Mathematic Bohemia

Ján Jakubík
 On projective intervals in a modular lattice

Mathematica Bohemica, Vol. 117 (1992), No. 3, 293-298

Persistent URL: http://dml.cz/dmlcz/126283

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON PROJECTIVE INTERVALS IN A MODULAR LATTICE

JÁn Jakubí, Kosice

(Received November 13, 1990)

Summary. In this paper a combinatorial result concerning pairs of projective intervals of a modular lattice will be established.

Keywords: modular lattice, projective intervals, transposed intervals
AMS classification: 06 C 05

1. Preliminaries

The recent papers dealing with combinatorial questions concerning partially ordered sets are rather frequent (cf., e.g., [2], [3], [4]).

Let L be a modular lattice. We denote by \mathscr{D} the collection of all systems $D=$ ($a_{1}, a_{2}, a_{3}, u, v$) of distinct elements of L such that

$$
u=a_{1} \wedge a_{2}=a_{1} \wedge a_{3}=a_{2} \wedge a_{3}, \quad v=a_{1} \vee a_{2}=a_{1} \vee a_{3}=a_{2} \vee a_{3}
$$

An interval [a_{1}, a_{2}] of L will be said to be an m-interval if there is $D \in \mathscr{D}$ such that (under the above notation), $\left[a_{1}, a_{2}\right]$ is projective to $\left[u, a_{1}\right]$.

Let $\alpha=\left[b_{1}, b_{2}\right]$ and $\beta=\left[c_{1}, c_{2}\right]$ be distinct projective intervals of L. Assume that α is nontrivial (i.e. $b_{1} \neq b_{2}$); then β is nontrivial as well.

There exists a least positive integer n such that for some $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ in L the following conditions are satisfied:
(i) $\alpha_{0}=\alpha$ and $\alpha_{n}=\beta$;
(ii) for each $i \in\{1,2, \ldots, n\}$, the interval α_{i} is transposed to the interval α_{i-1}. We denote $\mu(\alpha, \beta)=n$.
Let $S(\alpha)$ be the collection of all systems $\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)$ with $b_{1}=y_{0}<y_{1}<$ $y_{2}<\ldots<y_{m}=b_{2}$. The collection $S(\beta)$ is defined analogously. For each $i \in$ $\{1,2, \ldots, m\}$ let $k(i)$ be a positive integer.

$$
\begin{equation*}
\left(\beta_{i j}\right)(i=1,2, \ldots, m ; j=1,2, \ldots, k(i)) \tag{1}
\end{equation*}
$$

will be said to be a p-system for the intervals α and β if the following conditions are satisfied:
(i) there are $Y=\left(y_{0}, y_{1}, \ldots, y_{n}\right) \in S(\alpha)$ and $Z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in S(\beta)$ such that for each $i \in\{1,2, \ldots, m\}$ we have $\beta_{i 1}=\left[y_{i-1}, y_{1}\right]$ and $\beta_{i, k_{i}}=\left[z_{i-1}, z_{i}\right]$;
(ii) for each $i \in\{1,2, \ldots, m\}$ and each $j \in\{1,2, \ldots, k(i)\}$ the interval $\beta_{i, j-1}$ is transposed to $\beta_{i, j}$. The collection of all p-systems for α and β will be denoted by $p(\alpha, \beta)$. For $A \in P(\alpha, \beta)$ (where A is as in (1)) let A_{0} be the of all $\beta_{i j} \in A$ such that $\beta_{i j}$ fails to be an m-interval. We put

$$
\begin{aligned}
\nu(A) & =\operatorname{card} A_{0} \\
\nu_{0}(\alpha, \beta) & =\min \{\nu(A): A \in P(\alpha, \beta)\}
\end{aligned}
$$

