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A TREE AS A FINITE NONEMPTY SET 

WITH A BINARY OPERATION 

LADISLAV NEBESKÝ, Praha 

(Received October 8, 1998; 

Abstract. A (finite) acyclic connected graph is called a tree. Let W be a finite nonempty 
set, and let M(W) be the set of all trees T with the property that W is the vertex set 
of T. We will find a one-to-one correspondence between H(J^) and the set of all binary 
operations on W which satisfy a certain set of three axioms (stated in this note). 
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By a graph we mean a finite undirected graph with no loops or multiple edges 
(i.e. a graph in the sense of [1], for example). If G is a graph, then V(G) and E(G) 
denote its vertex set and its edge set, respectively. 

Let G be a connected graph. We denote by da the distance function of G. For 
every ordered pair of distinct u, v € V(G) we denote 

Aa(u,v) — {w £ V(G); da(u,w) — 1 and da(w,v) = da(u,v) - 1}. 

A graph G is said to be geodetic if it is connected and there exists exactly one 
shortest u — v path in G for every ordered pair of u, v 6 V(G). It is not difficult to 
show that 

a connected graph H is geodetic if and only if 

\AH(x,y)\ = l for all distinct x,yeV(H). 

A graph is called a tree if it is connected and acyclic. It is well-known that a graph 
G is a tree if and only if there exists exactly one x — y path in G for every ordered 
pair of x,y € V(G). Thus, every tree is a geodetic graph. 
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In [2], the present author proved that a connected graph G is geodetic if and only 
if there exists a binary operation which "defines" G (in a certain sense) and satisfies a 
certain set of (four) axioms; the assumption that G is connected cannot be omitted. 
In the present note we will prove that a graph G is a tree if and only if there exists a 
binary operation which "defines" G (in the same sense) and satisfies a certain set of 
(three) axioms. The assumption that G is connected is not needed. Thus our result 
obtained for trees is stronger than that obtained for geodetic graphs in [2]. 

Let G be a geodetic graph, and let + be a binary operation on V(G). Following 
[2] we say that + is the proper operation of G if for every ordered pair of u, v € V(G) 
we have 

u + v = u, if u = v, 

u + v is the second vertex of the shortest u — v path provided u^<v. 

This means that if x and y are distinct vertices of G, then x + y is the only element 

olAa(x,y). 

l e m m a 1. Let T be a tree, and let + be the proper operation ofT. Put W — 
V(G). Then + satisfies the following three Axioms (A), (B), and (C); 
(A) (« + u ) + u = w (for allu,v € W); 
(B) if (u + v) +v —u, then u — v (for allu,v £ W); 
(C) ifu^u + v — v^u + vo, then v + w = u (for all «, v, w € W). 

Proof . That is very easy. D 

Note that the proper operation of any geodetic graph satisfies Axioms (A) and 
(B). 

Let + be a binary operation on a finite nonempty set W, and let + satisfy Axioms 
(A), (B) and (C). Then we will say that an ordered pair (W, +) is a tree groupoid. 
If F = (W,+) is a tree groupoid, then we write V(F) = W• 

In this note we will show that—roughly speaking—every tree can be considered a 
tree groupoid, and every tree grupoid can be considered a tree. 

Lemma 2. Let (W, +) be a tree groupoid. Then 

(2) u + v = v if and only if v + u — u for all u,v € W; 

(3) u + v = u if and only if u — v for all u, v e W. 

Proof . (2) follows from Axiom (A). 
Let u,v e W. By Axiom (A), ((« + «) + « )+ u — u + u; and, by Axiom (B), 

« + « = «. Thus, if u — v, then u + v = u. Conversely, if w + v — u, then 
(« + v) + v = u + v — u; and, by Axiom (B),u = v. Hence (3) holds. D 
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Let F = (W, +) be a tree groupoid, and let G be a graph. We will say that G is 
associated with F if V(G) = W and 

E(G) ~- {{u,v};u,ve V(G) such that u + v = v # u}. 

As follows from (2), for every tree groupoid F there exists exactly one graph 
associated with F. 

Lemma 3. Let F = (W, +) be a tree groupoid, let G be the graph associated 
with I\ and let H be a component ofG. Then 

(4) AH(x,y) = {x + y} for all distinct x,yeV(H). 

Proof . If H is trivial, then (4) holds. Let H be nontrivial. Consider arbitrary 
distinct x,y 6 V(H). We will prove that An(x,y) = {x + y}. Put n = dH(x,y). 
Then n ^ 1. We proceed by induction on n. The case when n = 1 is obvious. Let 
n ~£ 2. Assume that 

(5) AH(U,V) = {u + v} for all u,veV(H) such that d(u,v) = n~l. 

Obviously, AH(x,y) ^ 0. Consider an arbitrary z e An(x,y). Then {x,z} e E(H). 
Since dn(z,y) = n —1, (5) implies that x ^ z+y. By virtue of Axiom (C), z = x + y. 
Hence Ajj(x,y) = {x + y}. • 

Lemma 4. Let F = (W, +) be a tree groupoid, and let G be the graph associated 
with F. Then G is a tree and + is the proper operation ofG. 

Proof . Consider an arbitrary component H of G. Combining (1) with 
Lemma 3, we get that H is a geodetic graph. Assume that H contains a cycle 
of odd length. It is routine to prove that there exist u,v,w e V(H) such that 
dn(u,v) = dn(u,w) ~£ 1 and dn(v,w) = 1. By Axiom (C), either t )+i i = u o r 
w + u = v, which contradicts (4). Thus If contains no cycle of odd length. Since H 
is a geodetic graph, we get that if is a tree. 

Assume that G has at least two components. Then there exists y € W — V(H). 
Consider an arbitrary x 6 V(H). We construct an infinite sequence (x1,x2,xs,- • •) 
of vertices in G as follows: x\ = x and 

xn+i = xn + y for all n= 1,2,3... 

Since G is associated with F, we get 

{xi,x2},{X2,x3},{x-i,xi},...eE(G). 
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Hence xi,x2,x3,.. • e V(H). Note that y g V(H). Axiom (B) implies that 

xi i=- x3,X2 ^Xi,x3 ^ xa,... 

Since V(H) is finite, we conclude that H contains a cycle, which is a contradiction. 

Thus H is the only component of G. We get that G is a tree. 

By virtue of (3) and Lemma 3, + is the proper operation of G. D 

Let W be a finite nonempty set. We denote by M(W) the set of all trees T such 

that V(T) = W. Moreover, we denote by D(W) the set of all tree groupoids Y such 

that V(r ) = W. 

We will now present the main result of this note. 

T h e o r e m . Let W be a finite nonempty set. Then there exists a one-to-one 
mapping <p of H(W) onto D(W) such that 

ifi(T) = (W, +), where + is the proper operation of T, 

for each TeB.(W). 

P r o o f . Combining Lemmas 1 and 4, we get the theorem. • 

References 

[1] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hail, London, 
1996. 

[2] L. Nebesky: An algebraic characterization of geodetic graphs. Czechoslovak Math. J. 48 
), 701-710. 

Author's address: Ladislav Nebeský, Filozofická fakulta Univerzity Karlovy, nám. J. Pa-
lacha 2, 11638 Praha 1, Czech Republic, e-mail: ladislav.nebeskyaff.cuni.cz. 


		webmaster@dml.cz
	2020-07-01T14:09:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




