

(7.1) and (6.2) (i.e. (6.1) and (6.2)), Un $ K6, «„ ->• s[, >. su, r„ -> +oo. We can 

assume Un ->• Ub
u and Lemmas G.l, 6.2 imply that tr„ -+ tr* and f | satisfies 

(7.11) D(a(sl))U - BAU - N(U) + D(a(.s*))I,(. s*)l/ e -M'{U). 
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Moreover, Us $ mtKs and the limiting process in (6.2) implies \\US\\2 = Q. Further, 

Lemma 6.7 gives ss
e € [so, s + Co]-

S t e p 2. We can construct ss
e, U

s for any Q 6 (0,Qo) and obtain by a limiting 

process Q —>• 0+ a bifurcation point ss 6 [so, s + Co] of (5.13). Lemma 6.3 yields that 

sj is a critical point of (5.14). If sj = so for some 6 > 0 then Lemma 6.4 would 

imply Uf e Ks and 

D(o(s0))Uf - BAUSj + D(o(s0))Ls(s0)Uf = 0. 

Therefore £// = - p ^ y e i n t / ^ wouid hold. On the other hand we had Us
n $ Ks 

by Theorem 7.1 and the limiting process mfi^rt -+ Uj gives a contradiction. This 

implies sj > s0 for any S > 0 small. 

If intiir ^ 0 and dimUsfo^so)) = 1 then the assertion of Theorem 4.1 is proved, 

because we can take §s(v) = v for any 5 and we have sj = sj £ («o> §]• 

S t e p 3. By the limiting process in (7.11) with 6n -> 0+, ss
e" -* se, Us" ~+ Ue 

(after choosing subsequences) we obtain by using (4.11) that USn -+ Ue, \\Ue\\
2 = Q 

and [se, Ue] satisfies (4.17). This process can be done for any Q 6 (0, Q0). Using the 

fact that Co can be chosen arbitrarily small we obtain by this procedure a bifurcation 

point sj 6 [so,s] of (4.17), 

R e m a r k 7.1. Let us notice that Steps 1 and 2 can be done in the same way as 

in [16]. Step 3, where S is not fixed, is new in comparison to [16]. The fact sj > s0 

can be proved under the additional assumptions from Remark 4.2—see the end of 

Appendix. 

8. A P P E N D I X 

P r o o f o f P r o p o s i t i o n 5.1. If oj(so) = 0 then cr.^so) < 0 due to the 

orientation of the curve a(s) and there is nothing to prove. If Oj(so) # 0 then we 

can consider a curve o(s) = [o\(s),a2(s)\ as o2(s) = o(o\(s)) on (s0 — f?>«o + ??) with 

some r/ > 0 small and the hyperbola Cp as a curve 

, . . . . bi2b2\/K
2 b22 

d2 = hp(di) = T~T- + — • 

di- bn/Kp KP 

Differenting hp with respect to d\, we obtain at the point d\ that 

dfep(dg) _ &i2J2i/Kp b12b21 

ddi ~ " (d? - bn/Kpf ~ ~ (d°Kp - bn)2 ' 



It follows that ^ 
dhp(4) = (dJKp-b^f 

ddi 612621 

by using (3.4) for rff, dg, Differenting a with respect to <j\, we obtain daQ-f— = ~?^y 

for any s e (s0 - J?,S 0 + n)- K the curve <r(s) intersects Cp at the point d° = cr(so) 

transversaUy then either ^ | f | = ^ | g ^ < - ^ ^ g p ^ in the case a[(s0) > 0 or 

^ i S y = " T ^ > - (lT2(S61
)
2%T!'22)2 in the case <ri(s0) < 0. In both cases we obtain 

, , (O-2 (SO)K P -&22) 2 , , . 
crj(so) < - - ••'• P, -• 0"i(So)-

6l2»21 

Our assertion follows. 