In this note it will be proved that we always have

$$
\begin{equation*}
\nu_{0}(\alpha, \beta) \leqslant 3 \tag{2}
\end{equation*}
$$

and this estimate cannot be sharpened in general.
The estimate (2) is a consequence of the following result:
(A) Let $\alpha=\left[b_{1}, b_{2}\right]$ and $\beta=\left[c_{1}, c_{2}\right]$ be nontrivial intervals of a modular lattice L. Assume that α is projective to β. Then there exist elements $x_{0}, x_{1}, \ldots, x_{m}, y_{0}$, y_{1}, \ldots, y_{m} in L such that the following conditions are satisfied:
(i) $b_{1}=x_{0}<x_{1}<\ldots<x_{m}=b_{2}, c_{1}=y_{0}<y_{1}<\ldots<y_{m}=c_{2}$ and for each $i \in\{1,2, \ldots, m\}$ the interval $\left[x_{i-1}, x_{i}\right]$ is projective to $\left[y_{i-1}, y_{i}\right]$;
(ii) there is $i(1) \in\{1,2, \ldots, m\}$ such that $\left[x_{i-1}, x_{i}\right]$ is an m-interval for each $i \in$ $\{1,2, \ldots, m\} \backslash\{i(1)\}$, and either $\left[x_{i(1)-1}, x_{i(1)}\right]$ is an m-interval, or there is an interval $\left[t_{1}, t_{2}\right] \subseteq L$ such that $\left[x_{i(1)-1}, x_{i(1)}\right]$ is transposed to $\left[t_{1}, t_{2}\right]$ and $\left[t_{1}, t_{2}\right]$ is transposed to $\left[y_{i(1)-1}, y_{i(1)}\right]$.

The proof of (A)

We will apply the notation from Section 1. Again, let α and β be distinct nontrivial intervals of a modular lattice L. Assume that α and β are projective. A p-system A for α and β will be said to be reduced if (under the notation as above), whenever $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, k(i)-1\}$, then $\beta_{i, j-1}$ fails to be transposed to $\beta_{i, j+1}$.

The following lemma is easy to verify.
2.1. Lemma. Let $A \in P(\alpha, \beta)$. Then there exists $A^{\prime} \in P(\alpha, \beta)$ such that $A^{\prime} \subseteq A$ and A^{\prime} is reduced.

Let [c_{1}, c_{2}] and [d_{1}, d_{2}] be transposed intervals of L; themwe have either
(i) $c_{2} \wedge d_{1}=c_{1}, \quad c_{2} \vee d_{1}=d_{2}$,
or
(ii) $\quad d_{2} \wedge c_{1}=d_{1}, \quad d_{2} \vee c_{1}=c_{2}$.

If (i) is valid, then we write $\left[c_{1}, c_{2}\right] \nearrow\left[d_{1}, d_{2}\right]$; the validity of (ii) will be recorded by writing $\left[c_{1}, c_{2}\right] \searrow\left[d_{1}, d_{2}\right]$.
2.2. Lemma. Let $A \in P(\alpha, \beta)$ and assume that A is reduced. Let A be as in (1). If $i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, k(i)-1\}, \alpha_{i, j-1} / \alpha_{i, j}$, then $\alpha_{i, j} \searrow \alpha_{i, j+1}$ (and dually).

The proof is trivial.
Let $A \in P(\alpha, \beta)$ be as in (1). Let $i \in\{1,2, \ldots, m\}, z_{i 1} \in L, x_{i-1,1}<z_{i 1}<$ $x_{i 1}$. We define elements $z_{i 2}, z_{i 3}, \ldots, z_{i, k(i)}$ by induction as follows: if $z_{i, j-1}(j \in$ $\{2, \ldots, k(i)-1\})$ is already defined and if $\alpha_{i, j-1} / \alpha_{i, j}$, then we put $z_{i j}=z_{i, j-1} \vee d_{1}$, where d_{1} is the least element of $\alpha_{i, j}$; on the other hand, if $\alpha_{i, j-1} \searrow \alpha_{i, j}$, then we set $z_{i j}=z_{i, j-1} \wedge d_{2}$, where d_{2} is the largest element of $\alpha_{i j}$.

Consider the system A^{\prime} which we obtain from the system A if the i-th row ($\left.\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, i(k)}\right)$ of A is replaced by the rows

$$
\begin{gathered}
\alpha_{i, 1}^{\prime}, \alpha_{i, 2}^{\prime}, \ldots, \alpha_{i, i(k)}^{\prime} \\
\alpha_{i, 1}^{\prime \prime}, \alpha_{i, 2}^{\prime \prime}, \ldots, \alpha_{i, n}^{\prime \prime}
\end{gathered}
$$

where

$$
\alpha_{i, j}^{\prime}=\left\{t \in \alpha_{i j}: t \leqslant z_{i, j}\right\}, \quad \alpha_{i, j}^{\prime \prime}=\left\{t \in \alpha_{i j}: t \geqslant z_{i, j}\right\}
$$

Then we obviously have:
2.3. Lemma. A^{\prime} is a p-system for the intervals α and β.