D e t a i l e d v e r s i o n of O b s e r v a t i o n 5.1. (Cf.Section 2, [6], Section 4, 

[4], Section 2.) We can write (5.1) as a system 

6ll . &12 , 
u —— - A u — — A v = ~nu, 

d\ d\ 
621 , 622 . 

v r-Au —Av = ~fiv 
"2 "2 

and the elements 17 = [u, v] 6 V2 in the form 

(8.1) u-^2{u,ej)ej, -v = Y^^'ei)er 
i=i i=i 

Using these expansions and the fact that m is a characteristic value of A, multiplying 

the first equation by diKiei and the second by d^^e-i, we obtain 

(u,ei)(diKi — 611 + (idiKi) — (f,ej)6i2 = 0, 

(u,e{)b2i - (t>,e;)(d2Ki - 622 + A«fcK.) = ° 

for j = l , 2 , A couple (u,ei), (u,e») can be nontrivial for some i if and only if 

(8.2) (dim ~ 611 + lidiKi)(dzKi - 622 + lidzKi) - 612621 = 0. 

Hence, /»is an eigenvalue of (5.1) if and only if u is a root of 

H2did2K
2 - Hi(d)Km + 7 i (d) = 0 

(8.3) with 0i(d) ~ dib-& + d2bn - 2did2Ki, 

7i(d) = (diKi ~ 6u)(d2Ki - 622) - 612621 
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for at least one i. Now, the coefficient /3;(d) can be positive, negative or zero. (Note 
that the corresponding coefficient in (3.3) in Section 3 was negative by (SIGN) for 
any d in a neighbourhood of C,-.) The term ')i(d) is negative or positive for d lying 
to the left or to the right, respectively, from C\. It is easy to simplify the term 

uj,(d) := 02(d) - 4did2-/i(d) = rffů|2 + dllru - 2 d , d 2 6 n 6 2 2 + 4 d 1 d 2 6 i 2 6 2 J 

and see that it does not depend on /. Therefore we will write only u-'td) instead of 
oj;(d). The set {d 6 »% ; w(d) = 0} is the set of all J satisfying 

df &f, + d\lJ\, - 2did2&u&22 + 4did26i2&2i = 0. 

Solving this equation for d 2 with d\ as a parameter we obtain 

diT) = !g- [~&l2&2i + det B ± 2 V
C &[2&2iV / deII] . /• = 1,2. 

611 

Thus the set {d € R+; uj(d) = 0} is a couple of half-lines, one of them is a common 

tangent T to all hyperbolas C ; . j = 1.2,. . . (see also [20] and Figures 1 and 2). 

Further, the set C» = {(/ e S.% ; ;ii(d) = 0} is a hyperbola with the property C ; n C ; = 

T n C ; . 

The roots fj, of (8.3) are 

.!"<-.-^^a.,.,x 

If 7i(d) < 0 then w(d) > 0 and |A(d)j < \/uJ(d). Therefore there are two different real 

roots fa (d), n\ (d), one is negative and the other one is positive. If ')t(d) > 0 then 

w(d) can be either negative (and we have a couple of complex roots) or nonnegative 

but |.<3;(d)| > i/w(d) (and we have two real roots, both having the same sign). The 

possibilities for the signs of fj.: '(d), n\ (d) are the following- -see Fig. 2: 
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domam: ßi(dУ li(d) ш{d) 

dЄV-i + - + \ßi(d)\ < 

deCi 0 - + \ßi(d)\ < 

dev2 - - + \ßi(d)\ < 

deCi _ 0 + \ßi(d)\ = 

dЄV3 _ + + \ßi(d)\ > 

deT - + 0 \ßi(d)\ > 

deVi - + -
deCi 0 + -
d€Vъ + + _ 
deT + + 0 \ßi(d)\ > 

dev6 + + + \ßi(d)\ > 

dЄCì + 0 + \ßi(d)\ = 

deCiПÕi П Г 0 0 0 \ßi(d)\ = 

relat . betw 

„(2) 
ues: 

(1) J- „(2) o(d) ú ' > 0, tf> < 0, l4> ¥> v--

m ,f)>o,ljf)<o,fjf>=-ljf) 
+ |A;(á)| < v ^ W 41] > o. A42) < o. MÍ1} + 42) 

(ďj ^ = o,lif><olflf>žnf) 

(ď) „f'<o, /42) <o,t,f^„f> 
(5) #>=#>«> 

fj.fl j: fj.f\ ,j,f> e C\ R, Re/4'r) < O 

ř l ( l ) = _ / 1 ( 2 ) e i R i R e M W = 0 

i41)^if>,^)ec\R, R^f>>0 
(1) _ „(2) 0{d) #>=#>><) 

W) $>>o,tf> ><>,£>*$> 
m „f>>o,^=o,^Ťínf) 

Җ) џf „ ( 2 ) _ , 

These calculations lead to the conclusion that for d lying to the left there is one 

positive root of (8.3) and for d lying to the right from Cit either none or both roots 

of (8.3) are positive. 

P r o o f of t h e s e c o n d p a r t of (5.11). Using (5.9), (5.6), (8.2), (SIGN) 

and (5.3) we obtain 

(D(a(s))Ls(s)Ui(s),U*(s)) = 5x(s)- ~ " Vj{#) • (D(a(s))Uj(s), U*(s)) 

jei(d») 

= 5X(s)Vi(£) \^s)^(s)Ki-b22 + l,i(s)a2(s)Kir + , 

L &12»21 J 

- 5x(c)^(d°)a^s)Ki ~ fe22 + ^( 8 ) g a(a)«< 
612621 

x [ff2(s)bn + cri(s)622 - 2o-i(s)<r2(s)Ki - 2ai(s)a2(s)K,iixi(s)] 

= Ыs) 
[a2(s)кi - 622 + Џi(s)a2(s)кi]y/Lü(a(s)) 

< 0 for % Є I(đ°). 

P r o o f of L e m m a 5.1. Analogously as in Observation 5.1 we obtain that \i 
is an eigenvalue of the problem 

D-1(a(s))BAU - Ls(s)U - U = /j,U 



if and only if ju is a root of the quadratic equation 

(8.4) - M
2 - $ ( S ) , . + 7 « ( a ) = 0 

with coefficients fti(s), 7*(s) depending continuously on s and 5. For the sake of 

efficiency, the structure of the proof differs from the structure of the lemma. We 

shall distinguish the following cases: 

A l . Let i i I(<f). It follows from (5.10) that / 4 ' V ( s ) ) and U^r)(a(s)), r = 1,2, 

from Observation 5.1 and Notation 5.1 are simultaneously eigenvalues and eigenvec­

tors of D"1(a(s))BA - Ls(s) - I and (8.4) is equivalent to (5.2) for any s G R. In 

particular, this means by the definitions of nP(s), Up(s) that /%,(s) and <7p(s) is an 

eigenvalue and an eigenvector of D^1 (a(s))BA - L$ ($) — / for any s € (s0 - r), s0 + rf) 

or s 6 (so — t), so] in the case d° G Cp \ T or d° 6 Cp n T, respectively. 

A 2 . If i f I(cf) U {p} then <i° and also a(s) for any s e (s0 - r), s0 + rj) lie 

to the right from Ci. (Recall that d° € C.) It follows from Observation 5.1 that 

if d° 6 C p \ T , i i I(<f) U {p} then the sign of both nf)(a(s)) # nf](a(s)) is 

constant on (s0 — r),s0 + r)) (more precisely, )t\ (a(s)) ^ )if (a(s)) are both negative 

or positive on (s0 - r/, s0 + »/) for Ci n T < cP or d° < d n T, respectively). If 

d° € CP n T , i i I(d°) U {p} then ijf}(a(s)) # /<p)(cr(s)) are both negative or 

positive on (s0 — i), s0) for d n T ^ d° or d° ^ Ci n T , respectively, and complex on 

(s0,s0+rj). 

A 3 . For i = p, /Jp(s) changes its sign at s0 and the sign of the other root is 

constant on (s0 — r),s0 + T)) in the case d° G CP\T- More precisely, if CtC\T ~< d° 

then Hp(s) — Lip
l)(a(s)) > 0 on (s0 - J?, S 0 ) , / J P ( S ) = iip(a(s)) < 0 on (s0,s0 + '/?), 

HP
2)(a(s)) < 0 on (s0 - r), S0 + rf), and if d° < Ci n T then / J P ( S ) = /ip

2) (<r(s)) < 0 on 

(s0-»?, s0) , / iP(s) =/ i p ' (<r(s)) > Oon (s0 ,s0+??), / 4 (a(s)) > Oon (s0-r?,s0+»?). In 

the case d° € C p n T we have MP(s) > 0 and the other root is negative on (s0 — r), S 0 ) , 

both the roots being complex on (s0 , s0 +»?). 