The system A^{\prime} will be said to be generated by the system A and by the element $z_{i 1}$.

Let $y, z \in L, b_{1}<y<b_{2}, c_{1}<z<c_{2}$. Suppose that $\left[b_{1}, y\right]$ is projective to $\left[c_{1}, z\right]$ and that $\left[y, b_{2}\right]$ is projective to $\left[z, c_{2}\right]$.
2.4. Lemma. Let $A \in p\left(\left[b_{1}, y\right],\left[c_{1}, z\right]\right)$. (We apply the same notation as in (1) with the distinction that we now have y and z instead of b_{2} and c_{2}.) Let $\beta_{m+1, i}(i=1$, $2, \ldots, k(m+1))$ be intervals of L such that $\beta_{m+1,1}=\left[y, b_{2}\right], \beta_{m+1, k(m+1)}=\left[z, c_{2}\right]$
and for each $i \in\{2,3, \ldots, k(m+1)\}$ the interval $\beta_{m+1, i-1}$ is transposed to $\beta_{m+1, i}$. Let A^{\prime} be the system

$$
\left(\beta_{i j}(i=1,2, \ldots, m+1 ; j=1,2, \ldots, k(i))\right.
$$

Then $A^{\prime} \in p(\alpha, \beta)$.
Proof. This is an immediate consequence of the definition of $p(\alpha, \beta)$.
The assertion dual to 2.4 . is also valid.
2.5. Lemma. Let x, y and z be elements of a modular lattice L. Assume that the relations

$$
[x \wedge y, x] \nearrow[y, x \vee y] \quad \text { and } \quad[y, x \vee y] \backslash[y \wedge z, z]
$$

are valid. Then the sublattice L_{1} of L generated by the elements x, y and z is a homomorphic image of the lattice on Fig. 1.

Fig. 1

Proof. If we consider the free modular lattice with three free generators (cf. e.g. [1], Chap. III, Theorem 8) x, y and z, and if we take into account that in our case we have $\dot{x} \vee y=y \vee z$, then we obtain the assertion of the lemma.

Theorem. Let α and β be nontrivial distinct intervals of a modular lattice L. Assume that α is projective to β. Then there is $A \in P(\alpha, \beta)$ such that (under the notation as in (1) the following condition is satisfied: there is $i(1) \in\{1,2, \ldots, m\}$
such that, whenever $i \in\{1,2, \ldots, m\} \backslash\{i(1)\}$ and $j \in\{1,2, \ldots, k(i)\}$, then $\beta_{i j}$ is an m-interval; next, either $\beta_{i(1), 1}$ is an m-interval, or $k(i(1)) \leqslant 3$.

Proof. Under the notation as in Section 1 , let $\mu(\alpha, \beta)=n$. We have $n \geqslant 1$. If $n=1$, then the assertion obviously holds (it suffices to consider the system (α_{0}, α_{1})).

Suppose that $n \geqslant 2$ and let us apply induction with respect to n. First we consider the system

$$
\left(\alpha_{k}\right) \quad(k=0,1,2, \ldots, n)
$$

which obviously belongs to $p(\alpha, \beta)$. Without loss of generality we may assume that this system is reduced. Next, we can suppose that $\alpha_{0} / \alpha_{1} \searrow \alpha_{2}$ is valid (in the case $\alpha_{0} \searrow \alpha_{1} / \alpha_{2}$ we apply a dual procedure).