B l . Let i G J(d°). Let d° e Cp , d° $ Cq for C, # Cv. Then * G 7P(d°), 

ta(s) = /sp(s) and I,(d°) = 0. Let dnT < cP. Notation 5.1, 5.2 and (5.10) yield 

that Hi(s) — 5x(s) is an eigenvalue of D~l (a(s))BA — Lg (s) — I and one of the roots 

of (8.4). It follows from Notation 5.1 and Observation 5.1 that we can choose 50 > 0 

and T) > 0 such that p,i(s) — S\(s) < 0 on (s0 — r),s0 + rj) for any 5 G (0,<50). The 

roots of (8.4) depend continuously on s G R, S >. 0 and therefore the choice of So > 0 

and r) > 0 can be such that the other root is negative on (so — f),s0 + rj) for any 

5 G (Q,50). Let d° < d n f . Similarly as above, Notation 5.1, 5.2 and (5.10) yield 

that Hi(s) + 5\(s) is an eigenvalue of D~% (a(s))BA - Lg (s) - 1 and one of the roots 

of (8.4). It follows from Notation 5.1 and Observation 5.1 that we can choose So > 0 

and r) > 0 such that IM(S) + 5\(s) > 0 on (s0 - rj, s0 + ?/) for any <5 G (0,50) and that 
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the other root is also positive on (s0 - r), s0 + J?). Let d° 6 C. n T. Notation 5.1, 
5.2 and (5.10) yield that in(s) - SX(s) is an eigenvalue of D"1(a(s))BA - Ls(s) - I 
and one of the roots of (8.4) again. It follows from Notation 5.1 and Observation 5.1 
that we can choose <50 > 0 and r\ > 0 such that both Hi(s) -SX(s) and the other root 
of (8.4) are negative on (s0 - -/?, s0] and complex on (s0, s0 + r/) for any <5 6 (0, <50). 
(See Observation 5.1.) 

B2. Let i G I(d°). Let d° e Cp n Cq, Cq ^ Cp. Let p > g. Then df\T <d° < 
Cj n T for i e 4(d°) U {p}, j € Iq(d°). Similarly as above, Notation 5.1, 5.2 and 
(5.10) yield that m(s) - 8X(s) = nP(s) - SX(s) or m(s) + SX(s) = )iq(s) + SX(s) for 
i 6 Ip(d°) or i G Iq(d°), respectively, is an eigenvalue of D~l(<j(s))BA~Ls(s) —I and 
one of the roots of (8.4). (Let us note that Hi(s0) = 0 for any i G I(d°).) It follows 
from Notation 5.1 and Observation 5.1 that we can choose <50 > 0 and r) > 0 such 
that fii(s) - SX(s) < 0 or m(s) + <5x(s) > 0 for i G Ip(d°) or i G Iq(d°), respectively, 
on (s0 — r),so + ??), <5 G (0,<50). The roots of (8.4) depend continuously on s G R, 
<5 >- 0 and therefore the choice of <50 > 0 and i) > 0 can be such that the other root 
is negative or positive for i e IP(d°) or i G Iq(d°), respectively, on (s0 - :r),s0 + r;), 
<5G (0,<5O). 

B3. Let i G I(d°). Let d° G CP n C„ C, # Cp. Let p < q. Then C. n T x d° x 
Cj n T for j G Jp(d°) U {p}, i G lg(d°). Similarly as above, Notation 5.1, 5.2 and 
(5.10) yield that m(s) + <5x(s) = )iP(s) + <5x(s) or jn(s) - 5X(s) = fiq(s) - SX(s) for 
i G Ip(d°) or i G Iq(d°), respectively, is an eigenvalue of D"1(a(s))BA - Ls(s) - I 
and one of the roots of (8.4). It follows from Notation 5.1 and Observation 5.1 that 
we can choose <50 > 0 and r) > 0 such that )ii(s) + <5x(s) > 0 or Hi(s) — SX(s) < 0 for 
i G IP(d°) oii G Iq(d°), respectively, on (s0-r),s0+i)), 8 G (0,<50). The roots of (8.4) 
depend continuously on s G R, 8 >. 0 and therefore the choice of <50 > 0 and r) > 0 
can be such that the other root is positive or negative for i G Ip(d°) or i 6 Iq(d°), 
respectively, on (s0 — r), s0 + JJ), <5 G (0, <50). 

Now, it follows from the relation of the eigenvalues of the operator D~1(a(s))BA — 
L$(s) — I and the roots of (8.4) mentioned above that there are no further eigenvalues 
and eigenvectors besides those discussed in A1-B3. 

Let us show that for s G (s0 - rj, s0 + rj) or s 6 (so — r), s0) in the case dP G Cv \ T or 
d° G Cp n T, respectively, the algebraic and geometric multiplicities of any positive 
eigenvalue of the operator D""1 (a(s))BA - Ls (s) - 1 coincide. First, we will show the 
coincidence of the algebraic and geometric multiplicities of any positive eigenvalue 
/4r)(<i), r = 1,2, of the operator D^1(a(s))BA - I. 

The adjoint equation to (5.1) is 

B'D~1(d)AU-U = )tU 
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and similar considerations as in Observation 5.1 imply that the eigenvectors of this 
equation corresponding to /4 (d) are 

y M W = T * ^ i r ^ + i f I ^ * « i e i i = rdi&_uaM(d) c i r = 1>2. 
Ld2 012 J Ld2 012 J 

(Recall that U\r)(d) = [a|r)(d)e;,ej, r = 1,2—see Observation 5.2.) An elementary 
calculation using (5.3) gives for nY(d) > 0 that 

\(ur)(d),u\r)(d))\ = \^j^i^^f^d^2
+1\ 

102 01 2021 I 

(8.5) = - • ^ i Z ^ + j » i r ) ( d ) < f e ^ [ ^ t u + d l 6 2 2 - 2d1<i2/S, - 2dxd2«iMlr)(d)] 
02O12O21 

02012021 

(C/}r)(d), rjjr)(d)) = 0 for any i ^ j , r = 1,2, 

cf. (5.11). Hence, 

(8.6) det((u\r)(d), <7Jr)(d)));,iej 5* 0 for any J c N , r = 1,2, d £ T 

This yields that the algebraic and geometric multiplicities of pq (d) coincide for 
i € N, r = 1,2, d $ T (see e.g. [24]). In particular, this holds for d = a(s) with 
s € W„(s0), where l/,,(so) := (s0 - ??, s0 + ry) for d° e C.p \ T, W,,(s0) := (s0 - 17, s0) 
for d° eCvnT (let us note-that cr(s) g Tfor s 6 W„(s0)). 

By a standard treatment of the adjoint operator we obtain 

L*s(s)U{
i
r)(a(s)) = 0 for all i i I(d°), r = 1,2, s e W„(s0). 

This implies that <7}r)(a(s)) for i $ I'd0), r = 1,2, s € W„(s0), is simultaneously 
an eigenvector of the adjoint operator (D~1(a(s))BA)* — L'l(s) — / corresponding 
to n\r)(a(s)). The above considerations imply the coincidence of the algebraic and 
geometric multiplicities of any n\ (d) > 0 with i fi I((f), r = 1,2, s 6 Uv(s0), as 
the eigenvalue of the operator D~1(cr(s))BA - L(s(s) - I. 

If d° e C p f l T then all eigenvalues of D~~l(a(s))BA — L$(s) — / corresponding to 
i e I(d°) are negative on (s0 - rj, s0) and complex on (s0, so + )?)—see the first part 
of this proof. 

If d° 6 Cp \ T then, due to the continuous dependence on s 6 R, S >- 0, we can 
choose So > 0 such that for any 5 G (0,50) there is JJ > 0 for which the determinant 
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corresponding to (8.6) with the scalar products of the corresponding eigenvectors of 

the operators D"l(a(s))BA-L6(s)-I and (D'1 (a(s))BAy-L}(s)-I, respectively, 

with i,j € .7 C 7(rfu), remains nonzero on (s0 - //, su + '//). Therefore, the algebraic 

and geometric multiplicities of any positive eigenvalue corresponding to i £ I(<P) 

coincide again. 

Our considerations lead to the following conclusion. If </° € CP\T then /J,,(-S) 

is the only eigenvalue of the operator D~1(a(a))BA - Ls(s) - / changing its sign 

at. «o and it is algebraically simple. The other eigenvalues have constant signs and 

multiplicities on (so - )?, SQ + '?)• If f'° ~ Cp n T then /t,,(sj is a real positive alge­

braically simple eigenvalue on [s0 — //, so). The other possible positive eigenvalues 

(which can correspond only to i ( I(d0)) form pairs n',l) (&(•><)) ^ fi\2}(a(s)) where 

Li)L^(a{s)). li{;J\a(s)) have the same algebraic multiplicity, i.e. the sum of algebraic 

multiplicities for any such pair is even. All eigenvalues are complex for (SQ,SQ + •;/). 