Let x, y and z be the greatest element of α_{0}, the least element of α_{1} and the greatest element of α_{2}, respectively. (Cf. Fig. 1.) Then

$$
\alpha_{0}=[x \wedge y, x], \quad \alpha_{1}=[y, x \vee y], \quad \alpha_{2}=[x \wedge z, z] .
$$

At the same time, $x \vee y=y \vee z$. Put $x^{\prime}=(x \wedge y) \vee(x \wedge z)$. We have obviously

$$
x \wedge y \leqslant x^{\prime} \leqslant x .
$$

From $x \wedge y<x$ we infer that either $x \wedge y<x^{\prime}$ or $x^{\prime}<x$.
Let us distinguish the following cases.
(a) Let $x \wedge y=x^{\prime}$. Then $\alpha=\alpha_{0}=\left[x^{\prime}, x\right]$. In view of Fig. $1, \alpha_{0}$ is an m-interval; therefore $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are m-intervals as well. Now it suffices to put $a=\left(\alpha_{i}\right)$ ($i=0,1,2, \ldots, n$).
(b) Let $x^{\prime}=x$. Then $\alpha=\alpha_{0}=[x \wedge y, x]$. Next, $\alpha_{2}=[y \wedge z, t]$, where $t=$ $(x \wedge z) \vee(y \wedge z)$. Denote $\alpha_{1}^{\prime}=[x \wedge y \wedge z, x \wedge z]$. We have (cf. Fig. 1)

$$
\alpha_{0} \backslash \alpha_{1}^{\prime} / \alpha_{2} .
$$

Thus the system A^{\prime} consisting of the intervals

$$
\alpha_{0}, \alpha_{1}^{\prime}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}
$$

belongs to $P(\alpha, \beta)$. Since $\alpha_{2} \nearrow d_{3}$, according to 2.2 the system A^{\prime} fails to be reduced. Thus in view of 2.1 there exists a system

$$
\beta_{0}, \beta_{1}, \ldots, \beta_{l}
$$

which belongs to $P(\alpha, \beta)$ such that $l<n$. Therefore by the induction hypothesis, the assertion of the theorem is valid for α and β.
(c) Let $x \wedge y<x^{\prime}<x$. Let A_{1} be the system

$$
\left(\alpha_{i}\right) \quad(i=0,1,2, \ldots, n)
$$

and let A_{2} be the system generated by A_{1} and the element x^{\prime}. Then (under the notation as in Lemma 2.3) the system A_{2} consists of intervals

$$
\begin{aligned}
& \boldsymbol{\alpha}_{0}^{\prime}, \boldsymbol{\alpha}_{1}^{\prime}, \ldots, \boldsymbol{\alpha}_{n}^{\prime} \\
& \boldsymbol{\alpha}_{0}^{\prime \prime}, \boldsymbol{\alpha}_{1}^{\prime \prime}, \ldots, \boldsymbol{\alpha}_{n}^{\prime \prime}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\alpha_{0}^{\prime}=\left[x \wedge y, x^{\prime}\right], & \alpha_{n}^{\prime}=[y \wedge z, t] \\
\alpha_{0}^{\prime \prime}=\left[x^{\prime}, x\right], & \alpha_{n}^{\prime \prime}=[t, z] .
\end{array}
$$

Since $\alpha_{0}^{\prime \prime}$ is an m-interval, all $\alpha_{i}^{\prime}(i=1,2, \ldots, n)$ must be m-intervals. Next, by the same argument as in (b) we can verify that there exists a system A_{3} consisting of intervals

$$
\beta_{0}, \beta_{1}, \ldots, \beta_{1}
$$

with $1<n$ such that $A_{3} \in p\left(\left[x^{\prime}, x\right],[t, z]\right)$. Hence by the induction hypothesis, the assertion of the theorem is valid for the intervals $\left[x^{\prime}, x\right]$ and $[t, z]$. Now it suffices to apply Lemma 2.3.

Theorem (A) in Section 1 is obviously a consequence of (in fact, equivalent to) Theorem 2.6.
2.7. Example. Let L be as in Fig. 1 Consider the intervals $\alpha=\left[x \wedge y, x^{\prime}\right]$ and $\beta=[y \wedge z, t]$. It is easy to verify that $\mu_{0}(\alpha, \beta)=3$. Hence the estimate (2) cannot be sharpened in general.

References

[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967.
[2] G. Behrendt: Multiposets and the convexity of posets, Ars combin. 29 (1987), 69-74.
[3] B. Bollobás, G. Brightwell, J. Nešetřil: Random graphs and covering graphs of posets, Order 9 (1986), 245-255.
[4] K. Engel, N.N. Kuzjurin: About the ration of the size of a maximum antichain to the size of a maximum level in finite partially ordered sets., Combinatorica 5 (1985), 301-309.

Author's address: Matematický ústav SAV, dislokované pracovisko Grešákova 6, 04001 Koबice.