The assertion of Lemma 5.1 follows, 

P r o o f of L e m m a C.9. Assume that there aiv g'" ->• 0+ such that for any in 

fixed there exist a'". Um, Tm (n — 1. 2 . . . . ) satisfying 

(8.7) D(a(s^l))U"' -BAUm 

~ rJ^"A'(tr™) + Dnc))Ls(s:]')v;;' + pr,„(um) = o, 

(8.8) i i f ' r n 2 = "'""'" 1 + тm 

with (/,'/' i Ks„ [s'.;;,U]'',T,

1\'] -> [,s'oJ.;"',r'»], p i ^ -> I P " t Ks if M ->• + o c . We 

have | |L/™| | 2 = f—7 cj t>
m -> 0 by (8.8), We can choose a subsequence {tr/,-],S 

from {c-r,,'"}+,m=-i such that ZA = -rgji <̂  A"<\ 2TA -± Z e Ks and T/; - » r e [O.+x,]. 

Lemma C.l gives ,2), —»• 21. 

First let T = 0. Dividing (8.7) by ||£'TA,||, the limiting process gives 

(8.9) D(a(s0))Z - BAZ + D(a(s0))Ls(s0)Z = 0 

with help of (2.5) and Proposition 4.3. It means Z = - p r V € in t / i ' 5 because of 

Wm € A"0 and the fact that i p y j are the only normed solutions of (8.9). For 

T 6 (0, +oo] the equation (8.7) gives that, -TJ^TF- are bounded and therefore we can 

assume -fjj-jt * F, 

(8.10) D(a(s0))Z - BAZ + D(a(s0))Ls(sf,jZ + F = 0, 
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where we have employed (2.5) again. Multiplying (8.10) by -U;, the equation 

D(a(s0))U; ~ B*AU; = 0 

by Z and adding them we obtain (F, -U;) = 0 due to (5.10). Observation 6.1 implies 
F = 0, i.e. we have (8.9) and Z = -pB-j again. In both cases, this is a contradiction 
because Zk $ Ks and Zk -> Z = - p £ | G intKs and our assertion is proved. 

R e m a r k 8,1. The other possibility to avoid the condition int K ?£ 0 is to define 
a pseudointerior 

K~~{UeK; V(F T y,C/)<0& V 3 (F, W) > 0, U ± W 6 K\ 
VJK y€V2 ^ g y a J 
r > 0 F /0 

(cf. [26], [6]) and assume -Uv,-U; e JsT- instead of the assumption ~UPt-U; € 
int Ks for any <5 € (0,80) in (4.14). In order to prove Lemmas in Section 5, one has 
to add a special assumption about the nonlinearity term At or about the sign of a 
scalar product of a certain type, respectively: 

,,n, -°-~^-m~&i 
then / J " , u;'\ ^ 0 for n large enough. 

The meaning of this condition for (2.6) is the following: Let sn, Un satisfy (2.6). 
Let sn -+ s0, P„-4 0, Wn = iwrj -*• mfji- After some calculation (similar to that 
in the proof of [16], Lemma 3.6), condition (8.11) leads us to the conclusion that 
sn < so- This corresponds to the fact that a branch of bifurcating spatial patterns of 
(2.6) goes to the left from C, i.e. to the domain of instability of the trivial solution. 

P roo f of t h e d e s t a b i l i z i n g effect in T h e o r e m 4.1 under the 
additional assumption from Remark 4.2. 

We will show that there exists e > 0 such that 

(8.12) sf > so + £ for all S > 0 small enough. 

Assume that for Sn —> 0 we have sSn —> s0, Un = Uf" ->• U satisfying 

(8.13) D(a(ssf))Un - BAUn + D(a(sf'))LSn(sf)Un € -Ms"(Un), 

where Uf" are from Step 2 of the proof of Theorem 4.1. With help of (4.12) the 
limiting process in (8,13) gives Un —> U and 

D(a(s0))U - BAD ' -M0(U), 



i.e. It € Ej(dP). Under the assumption of the equivalence of relations (2.11) and 
(2.13) we can use Lemma 7 together with Remark 5 from [26] to obtain U £ K and 
U e EB(d°). Hence 

(8.14) U= J^ *ui(s<>) 
iei(d°)u{p} 

with some o,- e R (see (5.7) or (5.8), respectively). Setting 

(8.15) Fn := D(a(sf ))Un - BAUn + D(a(sf))LSn(sf')Un 

we rewrite (8.13) into the form Fn e —M0(Un). Then the assumptions (4.19) and 
(4.20) imply 

(8.16) (En,rj*)>o. 

To get a contradiction we prove that 

(Fn,U*) = (D(a(sSj"))Un - BAUn + D(a(sf'))LK(sf')Un,U*) 

(8.17) = ([D(a(sf)) - D(a(s0))]Un, U*) + (D(a(s0))Un - BAUn, U") 

+ (D(a(sj"))LSn(s
s
l")Un,U*)<0. 

Indeed, the first scalar product is negative for sfh > s0 because we have 

([D(a(sf)) ~ D(a(s0))]Un,U*) = (sf - s0)Rn 

where Rn := (Ti(sn)(wn,u*) + a2(sn)(zn,v*) with some sn,sn lying between s/' and 
so- It follows from (8.14) and Proposition 5.1 that 

(8.18) l i m i t s £ a f f ^ S ^ ^ ^ W + ^ ^ s o ^ O . 
iE<(5)UW

 L 6l2&21 J 

Note that (4.16) implies that the term in brackets in (8.18) is negative for all i G 
Ip(dP) U {p} and nonpositive for i 6 Iq(dP) in the case dP 6 Cp n Cq, CP ^ Cq—see 
Notation 5.2. The second scalar product in (8.17) vanishes because 

(D(a(s0))Un - BAUn,U*) = (Un,D(a(s0))U* - B*AU*) = 0. 
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If U - i p ^ then the last term in (8.17) is zero by (5,11). Further, we have 

~(D(a(sSГ))LsJsf')Un,U*) 

:*0Î"> Б n(d«)Щlff^(D(a(/ľm(sf%U*) 
ieHä") "Ui{-Sl J " 

(8-19) /rr-CcM TT \ 
= X(sf') E ^(d°)^^P( < 7(4"))^(4' j,« i ^(30)) 

i€l(i°) \\Ui(sl")H~ 

iens) bl2hl 

(see the proof of the second part of (5.11) with s = so)- If d° $ T then the limit in 
(8.19) is negative and therefore the last term in (8.17) is negative for large n. 

If <i° € T then w(d°) = 0 and therefore the limit in (8.19) is zero. But 
I{(f) = {p + l,...,p + k - 1} (k is the multiplicity of KP), n(<f) = 1 and 
(D(<j(s0))Ui(so),U:(so)) = g?^«<-W-ff5 = o for any i 6 I(d°). Therefore, 
by the definition of Lg and by (5.11) we have 

^•(D(a(sf'))LK(sf')Un,U-') 

= ^(D(a(sf'))LSn(sf)Un,U') 

(8.20) 

-X(4") E ŞШ^ѓ-ФíoísoУìUiЫ^Ut^soУ) 
ІЄUdO) fíui(Si ) \ \ 

-У(Л) v Ä w 
~ x ( j )

; e Іo) n^řjiř 
x ([D(ФÎ"))UІ(ЗÎ") -í>(<т(вo))Ct.(so)],aiD?(вo)) 

with i?^ ;= <Ti(sn)(wn,uJ) -+• <x2(sn)(£n,i>J) for suitable s^,Sn G (so,Sjj- Hence the 
last expression in (8.20) is negative for large n by the same argument used for the 
first term in the last part of (8.17) (cf. (8.18)). The assertion (8.17) follows and we 
have a contradiction with s]" -> s0. Therefore, sf' > so+e with some s > 0 for any 
n and thus sj ^ So + e. 



It remains to show that [se,Ue] do not satisfy (4.21): Assume by contradiction 

that there are gn -* 0, sen -* si, Ugn -*• 0 satisfying 

(8.21) D(cr(se„))Ugn - BAUen - N(UeJ = 0. 

Dividing this equation by \\Ue„ || we obtain after the limiting process 

D(cr(sj))Uj-BAUj = 0 

where Uj is an accumulating point of pj^Tr. This is impossible because so < si is 

the greatest critical point of (4.18). 
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